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SUMMARY

The estimation of time series models with heavy-tailed innovations has been widely discussed,
but corresponding goodness-of-fit tests have attracted less attention, primarily because the auto-
correlation function commonly used in constructing goodness-of-fit tests necessarily imposes
certain moment conditions on the innovations. As a bounded random variable has finite moments
of all orders, we address the problem by first transforming the residuals with a bounded function.
More specifically, we consider the sample autocorrelation function of the transformed absolute
residuals of a fitted generalized autoregressive conditional heteroscedastic model. With the cor-
responding residual empirical distribution function naturally employed as the transformation, a
robust goodness-of-fit test is then constructed. The asymptotic distributions of the test statistic
under the null hypothesis and local alternatives are derived, and Monte Carlo experiments are
conducted to examine finite-sample properties. The proposed test is shown to be more powerful
than existing tests when the innovations are heavy-tailed.

Some key words: Conditional heteroscedastic model; Goodness-of-fit test; Heavy tail; Residual empirical process;
Robustness.

1. INTRODUCTION

The heavy-tail phenomenon has attracted considerable attention in time series analysis, and
great efforts have been made in model fitting and parameter estimation; see, for example, Davis
& Resnick (1986) and Ling (2005). The generalized autoregressive conditional heteroscedastic
model (Engle, 1982; Bollerslev, 1986) is well known for its success in capturing time-dependent
conditional variances or scales, which are often observed in financial data; see Zivot (2009) and
Guo et al. (2017). Although a stationary generalized autoregressive conditional heteroscedastic
process with Gaussian innovations can be heavy-tailed (He & Teräsvirta, 1999; Basrak et al.,
2002), numerous empirical studies have shown that the residuals {ε̂t} of fitted generalized autore-
gressive conditional heteroscedastic models of financial returns appear to have high or even
nonexistent kurtosis; see, for instance, Mikosch & Stărică (2000), Mittnik & Paolella (2003) and
§ 6 of this paper. Various robust estimators that allow E(ε4

t ) = ∞ yet still achieve
√

n-consistency
have been introduced. For example, the least absolute deviations estimator in Peng & Yao (2003)
and the Pearsonian quasi maximum likelihood estimator in Zhu & Li (2015) require only a finite
fractional moment of εt , i.e., E(|εt|2γ ) < ∞ for some γ > 0, and the Laplacian quasi maximum
likelihood estimator in Berkes & Horváth (2004) requires E(ε2

t ) < ∞.
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In contrast to the many studies of robust parameter estimation, research on corresponding
goodness-of-fit tests, despite its importance, is still quite limited, primarily because the auto-
correlation function commonly used in constructing the test imposes certain moment conditions
on the innovations. As a bounded random variable has finite moments of all orders, we can
remove such conditions through a bounded transformation. Although the distribution function
of the innovations is a natural transformation, it is unknown in practice, so an alternative is to
employ the empirical distribution function of the residuals. For conditional heteroscedastic mod-
els, diagnostic tools constructed from the sample autocorrelation functions of squared residuals
(Li & Mak, 1994) and absolute residuals (Li & Li, 2005) are particularly popular. However, the
former require E(ε4

t ) < ∞ (Li, 2004) and the latter E(ε2
t ) < ∞ (Li & Li, 2005). Even worse, the

convergence rates of these residual sample autocorrelation functions can become extremely slow
under generalized autoregressive conditional heteroscedastic alternatives if E(ε4

t ) = ∞ (Davis
& Mikosch, 1998; Basrak et al., 2002), possibly undermining the power of the corresponding
test.

To address these problems, in this paper we construct a robust goodness-of-fit test based on the
sample autocorrelation function of the transformed absolute residuals, where the transformation
is the residual empirical distribution function. This test is shown to be asymptotically equivalent
to the test where the transformation is the true distribution function of |εt|. We also derive the
asymptotic power of the test based on transformed absolute residuals with any known function,
which includes as special cases those existing methods based on squared and absolute residual
autocorrelations (Li & Mak, 1994; Li & Li, 2005). Doing so makes it possible to theoretically
compare the commonly used goodness-of-fit tests in the literature. Our asymptotic analysis is
crucially reliant on LemmasA1 andA2 in theAppendix, which provide useful results for weighted
residual empirical processes of generalized autoregressive conditional heteroscedastic models and
hence are of independent interest.

2. GOODNESS-OF-FIT TEST BASED ON TRANSFORMED ABSOLUTE RESIDUALS

2·1. Goodness-of-fit test based on residual empirical processes

Our null hypothesis is that the observed time series { y1, . . . , yn} is generated by the following
model:

H0 : yt = εth
1/2
t , ht = ω0 +

p∑
i=1

α0iy
2
t−i +

q∑
j=1

β0jht−j, (1)

where {εt} is a sequence of innovations. Denote by θ = (ω,α1, . . . ,αp,β1, . . . ,βq)
T ∈ � the

parameter vector of model (1), where the parameter space � ⊂ R
p+q+1
+ , with R+ = (0, ∞), is

a compact set and the true parameter vector θ0 = (ω0,α01, . . . ,α0p,β01, . . . ,β0q)
T is an interior

point of �. We call model (1) the GARCH(p, q) model.

Assumption 1. Model (1) satisfies the following conditions: (i) the innovations {εt} are indepen-
dent and identically distributed with ε2

t following a nondegenerate distribution and E(|εt|2γ ) < ∞
for some γ > 0; (ii) { yt} is a strictly stationary and ergodic process; (iii)

∑q
j=1 βj < 1 for all

θ ∈ �; and (iv) the polynomials
∑p

j=1 α0jzj and 1 − ∑q
j=1 β0jzj have no common root.

A necessary and sufficient condition for Assumption 1(ii) to hold is given in Bougerol &
Picard (1992), and Assumption 1(iv) is for the identifiability of model (1) (Berkes et al., 2003;
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Francq & Zakoïan, 2004). We further restrict the innovations {εt} of model (1) so that the estimator
converges to θ0 as n → ∞; see Francq & Zakoïan (2010, pp. 231–5). For example, we assume
E(εt) = 0 and var(εt) = 1 for the Gaussian quasi maximum likelihood estimator (Hall & Yao,
2003), median(|εt|) = 1 for the least absolute deviations estimator (Peng & Yao, 2003; Chen
& Zhu, 2015), and E(εt) = 0 and E(|εt|) = 1 for the Laplacian quasi maximum likelihood
estimator (Berkes & Horváth, 2004).

Define the functions

εt(θ) = yt
/

h1/2
t (θ), ht(θ) = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j(θ). (2)

Then ht(θ0) = ht and εt(θ0) = εt . Because the recursive equation in (2) depends on
past observations that are infinitely far away, in practice initial values are needed for
{ y2

0, . . . , y2
1−p, h0, . . . , h1−q}. For simplicity, we set them to zero and denote the corresponding

functions by ε̃t(θ) and h̃t(θ); fixing these initial values does not affect our asymptotic results.
Let θ̂n = (ω̂, α̂1, . . . , α̂p, β̂1, . . . , β̂q)

T be an estimator for model (1). The residuals of the fitted

model are ε̂t = ε̃t(θ̂n) = yt/ĥ
1/2
t , where ĥt = h̃t(θ̂n). In the literature, the sample autocorrelation

function of absolute or squared residuals is commonly used to check the adequacy of fitted
conditional heteroscedastic models, whereas that of the residuals usually has very low power (Li
& Li, 2008). Hence, we focus on the absolute residuals |ε̂t|. We first transform them with the
residual empirical distribution function,

Ĝn(x) = 1

n

n∑
t=1

I (|ε̂t| � x) (0 � x < ∞), (3)

and obtain Ĝn(|ε̂t|). Let G(·) be the distribution function of |εt|, so E{G(|εt|)} = 0·5. The sample
autocorrelation function of {Ĝn(|ε̂t|)} at lag k can be defined as ρ̂k = γ̂k/γ̂0, where the sample
autocovariance function is

γ̂k = 1

n

n∑
t=k+1

{
Ĝn(|ε̂t|)− 0·5}{

Ĝn(|ε̂t−k |)− 0·5}
(k � 0). (4)

Note that γ̂k would take the same value if the squared residuals ε̂2
t were used in (3) and (4).

Andreou & Werker (2015) considered the f -rank autocorrelation coefficients (Hallin & Puri,
1994) of the residuals and squared residuals of autoregressive models with generalized autore-
gressive conditional heteroscedastic errors, which are fitted by the Gaussian quasi maximum
likelihood method. The f -rank autocorrelation coefficients in Andreou & Werker (2015) have a
symmetric form only when the reference distribution is Gaussian. The proposed ρ̂k has a symmet-
ric and simple form, which can be interpreted as the Spearman rank correlation coefficient (Wald
& Wolfowitz, 1943; Bartels, 1982; Dufour & Roy, 1985; Hallin et al., 1985). Andreou & Werker
(2015) used the local asymptotic normality approach (Le Cam & Yang, 1990; van der Vaart,
1998; Andreou & Werker, 2012) to derive the limiting distributions of residual-based statistics.
To apply the method of Andreou & Werker (2015), we would have to assume that the residuals
are based on the true values of { y0, y−1, . . .}, which are unobservable in practice. This problem
is circumvented by our asymptotic approach.
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For a predetermined positive integer M , we first derive the asymptotic null distribution of
ρ̂ = (ρ̂1, . . . , ρ̂M )

T. Let Ft be the σ -field generated by {εt , εt−1, . . .}, and let g(·) be the density
function of |εt|.

Assumption 2. Under H0, the estimator θ̂n admits the representation

n1/2(θ̂n − θ0) = n−1/2
n∑

t=1

ξt + op(1),

where {ξt , Ft} is a strictly stationary and ergodic martingale difference sequence with � =
var(ξt) < ∞.

Assumption 3. The density g satisfies the following conditions: (i) limx→0 xg(x) = 0;
(ii) limx→∞ xg(x) = 0; and (iii) g is continuous on (0, ∞).

Let κ = E{|εt|g(|εt|)} and

� = IM + 144{0·25κ2D�DT + 0·5κ(DQT + QDT)},
where IM is the M × M identity matrix, D = (d1, . . . , dM )

T and Q = (q1, . . . , qM )
T, with

dk = E

{
0·5 − G(|εt−k |)

ht

∂ht(θ0)

∂θ

}
, qk = E

[{G(|εt|)− 0·5}{G(|εt−k |)− 0·5}ξt
]
.

THEOREM 1. Suppose that H0 and Assumptions 1–3 hold. If � is positive definite, then
n1/2ρ̂ → N (0,�) in distribution as n → ∞.

Because g(x) = f (x) + f (−x) for 0 � x < ∞, where f (·) is the density function of εt ,
we can estimate κ by κ̂ = n−1 ∑n

t=1 |ε̂t|{f̂n(|ε̂t|) + f̂n(−|ε̂t|)}, where f̂n(·) is the kernel den-
sity estimator of f (·). Let ξt = ξt(θ0), i.e., the function ξt(θ) evaluated at θ0. Let ξ̃t(θ) be
obtained by replacing { y2

0, . . . , y2
1−p, h0, . . . , h1−q} with their initial values in ξt(θ), and write

ξ̂t = ξ̃t(θ̂n). We can estimate �, D and Q by �̂ = n−1 ∑n
t=1 ξ̂t ξ̂

T
t , D̂ = (d̂1, . . . , d̂M )

T and
Q̂ = (q̂1, . . . , q̂M )

T, respectively, where d̂k = n−1 ∑n
t=k+1 ĥ−1

t {0·5− Ĝn(|ε̂t−k |)}∂ h̃t(θ̂n)/∂θ and
q̂k = n−1 ∑n

t=k+1{Ĝn(|ε̂t|) − 0·5}{Ĝn(|ε̂t−k |) − 0·5}ξ̂t . Under the conditions of Theorem 1, it
can be shown that κ̂ = κ + op(1), �̂ = � + op(1), D̂ = D + op(1) and Q̂ = Q + op(1). Thus, a
consistent estimator �̂ of � can be obtained, leading us to construct the test statistic

Q(M ) = nρ̂T�̂−1ρ̂,

which under H0 is asymptotically distributed as χ2
M , the chi-squared distribution with M degrees

of freedom. One could also employ n1/2ρ̂k/�̂
1/2
kk to examine the significance of the residual

autocorrelation at lag k individually, where �̂kk is the kth diagonal element of �̂.

2·2. Goodness-of-fit test based on predetermined transformations

We can also consider the transformation with any predetermined function �(·). The sample
autocorrelation function of {�(|ε̂t|)} at lag k can be defined as ρ̂�k = γ̂ �k /γ̂

�
0 , where

γ̂ �k = 1

n

n∑
t=k+1

{�(|ε̂t|)− μ̂�}{�(|ε̂t−k |)− μ̂�} (k � 0),

with μ̂� = n−1 ∑n
t=1�(|ε̂t|), is the sample autocovariance function. Let ρ̂� = (ρ̂�1 , . . . , ρ̂�M )

T.
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Denote the first and second derivatives of � by ψ and ψ̇ . Let μ� = E{�(|εt|)}, σ 2
� =

var{�(|εt|)}, κ� = E{|εt|ψ(|εt|)} and

�� = IM + σ−4
�

{
0·25κ2

�D��DT
� + 0·5κ�(D�QT

� + Q�DT
�)

}
,

where D� = (d�1 , . . . , d�M )
T and Q� = (q�1 , . . . , q�M )

T, with

d�k = E

{
μ� −�(|εt−k |)

ht

∂ht(θ0)

∂θ

}
, q�k = E

[{�(|εt|)− μ�}{�(|εt−k |)− μ�}ξt
]
.

Assumption 4. There exists m > 0 such that the function �∗(x) = |ψ̇(x)|x2 + |ψ(x)|x
satisfies �∗(x) � Cxm for x > 1 and �∗(x) � C for 0 � x � 1, where C > 0 is a constant, and
E(|εt|m) < ∞ and E{�2(|εt|)} < ∞.

THEOREM 2. Suppose that H0 and Assumptions 1, 2 and 4 hold. If�� is positive definite, then
n1/2ρ̂� → N (0,��) in distribution as n → ∞.

In a similar way, we can obtain a consistent estimator �̂� of the asymptotic covariance
matrix �� using sample averages. Thus a goodness-of-fit test, Q�(M ) = nρ̂T

��̂
−1
� ρ̂� , can

be constructed.
The first interesting example is �(x) = xc for some c > 0, and Assumption 4 is implied

by E(|εt|2c) < ∞. This includes existing tests based on absolute and squared residuals, which
correspond to cases with c = 1 and 2, respectively; see Li & Li (2005) and Li (2004). From the
proof of Theorem 1, when � is bounded, Theorem 2 still holds if, instead of Assumption 4, the
derivative ψ satisfies the conditions on the density g in Assumption 3. For Theorem 4 in § 3,
the conditions can be similarly substituted.

Motivated by the transformation Ĝn in the previous subsection, we can also consider � = G,
although G is unknown in practice. Let Gn denote the empirical distribution function of {|εt|},
defined as Gn(x) = n−1 ∑n

t=1 I (|εt| � x) for 0 � x < ∞. From the proofs of Theorems 1 and 2,
it can readily be verified that n1/2ρ̂k , n1/2ρ̂

Gn
k and n1/2ρ̂G

k are asymptotically equivalent.

PROPOSITION 1. Suppose that H0 and Assumptions 1 and 3 hold with n1/2(θ̂n − θ0) = Op(1).
Then n1/2(γ̂k − γ̂G

k ) = op(1) and n1/2(γ̂k − γ̂
Gn
k ) = op(1) for any positive integer k. Moreover,

γ̂0, γ̂G
0 and γ̂Gn

0 all converge in probability to 1/12 as n → ∞.

To apply joint tests Q(M ) and Q�(M ), we can consider several specific values of order M or
select M as

M̃ = arg max
dmin�M�dmax

{Q(M )− M log n}, M̃� = arg max
dmin�M�dmax

{Q�(M )− M log n}, (5)

where the integer M is searched over a fixed range [dmin, dmax] for dmin � 1 and some large
enough dmax. As shown in § 5, the performance of the automatic tests is insensitive to the choice
of dmax.

COROLLARY 1.

(i) Under the conditions of Theorem 1, Q(M̃ ) → χ2
dmin

in distribution as n → ∞.

(ii) Under the conditions of Theorem 2, Q�(M̃�) → χ2
dmin

in distribution as n → ∞.
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In § 3 we demonstrate that under the local alternatives, n1/2ρ̂ is asymptotically normal with
a possible shift in the mean, Υ = (Υ1, . . . ,ΥM )

T; see Theorem 3. As a result, limn→∞ pr(M̃ =
dmin) = 1, which may be undesirable for particular local alternatives with Υ1 = · · · = Υdmin = 0
and ΥK |= 0 for some dmin < K � dmax, since in such cases Q(M̃ ) would have no power. The
test Q�(M̃�) would suffer from the same problem, which can be avoided by using a smaller
penalty, such as the Akaike information criterion-type penalty 2M , to ensure that the probability
of choosing a value of M larger than dmin is nonzero. However, as shown in § 5, doing so may
lead to seriously inflated Type I error rates.

In practice, the aforementioned problem can be remedied by choosing a proper dmin. Suppose
that the sample autocorrelation function ρ̂k falls clearly outside the 95% confidence interval at
certain lags. To guarantee that the joint test, Q(M̃ ), takes into account at least one of the lags, we
need only choose dmin to be the smallest such lag by simply examining the plot of the residual
autocorrelations, ρ̂k ; if such a smallest lag does not exist, then we may set dmin = 1.

3. ASYMPTOTIC POWER UNDER LOCAL ALTERNATIVES

To study the power of the proposed test, we consider the following local alternatives. For each
n, the observed time series { y1,n, . . . , yn,n} is generated by

H1n : yt,n = εth
1/2
t,n , ht,n = ω0 +

p∑
i=1

α0iy
2
t−i,n +

q∑
j=1

β0jht−j,n + n−1/2st,n, (6)

where the subscript n is used to emphasize the dependence of yt,n, ht,n and st,n on n. For simplicity,
we consider st,n = s(y2

t−1,n, . . . , y2
t−p∗,n, ht−1,n, . . . , ht−q∗,n) for some positive integers p∗ > p

and q∗ > q, where the function s satisfies the following condition.

Assumption 5. The function s and all elements of its gradient ∇s are nonnegative everywhere.

Assumption 6. There exists a positive integer n0 such that for each n � n0, { yt,n} and {ht,n} are
strictly stationary and ergodic processes, and E(sδ0

t,n0
) < ∞ for some constant δ0 > 0 independent

of n.

The nonnegativity of s guarantees that ht,n � 0; see Nelson & Cao (1992) for a discussion of
the relaxation of the nonnegativity constraints on the parameters of generalized autoregressive
conditional heteroscedastic models. The condition ∇s � 0 is used to simplify our technical
proofs, and we can similarly derive asymptotic results for other cases of ∇s. The finite fractional
moment of st,n0 in Assumption 6 ensures the same to hold for yt,n and ht,n, which will be needed
in the proofs.

Similar to (2), we define the functions

εt,n(θ) = yt,n
/

h1/2
t,n (θ), ht,n(θ) = ω +

p∑
i=1

αiy
2
t−i,n +

q∑
j=1

βjht−j,n(θ).

For simplicity, with the initial values set to be independent of n, we denote the resulting functions
by ε̃t,n(θ) and h̃t,n(θ), respectively. Under H1n, the residuals are calculated as ε̂t = ε̃t,n(θ̂n) =
yt,n/ĥ

1/2
t,n , where ĥt,n = h̃t,n(θ̂n).
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While ht = ht(θ0) in (2), we can show that the departure n−1/2st,n in (6) results in

ht,n − ht,n(θ0) = n−1/2
∞∑

k=0

eT
1Bk

0e1st−k ,n � 0,

where e1 = (1, 0, . . . , 0)T and

B0 =
(
β01 · · · β0q−1 β0q

Iq−1 0

)

is a q × q matrix. Define the nonnegative Ft−1-measurable random variables

rt,n = n1/2{ht,n − ht,n(θ0)}
ht,n(θ0)

= 1

ht,n(θ0)

∞∑
k=0

eT
1Bk

0e1st−k ,n.

Let st = s(y2
t−1, . . . , y2

t−p∗ , ht−1, . . . , ht−q∗) and

rt = 1

ht

∞∑
k=0

eT
1Bk

0e1st−k . (7)

Assumption 7. There exist processes {r(l)t,n : t = 1 . . . , n} and {r(u)t,n : t = 1 . . . , n} for each n that

satisfy the following conditions: (i) all the r(l)t,n and r(u)t,n are Ft−1-measurable; (ii) the processes

{r(l)t,n0
} and {r(u)t,n0

} are strictly stationary and ergodic with r(l)t,n0
� rt,n � r(u)t,n0

for all n � n0; and

(iii) for each fixed t, r(l)t,n increases monotonically with n, while r(u)t,n decreases monotonically

with n, i.e., r(l)t,n � r(l)t,n+1 � r(u)t,n+1 � r(u)t,n for all n, and limn→∞ r(l)t,n = limn→∞ r(u)t,n = rt with
probability 1.

PROPOSITION 2. Consider the case of st,n = a0 + ∑p∗
i=1 aiy2

t−i,n + ∑q∗
j=1 ap∗+jht−j,n, where

a0, a1, . . . , ap∗+q∗ are nonnegative constants. Under Assumptions 1 and 6, if q > 0, then the

conditions in Assumption 7 hold and E{(r(u)t,n0
)m} < ∞ for any m > 0.

For other forms of st,n, Assumption 7 can also be readily verified, although additional moment
restrictions on yt,n may be required.

Assumption 2′. Under H1n, the estimator θ̂n admits the representation

n1/2(θ̂n − θ0) = n−1/2
n∑

t=1

ξt,n +Δ+ op(1),

where {ξt,n, Ft : t = 1 . . . , n} is a strictly stationary and ergodic martingale difference sequence
for each sufficiently large n, limn→∞ var(ξt,n) = �, and Δ ∈ R

p+q+1 is a constant vector.

It is possible to derive the explicit form of the shift Δ under additional regularity condi-
tions for the estimator θ̂n and those of the underlying model in (6). Specifically, assuming that
model (6) is locally asymptotically normal (van der Vaart, 1998), by Le Cam’s third lemma
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we have Δ = limn→∞ cov{n−1/2 ∑n
t=1 ξt ,�(n)(θ0)}, where �(n)(θ0) = −0·5n−1/2 ∑n

t=1{1 +
εt f ′(εt)/f (εt)}h−1

t ∂ht(θ0)/∂θ is the central sequence of the GARCH(p, q) model (Drost & Klaassen,
1997).

Let V = (v1, . . . , vM )
T with vk = E[{0·5 − G(|εt−k |)}rt], and let V� = (v�1 , . . . , v�M )

T with
v�k = E[{μ� −�(|εt−k |)}rt].

THEOREM 3. Suppose that H1n and Assumptions 1, 2′, 3 and 5–7 hold with E{(r(u)t,n0
)4+δ1} < ∞

for some δ1 > 0. If � is positive definite, then n1/2ρ̂ → N (Υ ,�) in distribution as n → ∞,
where Υ = 6κ(DΔ− V ), with κ , D and � defined as in Theorem 1.

THEOREM 4. Suppose that H1n and Assumptions 1, 2′ and 4–7 hold with E{(r(u)t,n0
)4+δ1} < ∞

for some δ1 > 0. If�� is positive definite, then n1/2ρ̂� → N (Υ� ,��) in distribution as n → ∞,
where Υ� = 0·5κ�(D�Δ− V�)/σ 2

� , with κ� , D� , σ� and �� defined as in Theorem 2.

We can show that under H1n, the consistency of the estimators �̂ and �̂� in the previous
section still holds, and hence Q(M ) and Q�(M ) converge to the noncentral χ2

M distribution with
noncentrality parameter c� = Υ T

��
−1
� Υ� as n → ∞, where � = G for Q(M ). In other words,

the local power is determined by the value of c� .

4. TWO APPLICATIONS

In this section we apply the asymptotic results from § § 2 and 3 to generalized autoregressive
conditional heteroscedastic models fitted by the Laplacian quasi maximum likelihood method
(Berkes & Horváth, 2004) and the least absolute deviations method (Peng & Yao, 2003).

We first derive the asymptotic distributions of these two estimators under H1n. Let us write

J = E

{
1

h2
t

∂ht(θ0)

∂θ

∂ht(θ0)

∂θT

}
, λ = E

{
rt

ht

∂ht(θ0)

∂θ

}
,

where rt is defined as in (7). For model (1), the Laplacian quasi maximum likelihood esti-
mator (Berkes & Horváth, 2004) is defined as θ̂LQML

n = arg minθ∈� n−1 ∑n
t=1{log h̃1/2

t (θ) +
|yt|/h̃1/2

t (θ)}, where the identifiability conditions are E(εt) = 0 and E(|εt|) = 1. Under H0 and
Assumption 1, if E(ε2

t ) < ∞, then we can show that

n1/2(θ̂LQML
n − θ0) = 2J −1

n1/2

n∑
t=1

|εt| − 1

ht

∂ht(θ0)

∂θ
+ op(1),

which converges in distribution to N [0, 4{E(ε2
t )− 1}J −1] as n → ∞.

THEOREM 5. Suppose that H1n and Assumptions 1 and 5–7 hold. If E(r(u)t,n0
) < ∞, then

θ̂
LQML
n → θ0 almost surely as n → ∞. Moreover, if E(ε2

t ) < ∞ and E{(r(u)t,n0
)2+δ1} < ∞

for some δ1 > 0, then

n1/2(θ̂LQML
n − θ0) = 2J −1

n1/2

n∑
t=1

|εt| − 1

ht,n(θ0)

∂ht,n(θ0)

∂θ
+ J −1λ+ op(1),

which converges in distribution to N [J −1λ, 4{E(ε2
t )− 1}J −1] as n → ∞.
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For model (1), the least absolute deviations estimator in Peng &Yao (2003) is defined as θ̂LAD
n =

arg minθ∈� n−1 ∑n
t=1 | log y2

t −log h̃t(θ)|, where the identifiability condition is median(|εt|) = 1.
Under H0 and Assumption 1, if g(1) > 0, then it can be shown that

n1/2(θ̂LAD
n − θ0) = {g(1)J }−1

n1/2

n∑
t=1

sgn(|εt| − 1)

ht

∂ht(θ0)

∂θ
+ op(1),

which converges in distribution to N [0, {g(1)}−2J −1] as n → ∞, where sgn(x) = I (x > 0) −
I (x < 0) is the sign function; see Chen & Zhu (2015).

THEOREM 6. If H1n and Assumptions 1 and 5–7 hold, then θ̂LAD
n → θ0 almost surely as

n → ∞. Moreover, if g(1) > 0 and E{(r(u)t,n0
)4+δ1} < ∞ for some δ1 > 0, then

n1/2(θ̂LAD
n − θ0) = {g(1)J }−1

n1/2

n∑
t=1

sgn(|εt| − 1)

ht,n(θ0)

∂ht,n(θ0)

∂θ
+ J −1λ+ op(1),

which converges in distribution to N [J −1λ, {g(1)}−2J −1] as n → ∞.

Given Theorems 5 and 6, the estimators θ̂LQML
n and θ̂LAD

n both satisfy Assumptions 2 and 2′
with Δ = J −1λ, and we can then obtain the asymptotic distributions of n1/2ρ̂ and n1/2ρ̂� under
both H0 and H1n. Moreover, Theorems 1–4 ensure that the proposed statistic, n1/2ρ̂, has the same
asymptotic distributions as n1/2ρ̂� with � = G under both H0 and H1n. Therefore, we focus on
n1/2ρ̂� in the following discussion.

By Theorems 1–4, under both H0 and H1n, the asymptotic covariance matrix of n1/2ρ̂� is

�� = IM + σ−4
�

(
κ2
�{E(ε2

t )− 1} + 2κ�E
[{μ� −�(|εt|)}(|εt| − 1)

])
D�J −1DT

�

for the Laplacian quasi maximum likelihood estimator θ̂LQML
n , and is

�� = IM + σ−4
�

{
κ2
�

4g2(1)
+ κ�

g(1)
E
[{μ� −�(|εt|)}sgn(|εt| − 1)

]}
D�J −1DT

�

for the least absolute deviations estimator θ̂LAD
n . When � = G, σ 2

� = 1/12. Moreover, under
H1n, the asymptotic distributions of n1/2ρ̂� for both estimators are shifted by

Υ� = 0·5κ�(D�J −1λ− V�)/σ
2
� .

We now consider when Υ� is nonzero. Let b1 = arg minb∈Rp+q+1 E{(rt − X T
t b)2} and

b2 = arg minb∈Rp+q+1 E[{�(|εt−k |) − X T
t b}2], where Xt = h−1

t ∂ht(θ0)/∂θ . Define the partial
covariance (Fan & Yao, 2003)

pcov{rt ,�(|εt−k |) | Xt} = E[(rt − X T
t b1){�(|εt−k |)− X T

t b2}]. (8)

Because b1 = J −1λ, the kth element of the term D�J −1λ − V� , i.e., d�T
k J −1λ − v�k , can be

written as −pcov{rt ,�(|εt−k |) | Xt}. Moreover, as κ� > 0, the kth element of Υ� is zero if and
only if the partial covariance in (8) is zero.
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Table 1. Noncentrality parameter c� (× 102) under different local alternatives of the GARCH(1, 1)
model with (ω0,α0,β0) = (1, 0·3, 0·2), for �(x) = G(x), x and x2

st,n = G(|yt−2,n|) st,n = |yt−2,n| st,n = y2
t−2,n

G x x2 G x x2 G x x2

t1 3E-05 2E-03 99·52
t2·5 0·05 3E-03 1·17 0·13 31·38 8·45
t3 0·07 0·01 1·32 0·27 26·10 12·15
t5 0·10 0·03 3E-03 1·42 0·72 0·11 17·07 16·86 3·98
t7 0·11 0·05 0·01 1·42 0·93 0·26 14·35 16·96 7·91
Normal 0·15 0·10 0·04 1·36 1·25 0·74 9·32 13·62 12·80

Small values are written in standard form, e.g., 3E-05 means 3 × 10−5.

Consider the example in Proposition 2, where we have st = s1,t + s2,t with s1,t = a0 +∑p
i=1 aiy2

t−i +
∑q

j=1 ap∗+jht−j and s2,t = ∑p∗
i=p+1 aiy2

t−i +
∑q∗

j=q+1 ap∗+jht−j. Then rt = X T
t a +

h−1
t

∑∞
k=0 eT

1Bk
0e1s2,t−k , where a = (a0, a1, . . . , ap, ap∗+1, . . . , ap∗+q)

T. As a result, when s2,t =
0, i.e., when the model is correctly specified, the partial covariance in (8) is zero for all k > 0, and
the test Q�(M ) has no power. If the model is misspecified, i.e., when s2,t |= 0, then by a method
similar to the proof of identifiability for generalized autoregressive conditional heteroscedastic
models (Francq & Zakoïan, 2004) we can show that rt − X T

t b1 |= 0 with probability 1, provided
that Assumption 1 holds. Thus, (8) becomes nonzero at some k values, resulting in nontrivial
power for the test.

In general, the local power of Q�(M ) is determined by the noncentrality parameter c� =
Υ T
��

−1
� Υ� , which depends on the departure st,n, the underlying model, the estimator θ̂n and

the function �. It is difficult to make a direct comparison of the values of c� across different
functions �. We next calculate c� for specific scenarios. Table 1 presents the values of c�
under local alternatives of the GARCH(1, 1) model with (ω0,α0,β0) = (1, 0·3, 0·2) and three
types of departure, namely st,n = G(|yt−2,n|), |yt−2,n| and y2

t−2,n, for {εt} following the zero-
mean normal distribution and Student’s t7, t5, t3, t2·5 and t1 distributions, standardized such that
median(|εt|) = 1. We assume that the model is estimated by the least absolute deviations method,
and we approximate the quantities in Υ� and �� by sample averages based on a generated
sequence { y1, . . . , yn} with n = 100 000. We set M = 6 and compare the three transformations
�(x) = G(x), x and x2. Some values are left blank in Table 1 because of violations of the
moment conditions on εt . It can be seen that � = G dominates all of the transformations when
E(ε4

t ) = ∞, and even for moderate-tailed or Gaussian innovations when the departure is st,n =
G(|yt−2,n|) or |yt−2,n|. The desirable performance of � = G is also observed in other situations;
see the Supplementary Material. Moreover, consistent with these results, our first simulation
experiment in § 5 demonstrates that the proposed test, Q(M ), performs favourably compared with
existing tests.

5. SIMULATION EXPERIMENTS

This section presents the results of three simulation experiments carried out to assess the
empirical power of the proposed test Q(M ), evaluate the performance of the automatic method of
selecting M , and verify the asymptotic equivalence in Proposition 1. The least absolute deviations
estimator (Peng & Yao, 2003) is employed throughout.
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Fig. 1. Power (%) of four goodness-of-fit tests, Q(6) (circles), Qsgn(6) (triangles), Qabs(6) (squares) and Qsqr(6)
(pluses), for six different innovation distributions and three different departures: (a) st,n = 2y2

t−2,n; (b) st,n = 2|yt−2,n|;
(c) st,n = 2G(|yt−2,n|).

In the first experiment, we compare the power of the proposed test, Q(M ), with that of three
existing goodness-of-fit tests: the sign-based test of Chen & Zhu (2015), Qsgn(M ); the test based
on absolute residuals in Li & Li (2005), Qabs(M ); and the test based on squared residuals in Li
(2004), Qsqr(M ). For comparison, M is fixed at 6. We generate 1000 replications from

yt,n = εth
1/2
t,n , ht,n = 0·01 + 0·03y2

t−1,n + 0·2ht−1,n + n−1/2st,n, (9)

where {εt} are independent and identically distributed, following the normal distribution with
mean zero or Student’s t7, t5, t3, t2·5 or t1 distribution, and are standardized such that
median(|εt|) = 1. We consider departures st,n = 2y2

t−2,n, 2|yt−2,n| and 2G(|yt−2,n|), and the
sample size is n = 1000. The density function of εt is estimated by the kernel density method
with the Gaussian kernel and its rule-of-thumb bandwidth, h = 0·9n−1/5 min(σ̂ , R̂/1·34), where
σ̂ and R̂ are the sample standard deviation and interquartile of the residuals {ε̂t}, respectively; see
Silverman (1986). Figure 1 displays the power of the four tests. When the tails of εt become heav-
ier, the power of Qabs(M ) and of Qsqr(M ) drops dramatically. Although both Q(M ) and Qsgn(M )

maintain their power, Q(M ) is clearly more powerful, suggesting that the degree of information
loss from its transformation of absolute residuals is relatively small. Finally, although Qabs(M )

performs well when st,n = 2y2
t−2,n and εt is lighter-tailed, the proposed Q(M ) is almost always

the most powerful test for the other two types of departure, even when εt is moderate-tailed.
The second experiment evaluates the performance of the proposed order selection method.

We compare three different methods: the Bayesian information criterion-type method in (5),
where the penalty term is M log n; the Akaike information criterion-type method, for which the
penalty term in (5) is replaced by 2M ; and the mixed method, for which the penalty term in (5)
is replaced by 2M if and only if n1/2 max(|ρ̂1|, . . . , |ρ̂dmax |) > (log n)1/2. We set dmin = 1 and
dmax = 5, 25 or 50. The data are generated from (9) with st,n = cy2

t−2,n, where c = 0 corresponds
to the size and c = 1, . . . , 5 to the power. The innovations {εt} are Student t3-distributed; the
findings under the other innovation distributions from the previous experiment are similar. All
other settings are preserved from the first experiment. Figure 2 shows that the rejection rates
are insensitive to the value of dmax, but vary for different selection methods. The size of the
Bayesian information criterion-based automatic test is close to the nominal rate. Although the
power of that test is slightly smaller than the power of the Akaike information criterion-based
test, the latter is severely oversized. The behaviour of the mixed method falls between that of the
other two methods. In addition, when comparing the performance of the Bayesian information
criterion-based automatic test Q(M̃ ) for c = 2 in Fig. 2 with Fig. 1(a) for Q(6) and Student
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Fig. 2. Rejection rates (%) of the automatic test, Q(M̃ ), for (a) dmax = 5, (b) dmax = 25, and (c) dmax = 50, with three
selection rules: Bayesian information criterion-type rule (squares), Akaike information criterion-type rule (triangles),

and mixed method (circles); horizontal dashed lines indicate the 5% nominal level.
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Fig. 3. Histograms of n1/2(γ̂1 − γ̂ G
1 ) (top row), n1/2(γ̂

Gn
1 − γ̂ G

1 ) (middle row) and n1/2γ̂ G
1 (bottom row) under H0 for

sample sizes n = 200 (left column), 2000 (middle column) and 20 000 (right column).

t3-distributed innovations, we can see that the automatic test has power comparable to that with a
fixed M . Based on these findings, we recommend using the Bayesian information criterion-based
method for automatic selection of M .

The third experiment is conducted to verify the asymptotic equivalence of the test Q�(M )

based on the transformations Ĝn, Gn and G. We generate 1000 replications from

yt = εth
1/2
t , ht = 0·01 + 0·2y2

t−1 + 0·2ht−1,

where {εt} follow the normal distribution with mean zero and median(|εt|) = 1, and the sample
sizes are n = 200, 2000 and 20 000. Figure 3 displays the histograms of n1/2(γ̂k − γ̂G

k ), n1/2

(γ̂
Gn
k − γ̂G

k ) and n1/2γ̂G
k with k = 1. It can be seen that as n increases, the distributions of

n1/2(γ̂1 − γ̂G
1 ) and n1/2(γ̂

Gn
1 − γ̂G

1 ) both shrink towards zero, while that of n1/2γ̂G
1 maintains the

same shape, thereby confirming the asymptotic results in Proposition 1.
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Fig. 4. Daily log returns (%) of yuan-to-dollar exchange rates from 23 January 2009 to 9 October 2015.

The results of three further simulation studies are reported in the Supplementary Material,
wherein we verify the asymptotic distributions of Q(M ) under H0 and H1n and apply the proposed
order selection method to all test statistics in the first experiment. In particular, we show that the
null distribution of Q(M ) is well approximated by the χ2

M distribution even in small samples and
that when n is large, Q(M ) converges to a noncentral χ2

M distribution under H1n, although the
convergence rate seems slower for heavier-tailed innovation distributions. Finally, the proposed
order selection method performs well when applied to other test statistics.

6. AN EMPIRICAL EXAMPLE

In this section we analyse the daily log returns, in percentage form, of the exchange rate of the
Chinese yuan to the United States dollar from 23 January 2009 to 9 October 2015. The sample size
is n = 1520. Figure 4 shows clear volatility clustering. The sample autocorrelation function lies
inside or near the bounds of ±1·96/n1/2 at the first 30 lags, so a pure generalized autoregressive
conditional heteroscedastic model is suggested.

We fit four models using the least absolute deviations method: the GARCH(1, 1) model and
the autoregressive conditional heteroscedastic models of orders p = 6, 7 and 8, defined as
yt = εth

1/2
t , ht = ω0 + ∑p

i=1 α0iy2
t−i and denoted by ARCH(p). The estimated coefficients and

associated standard errors are listed in Table 2. Before conducting goodness-of-fit tests, we first
plot the sample autocorrelation functions of the absolute residuals transformed by�(x) = Ĝn(x),
sgn(x − 1), x and x2, along with their corresponding 95% confidence bands. Figure 5 shows that
the residual autocorrelation function ρ̂k falls noticeably outside the confidence band at lag k = 6
for all fitted ARCH(p)models, yet falls inside the band at all lags for the fitted GARCH(1, 1)model.
In contrast, ρ̂sgn

k , ρ̂abs
k and ρ̂sqr

k all either lie inside the confidence bands or stand out only slightly.
The last two sample autocorrelation functions in particular are very small at almost all lags.

We next compare the performance of the proposed test, based on Q(M ), with those of the tests
based on Qsgn(M ), Qabs(M ) and Qsqr(M ). For each test, we employ the Bayesian information
criterion-type method in (5) to select M , and use dmin = 6 because ρ̂k first falls outside its
confidence band at k = 6 in Fig. 5; dmax is set to 30. Table 3 lists the p-values of these tests with
automatically selected orders M̃ , indicated by a superscript A. We also report the p-values for
the tests with M = 9, because ρ̂k for both the fitted ARCH(6) and ARCH(7) models is significant
at lag 9. The p-values of Qabs and Qsqr are all close or even equal to unity. Although Qsgn has
smaller p-values, it fails to reject any of the fitted ARCH(p) models at the 5% significance level.
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Table 2. Estimation results (× 102), with standard errors, for all fitted models in the exchange
rate example

ARCH(6) ARCH(7) ARCH(8) GARCH
Estimate SE Estimate SE Estimate SE Estimate SE

ω 0·01 2E-03 0·01 2E-03 0·01 2E-03 2E-03 6E-04
α1 19·13 3·11 18·68 3·09 17·25 2·99 11·50 1·70
α2 9·30 2·24 9·19 2·22 8·65 2·20
α3 5·78 1·86 4·94 1·73 5·38 1·81
α4 3·59 1·50 2·60 1·37 2·56 1·37
α5 0·04 0·68 4E-06 0·76 7E-05 0·79
α6 5·02 1·39 5·03 1·44 4·31 1·40
α7 1·10 0·72 0·70 0·71
α8 1·59 0·83
β1 69·34 3·00

SE, standard error; small values are written in standard form, e.g., 2E–03 means 2 × 10−3.
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Fig. 5. Sample autocorrelation functions of absolute residuals transformed by� = Ĝn, sgn(x − 1), x and x2 (from top
to bottom) for four fitted models, with corresponding 95% confidence bands.

By contrast, the inadequacy of the fitted ARCH(6) and ARCH(7) models is successfully detected
by our proposed test for both M = M̃ and M = 9, which indicates that � = Ĝn achieves better
performance in detecting possible autocorrelation structures.

Finally, we evaluate the tail-heaviness of εt . The Pickands and Hill estimates of the tail index
are calculated for the squared residuals of the fitted GARCH(1, 1) model. The implication is that
E(ε2

t ) < ∞ and E(ε4
t ) = ∞; see the Supplementary Material and Resnick (2007) for details.

We also adopt the strict stationarity tests in Francq & Zakoïan (2012) based on least absolute
deviations, and confirm the stationarity of the observed log returns at the 1% significance level.
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Table 3. The p-values of four goodness-of-fit tests with selected order M̃ or M = 9
QA QA

sgn QA
abs QA

sqr Q(9) Qsgn(9) Qabs(9) Qsqr(9)

ARCH(6) 0·0014 0·4130 0·8210 1·0000 0·0015 0·3349 0·9242 1·0000
ARCH(7) 0·0185 0·2790 0·8666 1·0000 0·0125 0·0787 0·9483 1·0000
ARCH(8) 0·0904 0·1872 0·9139 1·0000 0·0981 0·1187 0·9805 1·0000
GARCH 0·1329 0·1367 0·9474 1·0000 0·1272 0·1034 0·9925 1·0000

Moreover, α̂1σ̂
2 + β̂1 = 3·5, which is much greater than 1, implying that the observed sequence

has an infinite second-order moment. This phenomenon, together with the heavy-tailedness of
εt , may have led to the considerable volatility exhibited in Fig. 4.

7. CONCLUSION AND DISCUSSION

For a time series model, let {εt} and {ε̂t} denote the innovations and corresponding residuals,
respectively. In constructing a goodness-of-fit test, the sample autocorrelation function of {ε̂t},
{|ε̂t|} or {ε̂2

t } is usually employed. However, to ensure the existence of the autocorrelation function
of {εt}, {|εt|} or {ε2

t }, the requirement of a finite second- or even fourth-order moment is unavoid-
able. The essence of our approach in this paper is to transform the residuals before calculating the
conventional autocorrelation function. Such a transformation is simple to perform and yet leads
to a rich class of tests through various transformation functions. When the absolute residuals
are transformed by their corresponding empirical distribution function, no moment condition
for εt is required, and the resultant goodness-of-fit test is applicable to arbitrarily heavy-tailed
innovations.

There is an extensive body of literature on time series models with innovations of infinite
variance, such as the infinite variance autoregressive (Davis & Resnick, 1986; Ling, 2005) and
autoregressive moving-average (Zhu & Ling, 2015) models. The corresponding estimators may
not even be

√
n-consistent. To the best of our knowledge, no goodness-of-fit test is currently

available that is well suited to such situations; we therefore propose that the method in this paper
be adopted to resolve this problem, which we leave for future research.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes further results on the noncen-
trality parameter, additional simulation studies, tail index estimation in the empirical example,
and all technical proofs.

APPENDIX

Three important lemmas

Lemmas A1 and A2 below can be used to derive asymptotic distributions of weighted residual empirical
processes for generalized autoregressive conditional heteroscedastic models, and hence are of independent
interest. Lemma A3 provides a Hájek projection for the Spearman rank autocorrelation coefficient.

Downloaded from https://academic.oup.com/biomet/article-abstract/105/1/73/4653523
by guest
on 12 February 2018



88 Y. ZHENG, W. K. LI AND G. LI

LEMMA A1. Suppose that H0 and Assumptions 1 and 3 hold with n1/2(θ̂n − θ0) = Op(1). If {wt} is a
strictly stationary and ergodic process with 0 � wt � 1 and wt ∈ Ft−1, then

sup
0�x<∞

∣∣∣∣∣n−1/2
n∑

t=1

wt

{
I (|ε̂t| � x)− I (|εt| � x)

} − 0·5 xg(x)dT
wn1/2(θ̂n − θ0)

∣∣∣∣∣ = op(1),

where dw = E{wth−1
t ∂ht(θ0)/∂θ}.

LEMMA A2. Suppose that H0 and Assumptions 1 and 3 hold with n1/2(θ̂n − θ0) = Op(1). If {wt} is a
strictly stationary and ergodic process with 0 � wt � 1 and each wt is independent of Ft , then

sup
0�x<∞

∣∣∣∣∣n−1/2
n∑

t=1

wt

{
I (|ε̂t| � x)− I (|εt| � x)

} − E(wt)xg(x)d∗T
0 n1/2(θ̂n − θ0)

∣∣∣∣∣ = op(1),

where d∗
0 = 0·5E{h−1

t ∂ht(θ0)/∂θ}.
LEMMA A3. Let X1, . . . , Xn be a sample of independent observations with distribution function F(x)

and empirical distribution function Fn(x) = n−1
∑n

t=1 I (Xt � x) for −∞ < x < ∞. Then, for any positive
integer k,

n−1/2
n∑

t=k+1

{Fn(Xt)Fn(Xt−k)− F(Xt)F(Xt−k)} = −n−1/2
n∑

t=k+1

{F(Xt)− 0·5} + op(1).
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