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SUMMARY

This supplementary material is organized as follows.

In § S1 we present additional results on the noncentrality parameter; in particular, we compare
the values of the noncentrality parameter cg for different U under specific local alternatives.

Section S2 contains further simulation results. Three simulation studies are carried out to
verify the asymptotic distribution of Q(M) and to evaluate the performance of the proposed
method for selecting M.

Section S3 discusses tail index estimation in the empirical example.

In §S4 we give the proofs of Theorems 1 and 2, Corollary 1 and Lemmas A1-A3 from the
main paper, as well as two auxiliary lemmas, Lemmas S1 and S2.

In § S5 we present the proofs of Proposition 2 and Theorems 3 and 4, and also introduce and
prove Lemmas S3-S8.

Finally, § S6 contains the proofs of Theorems 5 and 6.

S1. ADDITIONAL RESULTS ON THE NONCENTRALITY PARAMETER

In this section, we calculate the value of the noncentrality parameter cy for local alterna-
tives of the following null hypotheses: (i) the autoregressive conditional heteroscedastic model

of order one, y; = sthi/Q, hy = wo + agy?_, denoted by ARCH(1); and (ii) the GARCH(1, 1)

model, y; = 5th;/2, ht = wo + aoy?_; + Boht—1. Three types of departures, s¢, = G(|yt—2.n)s
|Yt—2.n| and yf_zm, are considered, and four transformations, ¥ (z) = G(z), sgn(x — 1), = and
22, are studied. The innovation distributions that we consider include the zero-mean normal
distribution and Student’s t¢7, 5, t3, to.5 and ¢; distributions, which are standardized such that
median(|e;|) = 1. In addition, we consider the innovations resampled from the residuals of the
fitted GARCH(1, 1) model in §S6, and such cases are denoted by {é;} in Tables S1-S4. For
the sign-based test, Qsgn(M ), although the corresponding transformation W(x) = sgn(z — 1)
is not differentiable at x = 1, we can verify that the result of Theorem 4 still holds with kg
replaced by 2¢g(1). We focus on the value of cy corresponding to the least absolute devia-
tions estimator (Peng & Yao, 2003) and approximate the quantities in Ty and X¢ by sample
averages based on a generated sequence {yi,...,y,} with n = 100000. We set M = 6 and
consider the following parameter settings: cg = 0-03,0-5 and 0-9 for the ARCH(1) model, and
(v, Bo) = (0-03,0-2), (0-3,0-2) and (0-03, 0-6) for the GARCH(1, 1) model; for all these cases,
wo is set to 1.
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2 Y. ZHENG, W. K. L1 AND G. L1

Table S1. Noncentrality parameter cy (x10) under different local alternatives of the ARCH(1)
model with (wg, ag) = (1,0:5), for ¥(z) = G(x), sgn(z — 1), = and x>

st = G(|yt—2,n|) Stn = |Yt—2,n] St = Yi-o,n

G sgn T z? G sgn T z? G sgn T z?
{&+} 0-025 0-013 1E-04 6E-09 1-251 0-573 0-020 SE-05 472 177 73 1
t1 0-003  0-002 2-117 0-810 2639771 854755
ta.5 0-020 0-010 0-002 1987 0-889 0-538 224222 91791 94406
t3 0-024 0-012 0-005 1-581 0-705 0-699 3038 1168 1794
ts 0-032 0-016 0-018 0-002 1-381 0-621 1-193 0-234 444 170 503 162
t7 0-037 0-017 0-027 0-006 1-322 0-587 1361 0-519 211 79 271 151
Normal 0-052 0-023 0-053 0-028 1262 0-550 1-601 1-196 84 33 121 112

Small numbers are written in standard form, e.g., 1E-04 means 1 x 10™*.

Table S2. Noncentrality parameter cy (x10%) under different local alternatives of the
GARCH(1, 1) model with (wo, g, B0) = (1,0:3,0-2), for ¥(x) = G(x), sgn(z — 1), x and x>

stn = G(|yt—2,n) St;n = |Yt—2,n] St = Yi-2.n
G sgn x x> G sgn T z2 G sgn T x>

{&} 0-08 0-05 3E-04 2E-06 1-41 0-82 0-01 1E-04 2490 1347 0-45 7TE-04
t1 3E-05 2E-05 2E-03 1E-03 99-52  70-96
to.s 0-05 0-03 3E-03 1-17 0-70 0-13 31-38  17-89 8-45
t3 0-07 0-04 0-01 1.32 0-77 0-27 26-10 14-51 12-15
ts 0-10 0-05 0-03 3E-03 1-42 0-78 0-72 0-11  17-07 890 16-86 3.98
t7 0-11 0-06 0-05 0-01 1-42 0-77 0-93 026 14:35 724 1696 791

Normal 0-15 0-07 0-10 0-04 1-36 0-69 1-25 0-74 9-32 443  13-62 12-80

Table S3. The transformation U which results in the largest cy under dif-
ferent local alternatives of the ARCH(1) model with oy = 0-03,0-5 or 0-9

and wg =1

St,n = G(|yt—2,n\) St,n = |yt72,n‘ St,n = yt2—2,n

0-03 0-5 0-9 0-03 0-5 0-9 0-03 0-5 09
{&+} G G G G G G T G G
t1 G G G G G G G G G
ta.5 G G G G G G T G G
ts G G G T G G T G G
ts G G G x G G T x G
t7 T G G T T G T x T
Normal x T G T x T z2 T z2

Tables S1 and S2 report the values of ¢y for the ARCH(1) model with ap = 0-5 and the
o GARCH(1, 1) model with (ag, 5y) = (0-3,0-2), respectively. It can be seen that G(x) dominates
sgn(z — 1), and = dominates z? in all cases. Moreover, G(x) dominates all of the transforma-
tions for heavy-tailed innovations, and even for moderate-tailed innovations, i.e., E (52") < 00,
when the departure s; ,, is G(|yt—2,n|) or |y¢—2,»|- Tables S3 and S4 give the transformation that
leads to the largest value of cy among the four transformations ¥(x) = G(x), sgn(z — 1), =
» and 22 in each parameter setting. We summarize the findings as follows. Firstly, G(x) is always
the best transformation when s; ,, = G(|y;—2.|), Which is probably due to the matching of the
transformation and the form of the departure. Secondly, G (x) generally achieves more favourable
performance when the value of oy or 3y is larger. Thirdly, for the case where the innovations are
resampled from the residuals of the fitted GARCH(1, 1) model, G(x) dominates all of the other

s transformations except for one case.
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Table S4. The transformation ¥ which results in the largest cy under different local alternatives
of the GARCH(1, 1) model with («o, fp) = (0-03,0-2), (0-3,0-2) or (0-03,0:-6) and wy = 1

St,n = G('yt72,n‘)
(0-03,0-2) (0:3,0-2) (0-03,0-6) (0-03,0-2) (0-3,0-2) (0-03,0-6) (0-03,0-2) (0-3,0-2) (0-03,0-6)

St,n = |yt72,n|

.2
St,n = Yt—2,n

{&:} G G G G G G G G G
t1 G G G G G G G G G
ta.5 G G G G G G x G G
ts G G G G G G x G x
ts G G G G G G T G T
tr G G G G G G T T T
Normal G G G G G T z2 T z2
Normal innovations t3 innovations t; innovations
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Fig. S1. Q-Q plots for Q(6) under Hy against the x2 distribution with 45° reference lines, for sample size
n = 1000 and {e; } following three different distributions.

S2. ADDITIONAL SIMULATION STUDIES

This section reports on three additional simulation experiments. The first two experiments
verify the asymptotic results of (M) under the null hypothesis and the local alternatives. The
third experiment evaluates the performance of the proposed Bayesian information criterion-type
method for selecting the order M for different joint test statistics. All estimation methods are the
same as those in § 5 of the main paper, unless specified otherwise.

First, to assess the performance of the chi-squared approximation for the asymptotic null dis-
tribution of (M), we generate 1000 replications with sample size n = 1000 from

ye = ehy’?, hy = 0-0140-03y2 | +0-2hy_1,

where {&,} follow the normal distribution with mean zero or Student’s ¢; or ¢3 distribution, stan-
dardized such that median(|e;|) = 1. Figure S1 shows that the empirical quantiles of Q(6) well
match the quantiles of the chi-squared distribution with six degrees of freedom, i.e., X%- Partic-
ularly, the points in the upper tails lie near the 45° reference lines, indicating close agreement
between the empirical and nominal sizes.

Second, to verify the asymptotic results of QQ(M) under the local alternatives, we construct
Q(M) = (n'/2p = 7)™ (n'/2p — T), where 7 and 3 are consistent estimators of 7" and %,
respectively. By Theorem 3, we have that Q(M ) is asymptotically distributed as X?w under Hy,,.
We consider the following local alternatives:

Yon = helsy hup = 001 4 0-03y2 1, + 0-2hy_1 + 025,
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Fig. S2. Q-Q plots for Q(6) under Hj,, against the x2 distribution with 45° reference lines, for three
sample sizes, n = 1000 (circles), 10000 (triangles) and 50 000 (squares), and with {e;} following three
different distributions.
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Fig. S3. Rejection rates (%) of four automatic goodness-of-fit tests: QA (circles), Qﬁgn (triangles), Q‘f:bs
(squares) and qur (pluses), for dmax = 5, 25 and 50. The horizontal lines indicate the 5% nominal level.

where s, = 2y7 , , and {e,} are specified as in the previous experiment. As 7" = 6x(D.J '\ —
V), we can estimate itby 7" = 6&(D.J 2\ — V), where &, D and .J are the consistent estimators
used for constructing S in §2 of the main paper. In addition, for the aforementioned model,
we can show that 7, = 2h;ﬁ(90)8ht_17n(90)/8a. Let 7, (0) = 2ht_’$ (0)0hi—1,0(0)/0a,
and write 7, = Ft,n(én). Then A = n~1 oy ft,niz;,i@ﬁt,n(én)/aﬂ and V = (01,...,00m)7,
where 0 =n~t Y1, {05 — Gr(|é—k|)}7tn» are consistent estimators of A and V/, respec-
tively. Thus, T=7+ op(1). We generate 1000 replications with sample sizes n = 1000, 10 000
and 50000. Figure S2 displays the Q-Q plots of Q(6) against the X2 distribution. Conver-
gence to the reference lines can be observed as n increases, although the rates are relatively
slow. Moreover, the convergence rate in the case of Student’s ¢;-distributed innovations seems
slightly slower than for the other two innovation distributions, probably due to the extreme heavy-
tailedness of the Student’s ¢ distribution.

Third, to further investigate the performance of the proposed Bayesian information criterion-
type order selection method, we apply it to four goodness-of-fit test statistics, namely Q (M),
Qsgn (M), Qabs(M) and Qgqr (M), using the data generated in the second simulation experiment
in §5 of the main article. Henceforth we use a superscript A to indicate that M is selected
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Fig. S4. Pickands plot (left) and Hill plot (right) for the tail index of squared residuals of the fitted
GARCH(1, 1) model.

automatically. Figure S3 plots the rejection rates, from which we have the following findings.
First, the performance of the proposed method is insensitive to the value of d,,.; second, the size
of the test is fairly accurate except for qur, which is oversized probably because of the infinite
fourth-order moment of the Student’s ¢3 distribution, as qur(M ) requires E(g}) < oo; third, the
power of the four tests can be ordered as Q* > Qabs > ngn > ngn, which is as expected since
the innovations follow the heavy-tailed Student’s ¢3 distribution; fourth, the power increases as ¢
becomes larger, and the power of these tests for ¢ = 2 is similar to that exhibited in Fig. 1(a) of
the main paper, where a fixed M was employed.

S3. TAIL INDEX ESTIMATION IN THE EMPIRICAL EXAMPLE

Figure S4 presents the Pickands and Hill estimates for the tail index of the squared residuals of
the fitted GARCH(1, 1) model in § 6 of the main article. While the Hill estimates fail to converge
as the number of order statistics increases, the Pickands plot indicates that the tail index of {£7}
is greater than 1 and less than 2, suggesting that E(c?) < oo and F(£}) = oo; see Resnick (2007)
for a more detailed discussion of tail index estimation.

S4. PROOFS OF THEOREMS 1 AND 2 AND COROLLARY 1
S4-1.  Proofs of Theorems 1 and 2 and Corollary 1
In this section we give the proofs of Theorems 1 and 2, Corollary 1 and Lemmas A1-A3 in
the main paper. Two auxiliary lemmas are also presented: Lemma S1 summarizes some existing
results that are used repeatedly in our proofs, and Lemma S2 is used to establish Lemma Al.
Throughout the proofs, we let C' > 0 and 0 < p < 1 be generic constants which may take
different values at different occurrences. Denote by || - || the Euclidean norm for a vector and the

spectral norm for a square matrix. For a random variable X, let || X||,,, be its L,,-norm, where
m > 1 i, || X |lm = {E(X[™)}™,

Proof of Theorem 1. To prove the theorem, we first establish two intermediate results:

w2 Y (G Galn) — GulleCalir—eh )

t=k+1
— k5?8, — 69) = 0,(1) (S1)

85

90

95

100

105



110

115

120

125

6 Y. ZHENG, W. K. L1 AND G. L1

and

W3 {Galle) Gl D) — Gallcd)Galler-D)

t=k+1
+0-56(dg + di)"n'/%(6,, — 6) = op(1) (S2)

for any positive integer k, where df = E{G(|e;_1|)h; 'Oh(00)/06} for k >
We begin by proving (S1). First notice that Assumptlon 3 implies

L= sup zg(z) < oo. (S3)
0<er<oo

Let Wi = G (&) + €l g(|é:)d5™ (8, — 6o). By (S3) and the fact that n'/2(6,, — 6y) = O, (1),
we have maxi<i<n |Wi| = Op(1). Moreover, applying Lemma Al with w; =1, we have
n'? maxcicn |Gn(|éi]) — Wi = 0p(1). As a result,

12 Z {GallNGallersl) = Wil i} = ap(1).

t=k+1

Hence, to prove (S1), it remains to show that

n2 N AWW g = Gl Gnll&-k)} — vd5n' % (0, — 60) = 0p(1).  (S4)
t=k+1

By the Dvoretzky—Kiefer—Wolfowitz inequality (Dvoretzky et al., 1956; Serfling, 1980; Mas-
sart, 1990), we have

nY? sup |Gu(z) — G(z)] = 0p(1), (S5)

0<er<oo

which, in conjunction with (S3), implies

n2 Y e rlg(Eei){Gnll&]) — G(l&)} = Op(1). (S6)

t=k+1

For any A > 0, by (S19), (S21) and Lemma S1 we have

sup sup — ‘G{a:Zt u)} — G(zx ‘ Zp(o—i— 3/2Zsup

lul|<A0<z<oo T % — 9co 00

1 8ht( )H

= Op(n_l/z)a

where Z;(u) is defined in (S13). This, together with the fact that n'/2(8,, — 6y) = Op(1), implies

=S [6(D) ~ Gla)] = Op(n2). (7)

t=k+1
It then follows from (S3) and (S7) that

% Y larlg(E—iD|GUI&]) — Glled)] Z |G(1&e]) = G(lee)| = 0p(1).  (S8)

t=k+1 t k+1
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By (S15) and a method similar to that used for (S19), we can show that

h"*(0)

~ 1 < max CptCQ < Cn_ log(l/P)Co;
hy'*(0)

logn<t<n

max sup
logn<t<n gc@

then, by arguments similar to those for (S37), we can further obtain that

zhl*0) [ zhl*(0)
su max su — — —zg(x)| = o,(1).
This, together with (S3), yields
J R N
up > [12(0) 9 {1z (0)1}  |=2(6) g l=: (O)1}] = 0p(1), (S9)
t=1
In view of (S9) and the result in (S37), we have 130
1 &< . )
- > {leerlgérl) = ler—klg(ler—k)) YG(lee]) = op(1). (S10)
t=k+1
By (S6), (S8), (S10) and the ergodic theorem, it can be shown that
I & . X X
- > [Er-klg(e—k))Gn(l2e]) — 055
t=k+1
I &~ . X X X 1 < . X X
= > [Ee-rlg(lée-kD{Gn(IEe]) — G(El)} + > e rlg(é—kD{G(IE]) — G(led)}
t=k+1 t=k+1
1 &< . X 1 <
+ > {1ee-rlg(€e—k]) = lee—klg(ler-k G (ee]) + — > leerlg(le—k))Glet))
t=k+1 t=k+1
— 0-5bk 135
— 0, (1). (S11)

Similarly we can show that n= 30", 1 [&/|g(|€¢])Gn(|éi—k|) — 0-5K = 0p(1) and, moreover,
it follows immediately from (S3) that n=3/2 30 | 1&g (|€:])|ée—k|g(1é—k|) = 0p(1). These,
together with (S11), yield (S4), and the proof of (S1) is complete.

Next we prove (S2). Observe that 140

n 2N {G(1E)Ga(léi—k]) — Gn(lee) Galer—i]) } + 0-5k(dg + di)™n'/? (6, — 6o)
t=k+1
e Bln —|— BQn + BSn + B4’I’L7
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where
Bin=n""? )" {Gu(l&1]) = Gullee)} Gller—rl) + 0-5rdf™n'/? (6, — b)),
t=k+1
Bon =n""? " {Gu(lé1]) = Gulle)} {Gn(lé1-k]) — Gller—k])}
t=k+1

n—k
Bs, =n"'2Y " {Gu(lél]) — Gullei))} Glleesrl) + 0-5kd5™n' (6, — o),

n—k
Bup =172y {Gu(li]) — Gullee)} {Gullerskl) — Gllerskl)}-
t=1

Applying Lemma A1 with w; = G(|e;_g|), we have

sup |n 1/2ZG|5,; DI (lee] < ) — I(1&] < 2)} 4 0-5zg(x)di™n/?(6,, — b))

0<z<oo =1

= op(1).

Thus,

w  Bip =~ Z e Z (- {I(leel < lejl) = I(1ée] < lejD)} + 0-5rdi™n'/2 (6, — 6o)
t=k+1

< sup n_l/QZG(|5t—k|){I(|5t| <) = I(|&] < 2)} + 0-5z9(x)d;"n' (0, — 60)

0<er<oo —

I . A
+0-5 gZ!ajlg(lfj!)—ﬁ di"n' 2 (6, — 00) | + 0p(1)

Jj=1

We decompose Bs,, into four parts:
Bon = Bain + Baan + Basn + Baan,

155 where

Byia =n~"? Y {G(é) = Glee) HGu(é-k]) — Gléi)},

t=k+1

Bya =02 Y {G(é) = Glee) HG(-k]) — Glle-iD}
t=k+1

Bysa =02 Y [{Gull&]) = G(I&N)} = {Gullee]) — Gle){Gn(E-k]) — Gllék])},
t=k+1

Batn =0~ Y [{Gu(l&]) = G} — {Gn(lee) — Gl YH{G(&-1l) — Gllee—k])}-

t=k+1
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By (S5) and (S7), we have 160

|Baral <0712 ) 7 [G(la]) = Gllarl)] sup |Ga(z) = G(x)] = 0p(1),

t—Ft1 0<r<oo
| Bogy | < ont/? sup |Gp(z) — G(z)| sup |Gp(z) — G(z)| = 0p(1)
0<r<oo 0<er<oo

and

Bl <2072 sup [Guf) = Ga)| D [GllEsl) ~ Glle-il)] = op(1)
ST t=k+1

By a method similar to that for (S7), we can further show that Bag, = 0,(1). Consequently,
By, = Op(l)- 165
Using Lemma A2 with w, = G(|e441|) and the fact that E{G(|e+x|)} = 0-5, we have

sup |n” Y2 " Gllern){I(ed] < x) — I(18e] < )} + 0-bag(z)ds™n'/? (0, — 00)| = 0p(1).

0<z<oco

t=1
As a result,
1 n n—k A
Byn = > 02N Gl DT (el < lgjl) — T(&e] < lej])} + 0-5kdy™n/? (6, — 60)
j=1 t=1

< sup |n U?ZG (lerxD{I(Jee| < z) — I(|&] < @)} + 0-5zg(z)d5™n' (0, — 6p)

0<r<oo =1

1 - T, 1/2¢p
g . 1) — 0, —0p)| + 1 17
+0-5 " E lejl g(lesl) — w| |dg n 7= ( )| +op(1) 0

i=1

= op(1).

By a method similar to that used for By, it can be readily verified that By,, = 0,,(1). Thus, we
complete the proof of (S2).
Finally, observe that Y _," , {G,,(]é]) — 0-5} = O(1) and, consequently,

Py =2 3 {Gulla)Galli4]) — 025} + O(n12),
t=k+1
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where

w2 30 (Gl Colles) — 025}

t= k—i—l
w3 {GueGae 4D ~ GullEd)Gulee i)}
t=k+1

#1712 3 (GGl = Gale)Caller-il)}
t=k+1

#7237 {Gulled)Cal-il) = Gl Gl D)
t=k+1

#7237 (G Glerk]) ~ 0-25)
t=k+1

It follows from (S1), (52) and Lemma A3 that
n'23, = 0-5k(dy — di)™n 2 (8, — 0o) + n'/ 5 + 0p(1), (S12)

where

= 3" (G~ 05H{Geal) — 05

t=k+1

Using the fact that n'/2 maxi<;<p, |G (|2:]) — Wi| = 0p(1), together with (S5) and (S7), we can
show that 49 = 70 + 0p(1) = 1/12 + 0p,(1). Thus, we complete the proof by Slutsky’s lemma,
the martingale central limit theorem and the Cramér—Wold device. O

Proof of Theorem 2. Let ) =n~" ot 1% (ee]) = e H¥(ler—k]) — pw} for >0
Note that |&;] = |ye|/ ﬁtl / 2(én) By Taylor expansions and Lemma S1, we can show that
nt25Y = 124V 4 0-569dn'/2(, — o) + 0p(1) for k > 1. Similarly, we can verify that
AY =13 + 0p(1) = 02 + 0p(1). By Slutsky’s lemma, the martingale central limit theorem and
the Cramér—Wold device, we complete the proof of this theorem. O

Proof of Corollary 1. Forany M = dpi, + 1,. .., dmpax, by Theorem 1,

pr(M = M) < pr{Q(M) — Mlogn > Q(dmin) — dmin logn}
< pr{Q(M) > (M — dmin) logn}
< pr{Q(M) >logn} — 0

as n — oo. Hence pr(M = dmin) — 1 as n — oo. This, together with Theorem 1, implies (i).
Similarly, (ii) can be proved by applying Theorem 2. O

S4-2.  Two auxiliary lemmas
For any u € RPHI+L et

Zy(u) = b2 (00 + n 20 /Bl Zy(w) = B2 (00 + Y 2u) /R (S13)
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Note that hy = h.(6p). For simplicity, without causing confusion we can write, for any u €
Rp+a+1

he(u) = he(B0 +n~2u),  hy(u) = he(Bp + n~ ),

er(u) = e+~ 2u),  E(u) = & (0 +n ).
LEMMA S1. Suppose that Assumption 1 holds. Then there exists a constant g > 0 such that
E(h®) <00, E(|ly:]**) < o0, (S14)

and for some random variable (y independent of t with E(|(p|*0) < oo, we have that

sup [ne(6) — lu(6)| < Cp'co. (S15)
[USC)

Moreover, for any m > 0,

1 oh(0)|™ 1 %m(0)||™
FE FE 1
{228 h(0) 0 H } =0 {228 n(o) ovogr | § <o B9
and there exists a constant ¢ > 0 such that
E([sup{z E92§ 101 — 02]] < ¢, 01,62 € @H > < 0. (S17)
t

Proof of Lemma S1. The statements in (S14) are established in Lemma 2.3 of Berkes et al.
(2003), and (S15) and (S16) are respectively intermediate results in the proofs of Theorems 2.1
and 2.2 in Francq & Zakoian (2004). Assertion (S17) can be proved along the same lines as (S47)
in Lemma S5(b), and the detailed proof is provided in Lemma A.1 of Zheng et al. (2016). O

LEMMA S2. Suppose L = supg_, ., g(x) < oo and that {w;} is a strictly stationary and
ergodic process with wy € Fy—1 and 0 < wy < 1 for all t. If Assumptions 1 and 3(1) hold, then
forany A > 0,

sup sup |n 1/2Zwt e (w)| < 2} — I(|ee] < @) — G{aZi(u)} + G(2)]| = 0p(1).

lul|<A 0Lz <00 i—1

Proof of Lemma S2. For z € [0,00) and u € RPTIFL et

u) = Zwtft(!ﬂ,u), §i(w,u) = ez, u) + S, u),
=1

where

Eule,u) = [Hled < wZi(u)} — GlaZi(w)}] — [Hled] < 2Zi(u)} — G{zZe(w)}],
(. u) = [Hlee] < 2Zi(u)} — G{aZy(w)}] — {I(lee] < 2) — G()}-
)

Note that I{|e;| < zZ;(u)} = I{|&;(u)| < 2} and I{|e;| < 2Z(u)} = I{|es(u)| < z}.
We prove the lemma in the following three steps:
(i) For any A > 0, there is a constant C' depending on A such that for any 0 < z < oo and u
satisfying ||u|| < A, pr{|Sn(z,u)| > sn'/?} < C/(s*n) forall s > 0.
(ii) For any [lu|| < A with A > 0, SUPg<ycoo |Sn (T, u)| = 0p(n'/?).
(iii) For any A > 0, Sup|yj<a SUPo<z<o0 [Sn (@, u)| = op(n'/?).

<
<

200

215

220
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First we verify (i). Observe that for any x > 0 and u € RPYIL S (2, u), Fy, k=1,...,n}
is a martingale. Then, applying Theorem 2.11 in Hall & Heyde (1980), we have

- )
E{Sy(x,u)} < C || Y B{wi&(z,u) | Fer}| + 1]
= 2

2

+1
2

<C D E{g(@,u) | Fr}
t=1

where the last inequality is due to the fact that 0 < w; < 1 with probability 1. Moreover,

E{& (z,u) | Fer} < 2B{&(x,u) | Fror} + 2B{(z, u) | Fi1}
< Q‘G{mZt u)} — G{zZy(u)}| + 2|G{xZi(u)} — G(z)].

As aresult,
2
E{S}(x,u) u)} — G{xZ(u - G@)||| +1].
2 2
(S18)
By Taylor expansion and (S15), we have
sup  sup ’G{th(u)} — G{th(u)}‘
[lull<A Osz<o0
0-5z mh:l/2 =
= sup sup . hi(u) — hy(u)
[|u]| <A 0<z<o00 h1/2h i729 ( htl/2
0 5L
T C,O Gos (S19)

where A} is between hy(u) and hy(u), and w = infge w > 0. Then
~ 2 - 2
otz - clez| =2 [)G{xztw)} — ez 10 < pt/2>]

LB [)G{th(u)} - G{th(u)}‘Q I(Cp'¢ > pt/Q)]

12 )
<ol +pr(Cp'C > o) < Clpt o+ p0),

which, together with Minkowski’s inequality, implies that

‘G{:L"Zt W)Y — GlaZi(u })

t=1

i HG{cht(u)} - G{l‘Zt(’LL)}HQ <C. (820
t=1

By Taylor expansion again, we obtain

x wh1/2(9*) ut  Oh(0*)
sup sup |G{zZi(u)} —G(z)| = —F sup g :
||u||<A0<w<oo‘ | n1/2 o<a<oo htl/2 htl/2 hz/Q(H*) 99
0-5AL 1 Ohy(0)
ST ek |[he(0) 00 | (52D
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where 0* is between 0y and 6 + n~1/24,. This, together with Minkowski’s inequality and (S16),
implies that

Y GlaZi(u)} -
t=1

Upon combining (S18), (S20) and (S22), we have E{Sﬁ (z,u)} < Cn, which, together with the
Markov inequality, implies (i).

Next, we prove (ii). Define a partition of [0,00) as 0 = z1 < 23 < -+ < TNy < TN4] = OO
Specifically, for A > 0, choose 0 < M < sup{z : G(x) < 1} such that supy,< s rg(z) < A.
Let the integer Ny be given by Ny = max{k > 2: (k — 1)n""/2A < G(M/2)}, and define
forj =2,...,N; by

< G{zZi(u)} - G()]], < Cn/2. (S22)
t=1

Glzjr1) = Glaj) +n PA (j=1,...,N1 = 1),

Then, choose ', 11 such that M/2 < zx, 11 < 3M/4 and G(zn,+1) < Nin~Y2A. To define
N, first choose a positive integer K such that K > 2/{~(0-25 — v)} with 0 < v < 1/4 and +y as

defined in Assumption 1. Let N = Ny + Ny + - - + Ng 1, where Ng = N3 = --- = Ng,1 =
|n®*], with |s] denoting the integer part of a real number s. Then define z; for j = Ny +
., N by
Ny i =N 1+ (=D V20 (i=2,..., Ny),
LNy 4 Nyt Nybi = TNy 4 Nyt Ny, i AR — g N k=2, K.
As aresult,
N < Cn?/4, ng;g)]%il(xjﬂ —x;)/z; < Cn Y2, (523)
1—-G(zn/2) < Cn 2, i, ax AG(j) — Glay)} < Cn~ 12, (S24)
and
G(zj1) — Gx;) =n" 2N (j=1,...,]Ny); (S25)

see also the proof of Lemma 6.2 in Berkes & Horvath (2003).
We can show that

sup }Sn(x,u) — Sn(xjﬂ,u)‘

TjSTKT 41

< max (Z wi (] < wj) = Ied < 25) + Glajn Zw)} - Gla; Zi(w)}]

t=1

> w [Hledl < w1 Ze(w)} = H{letl < 25 Zw)} + Glgen) G(scjﬂ)

< [Sn(zj,uw)| + |Sn(Tjp, uw)| +

Zwt{l(zrj <letl < wjp1) — Glwjp1) + G(xj)}|
t=1

+ 3w [Glagn Zuw)} - GlaZuu }+Zwt (2741) - Gla;)],

t=1

240

245

250

255
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20 and then

S < Sn(x; S. — Sp(x;
o0, IS < g, (sl b, p 1800 = Sl v

< 3A1n + 2A2n + A3n + A4n + A5n7 (826)

where

Ay = max |Sp(xj,u)|, A, = max Zwt ‘G{ijt(u)} — G{z;Zi(u)}

1<GEN 2SN =
n
265 Agp = max, ;wt{f(wj <let| L xjy1) — Glxj1) + G(xj)}' ,

n

Ay, = max wy [G{:EjHZt(u)} — G{acht(u)}],

1<<N
ISV

As, = max Zwt{G(xjH) — G(zj)},
t=1

1<G<N

and Sy, (xN41,u) = Sp(+o0,u) = 0.
By the intermediate result (i), (S23) and the Markov inequality, for any s > 0 we have

N Cn3/4
pr(Apy > snt/?) < ;pr{rsn@j, u)| > '/} < T
2o which implies that
Ay = op(nt/?). (S27)
From (S19), we have that
Agn < CGo = Op(1). (S28)

By Theorem 2.11 in Hall & Heyde (1980) and (S24), we can show that
n 4
E > wi{l(x; < ler] < wj41) — Glaja) + Glay)}| | < Cn,
t=1

which, by using a method similar to the proof of (S27), yields
Az, = op(nt/?). (S29)

For A4, we can show that, by (S25) and a method similar to that for (S21),

n

275 15?&1 tz:;wt [G{ﬂ?j_HZt(U)} — G{x]Zt(u)}]

<n max {Gwj1) — Gz))}+2 max > |G{zj1Z(u)} — Glajp)]
t=1

1<5<M; 1<j<M;
A< 1 0h(0)
< Cn?2Al1+ 2 su ¢ H .
{ n 25| 5 o
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By Taylor expansion and (S23),

ng}gﬁfl Z we[G{zj41Ze(u)} — G Ze(u)}]

max Zg{:ﬁ Zy(u)} Ze(u) (i1 — x5)

N1<]<N 1

1/2—v
<nLl max (rjp11—x;)/x; <Cn
< N1<]<N_1< po1 )25 < ,

where :n; is between z; and x;11; and by (524),

Zwt [1 — G{IBNZt(’U,)}]

< Z [1— G{anZi(u)}| I{Z(u) < 05} + Z [1— G{anZi(u)}| I{Z(u) > 0-5}

t=1 t=1

< zn:I{Zt(u) <05} +Cn~ ! =0p(1)

since

- 1 Ohy(67)
p 1o 12 ¢ 1
pr{Zi(u) < 0-5} pr{ PP o

_ A ha (6 1 Om(0) |
nE{ue—Slelopgc f“ft : beo || 7u(0) (%(’ ) } ’
where 6* is between 6 and 6y + n~1/2u. As a result,
Ay = AO,(n/?). (S30)
Using (S24) and (S25), one can verify that
Asn < CARYV2, (S31)

Note that A can be chosen arbitrarily small. Thus, we accomplish the proof of (ii) by combining
(§26)—(S31).

Finally, we prove (iii). For any |lu|| < A, define a (p + ¢ + 1)-dimensional cube Vj(u) by
{u*:u—050 < u* <u+0-55cand ||u*]| < A}, where 6 > 0, ¢ is a vector with all elements
equal to 1 and the inequality is elementwise. Write uy = u + 0-50¢ and ug, = u — 0-5¢. Note
that for 01 < 02, we have hy(61) < hy(62) and hy(601) < hy(02). We can then verify that

sup ‘Sn(azju*) — Sn(a:,uL)}
u*eVs(u)

< ISy un) |+ Su(w un)| + Y- we [GlaZi(up)} = GlaZu(ur)}] (532
t=1

280

290

295
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and

S e |6 2t} - GloZutun)}]

t=1

<> w ‘G{th(uU)} - G{:th(uU)}‘ + ; wy ‘G{th(uL)} — G{xZ(uz)}

+ > w[G{aZi(up)} — G{xZi(ur)}]

By a method similar to that used for (S21), we obtain

n

_ 0-5L][1|| — 1 Oh(6)
n~Y? su we|G{xZs(u — G{xZs(u <9 ,
(b 2 w[GlaZiu)} = GlaZi(w)}] <0200 w5 =g

(S33)
and it is a direct consequence of (S19) that
n~ % sup sup Zwt‘G{:L‘Zt(u)}—G{th(u)}‘ < Cn~2¢,. (S34)

[lul|[ <A 0<z<oo ;T

By (532)-(S34), the intermediate result (ii) and the finite covering theorem, we complete the
proof of (iii), and thus the lemma follows. O

S4-3.  Proof of Lemma Al
We first show that for any A > 0,

n~1/? Z wy [G{zZi(u)} — G(x)] — 0-bzg(x)dgyu
=1

sup sup
0<z<0 |Jul|l<A

= 0p(1). (S35)

By Assumption 3, for any A >0 we can choose 0 < (Cj <y < oo such that
SUPg<g<ac, £9(T) < A and supg, j2<p<00 29(2) < A. By Taylor expansion, we have

0-5 ut  Ohy(6%)
sup Zi(u) — 1] = sup
HuH<A| = luli<a n'/? |ny 22 (%) 06
0-54 h'?(9) 1 Ohy(6)
< 75 P ——5=sup ,
n12 1 ggl<e h? oeo || he(8) 00

which, together with (S16), (S17) and the Markov inequality, implies

pr{ max sup |Zi(u)—1| > n_l/g} <COn?

ISIST luf <A

where 6* is between 6 and 6y + n~'/2u. Hence, by the Borel-Cantelli lemma, we have

max sup |Z(u) — 1| < Cn~/® (S36)

ISIST lufj <A
with probability 1, which implies

sup  max sup |2Zy(u)g{wZi(u)} — zg(z)] = 0p(1),
C1<a<Cy ISIST |y 1< A
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since the function zg(x) is uniformly continuous on [C}/2,2C5] by Assumption 3(iii). More-
over, using (S36) we can show that

sup max Sup ’th w)g{zZ(u)} — J:g(x)| < 2A,
2€[0,C1]U[Ca,00) LSS ||y| <A

and it then follows that
sup max sup |2Z:(u)g{zZi(u)} — zg(z)| = 0p(1). (S37)

0<z<oo ISt |1y )< 4

On the other hand, by Taylor expansion it can be shown that

Wi 8ht wtahtHO
nzh _72 hy

||u||<A
1< w a2h @] 1 " w; Ohe(6) Ohy(6)
<n 12402 t t 1 t t t
" {n;SEQ 1e(6) 90007 || T 7 e ;hg(e) 20 007 ||(
which, together with (S16) and the ergodic theorem, implies that
t aht
— dy|| = 0p(1). (S38)
ulea || 2 P (1)

By (S37), (S38) and the Taylor expansion in (S21), we have

sup  sup
0<z <00 JJul|l<A

n~1/2 Zwt G{zZy(u)} — G(x)] — 0-bzg(z)dyu

t=1
wpu™ Ohy(u*)
= sup su xZy( xZ, — 0-5zg(x)d,u
O<x£ooHu||£A n Z t(u?)gleZi(u )}ht(u*) 00 9(z)
= op(1),

where u* is between zero and u; hence (S35) holds.
We complete the proof of this lemma by combining Lemma S2, (S34), (S35) and the fact that
n2(6, — bo) = Op(1).

S4-4.  Proof of Lemma A2
We first show that for any A > 0,

sup sup |n~Y/? Z{wt E(w)}HI{E:(w)| < 2} — I(|lee] < z)]| = 0p(1);  (S39)
lu]|<A 0Lz <00 i—

its proof is similar to that of Lemma S2.
For z € [0,00) and u € RPHIHL et

Z{wt wt }ft(‘r u) gt(x7u) = élt(xv u) + 5215(557“)7

where

ez, u) = I{|e
ae(x,u) = I{|ey

Zy(u)} — e
xZi(u)} — I(|et|

xZ(u)},

<
< x).

<z
| <

325

330

335
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Now we are ready to prove (S39) by following the same steps (i)—(iii) as in the proof of

Lemma S2 for S,, (, u). y
We begin with (i). Observe that { Sk (z, u), F, k = 1,...,n}is a martingale forany 0 < = <

oo and u € RPT4FL, Similarly to (S19), by Theorem 2.11 in Hall & Heyde (1980) we have
2

340

+1
2

E(w) Y&} (z,u) | F]

E{gfg(m,u)} <C

2

+1],
2

N
Q

ZE{&?@?:U) "Ft—l}
t=1

with
E{ft z,u) | i1} < 2E{f1t r,u) | Fie 1}+2E{52t z,u) | Foo1}
=2|G{zZ(v)} — G{zZy(w)}| + 2|G{xZ(v)} — G(z)).

345
Then the method for establishing (i) in the proof of Lemma S2 can be applied to show that (i)
also holds for S,, (, u).

Next, to show (ii), we employ the partition of [0, co) defined in (ii) in the proof of Lemma S2.
Let w;” = max{0,w; — E(w;)} and w; = —min{0,w; — F(w;)}. We can show that

S’n(x, u) — Sp(j41,u)

350 sup
Tj \z<x]+1

n
<max (Y [u 160y < el < )+ wi T Zu) < Ja] <y Ze ]

I
N

[wgf(xj < el < zjg1) + wjf{szt(u) < lee| < a;jHZt(u)}] )

NE

1

and, since w;" and w; are both bounded with probability 1, we further have that

-
Il

Sn(ac,u) - Sn(xj+1,u)

sup
TjSTET 41
355 Z (zj < leg| < zjyr1) + ZI{ijt(u) < e € xj+12t(u)}
t=1 t=1
I(zj < led| < zj41) — G(Tj41) +G($j)}‘
+C Z [1{2i2w) < |ed] < 231 Z()} + Glajon) — Glay)] |
t=1

Therefore, (ii) can be established following the lines of (ii) in the proof of Lemma S2.
Finally, to prove (iii), we consider again the (p + ¢ + 1)-dimensional cube Vs(u). It can be

s0 shown that

(2, u*) — S, ur, ‘ cz [I{|et\ 27 (up)} — I{Je] <x2t(uL)}}.

sup
u*€Vs(u)
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Thus, (iii) can be established in a similar way to its verification in the proof of Lemma S2. Hence
(S39) holds.
Applying Lemma A2 with w; = 1, we have

sup |n 1/22{1 & <) — I(|ee] < 2)} — 2g(2)dy™n' (0, — 00)| = 0p(1), (S40)

0<z<oo

which, together with (S39), completes the proof of this lemma.

S4-5.  Proof of Lemma A3 365

The proof of this lemma is based on Hallin et al. (1985). For the sample X1,...,X,, let
Xy = (X (1) X (n)) be the order statistic and R; the rank of the observation X;. Given X ),

define, fori,j € {1,2,...,n}, a(i,j) = ij/n* — F(X(;))F(X(;)). Denote a(Ry, Ri—i) by oy
for simplicity. Then fort = k + 1,...,n we have

Fn(Xt>Fn(Xt7k) - F(Xt)F(Xt,k) = Rth,k/nz - F(X(Rt))F(X(Rt_k)) = Q.

Observe that 370

*1/2 Z at | X = n\/nk [E(Rth—k/”2) - E{F(X(Rt))F(X (Ri—1) ) | X }]
t=k+1

— n n n\ !
_ n\/nk {( + 11)2(32 +2) (2> 3 F(Xt)F(XS)}

1<t<s<n

= —p!/? (Z) - > {F(X)F(X,) - 025} + o(1).

1<t<s<n

Moreover, by the projection results on U-statistics due to Hoeffding (1948), we have

/2 <Z> - S {F(X)F(X,) - 025} = n /2 Zn:{F(Xt) —0:5} + op(1);

1<t<s<n t=1

see also Theorem 12.3 in van der Vaart (1998), for instance. Thus, it follows that a75

n~1/? Z (| Xy) = —n~1/2 f: {F(X) — 0-5} + op(1).

t=k+1 t=k+1

Let A, =n~1/2 D 1 Ot — n~1/? > ips1 Elag | X(y). It then suffices to show that A,, =
op(1). In the following proof, let (r, s) be a pair of integers satisfying k +1 < r # s < n and
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|r — s| # k. We have that

Var< E”: oy X(.))

t=k+1
n n—~k
380 = E( Z o? +2 Z ook + Z Qg X(,)> —(n—k)*{E(ay | X(,))}2
t=k+1 t=k+1 k+1<r#s<n
Ir—s|#k

=(n—k)E(] | X)) + (2n — 4k)E(azagyy | X))
+{(n—k)* — 3n+ 5k} E(oa | X)) —(n— k) E(ay | X(,))}2
I

< CnE(a? | X))+ nQ‘E(aras | X(y) = {E(ae | Xy (S41)
where the last inequality is due to the fact that, for any ¢1,%,t3,t4 =k +1,...,n,
|E{c(Ry,, Riy)o(Ryy, Rey) | X0} < E(of | X)) (S42)

ss  Observe that

{Blar | XY = [B{aBe, Bi) | X} = 55— >, D a
1<27éj<n 1<k#ISn
= A1+ Ay + As,
where
M= Y alifatt) = "2 b X)),

1<17éj<n 1<k#Al<n n(n—1)

{k, 1} {i,5}=0

390 Ag: n—l Z Z (Z ]) (k l)

1<i#j<n  1<k#I<n
#ik0{i =1

E{Oz(RT, Rr_k)oz(Rr, Rs—k‘) | X(.)} + E{Ox(RT, Rr—k;)a(Rr—k, Rs—k‘) | X(.)}
+ E{a(Ry, Rr—i)o(Rs, R) | Xy} + E{a(Ry, Re—i)a(Rs, Rr—y) | X(}]

and

A3 Z Z O‘(i7j)a(kvl)

1<27é]<n 1<k#I<n

#{k,1}n{7,5}=2
1
= E{a®(Ry, Ro—i) | Xy} + E{a(Re, Ry—i)a(Ry—i, Ry) | X}

_n(n—l)[

395

Then, applying (S42) again, we have that

n(n —1)

E(OdrOés | X()) - m

(Blo | X)Y| < S Bla? | X)),
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and so
‘E(OzraS | X¢y) —{E(o | X(,))}Q‘
< |Blaras | X)) - (nf(;?)(‘nlﬂg)w(at | X+ Gy g (B | X))

C
< 5E(af | X(y)-

This, together with (S41), yields

E(A%) = iE{V&I‘( Zn: oy

t=k+1

Note that

|| = [{Fn(X2) = F(X0)} o (Xi k) + F(X){Fn(Xe—r) — F(Xep)}|
< (X)) = F(Xo)| + [Fo(Xi—g) — F(Xi—k)]

and that for any s > 0,
E{n'2sup|F,(x) - F(x)|} = 0(1),

which is a direct consequence of the Dvoretzky—Kiefer—Wolfowitz inequality. As a result, using
Minkowski’s inequality, we obtain that

(B@)}? <2[B{F.(X:) — F(X)¥]"? = o(1).

Therefore E(A2) = o(1), implying A,, = 0,,(1). The proof is thus complete.

S5. PROOFS OF PROPOSITION 2 AND THEOREMS 3 AND 4
S5-1.  Proofs of Proposition 2 and Theorems 3 and 4
To establish Theorems 3 and 4, we first state five auxiliary lemmas, Lemmas S3-S7, whose
proofs are given in subsequent subsections. In particular, the proofs of Lemmas S4 and S5 are
based on the method used to prove Theorem 3 in Francq & Zakoian (2009). We also introduce an
additional lemma, Lemma S8, which plays the same role in the proof of Lemma S6 as Lemma S2
does in the proof of Lemma Al.

LEMMA S3. Suppose that Assumptions 1, 5 and 6 hold. Then for all t and all n > ng, we have
that yt2 < yt2,n+1 < ytZ,n and hy < ht,n+1 < ht,n: and lim,, Yton = Yt and limy, ht,n = Iy
with probability 1. Moreover, there exists a constant 0 < 11 < min(dg, 1) independent of n such
that E(|yt.ne|?t) < oo and E(h}}, ) < co.

t,no
. . (10) (1u) 21)
LEMMA S4. Under Assumptions 1, 5 and 6, there exist processes {Yy; "}, {Yy, " b Y, '}
and {thiu)} such that:

(a) the random variables Yt%l), Y;(,llu) Ytgil) and Yt(iu) are Fi_1-measurable for all t and all n;
(b) forallt and all n > ny,

) 1 Ohn(fo) o (1w 1) 1 Phia(bo) _ o ou
Y, < <Y "’ Y, < < ,
tno S (00) 00 tmo > Ttno S p G0 90007 tmo
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a2s and {Y(U)} Y, 1u)} {Yt e } and {Yt 0 } are strictly stationary and ergodic processes with

t,ng

B[y ") <o B(|¥5") < o0

t,no t,no

foranym > 0;
(c) for each fixed t, the sequences {Y( l)} nd {Y(Ql)} are monotone increasing, the sequences

{Y (1u) } and {Y;(iu)} are monotone decreasing, i.e., Y(H) y (1) < y Y(lu) and

tn+1l X “tn4l X Ttn
(21) < Yt(nJ)rl < Yt(iqu)l 2u) for all n, and
W w1 0h(80) @) _ iy @0 _ L 0%hi(0)
M Ve = B Yon” = g Vi = B Yen” = 3 g

430 with probability 1.

LEMMA S5. Under Assumptions 1, 5 and 6, the following results hold.

(a) For any n = ny,

Ohin(0)  Ohyn(6)

sup |hin(0) = hun(0)] < Cp'Gr, sup <O, (s4)

0eo bco| 00 00
O?hin(0)  O%hyn(0) .
m\9) I T, < , S44
b ||~ 80007 aoogr || S PG (544)
a3s where (1 is a random variable independent of t and n which satisfies E(|(1]"*) < oo with 11

defined as in Lemma S3.
(b) Foranym > 0andalli,j, k€ {1,...,p+q+ 1},

1 Ohin() Hm} { 1 9%hin(0) H’”}
E< sup su . < oo, KX supsu . < 00,
{@}30 ve6 || hen(0) 06 o e || hun(0) 90067
(S45)
1 Bhea(0) "
E : < S46
b%%mwmmwk}”’ o
440 and there exists a constant ¢ > 0 independent of n such that
hy (0 mn
E([sup sup{ tn(02) 2|01 — 02| < ¢, 91,9269}] > < 00. (S47)
n=ng ht n(e )

LEMMA S6. Suppose that Hy,, and Assumptions 1 and 3-7 hold with E{(r, n0)4+51} < 00
for some 61 > 0 and n/%(6,, — 0) = Op(1). If wy is Fy—1-measurable for all t, then

sup
0<z<oo

n 1/2Zwt{f (2] < 2) — I(es| < 2)} — 0-5ag(x) {d5n'/%(8, — Op) — vu )}
t=1

= op(1),

ws  where dy, is defined as in Lemma Al and v, = E(wyry).
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LEMMA S7. Suppose that Hy,, and Assumptions 1 and 3-7 hold with E{(rt(j:l)o)”él} < 0
for some &, > 0 and n'/2(,, — 0;) = Op(1). If wy is independent of F; for all t, then

sup |n I/ZZwt{I (|&] < z) — I(lee] < 2)} — E(wy)zg(x){d5™n 172(6,, — 6y) ) —vs}

0<z<o0 —1
= op(1),
where djj is defined as in Lemma A2 and v = 0-5E(ry).

Lemmas S3 and S4 provide lower and upper bounds for certain sequences in our proofs so
that the sandwich rule can be applied; see also Francq & Zakoian (2009). Lemma S5 contains
some preliminary results that will be used repeatedly. Lemmas S6 and S7 play the same roles in
the proof of Theorem 3 as Lemmas A1 and A2 respectively did in the proof of Theorem 1.

Proof of Proposition 2. Notice that model (6) is a GARCH(p*, ¢*) model with parameters
wn = wo +n"2sg, an; —I( i <p)ag +n” /2. for 1 <i<p* and B, =I(1<j<

q)Boj +n" %5y, for 1 < j < ¢*, where I(-) is the indicator function. Let
501 oo BOq—l /BOq Bnl v ﬁnq*—l 6nq*
1 --- 0 0 1 --- 0 0
Bo=1 . . ) | Ba= .. . . (548)
0O --- 1 0 0 --- 1 0

Note that h; in model (1) admits the ARCH(co) representation, hi = ¢oo + Doy ¢ogy§_g
where oo = wo/(1—D29_, Bo;) and  dor = Z?jrf(é’p) eI BStejap; for £>1. Sim-
ilarly, we have hin = dno+ 2 oy d)ngytz_&n, where  ¢no = wy /(1 — zg;l Br;) and
One = ann(e’p ) eT Bl ejaup; for £ > 1

For any positive integer k, let xhy = oo + gbOky?fk,no + Z?‘;L#k qﬁggyt{E and Fhy = ¢oo +
d’Okth, e T Z;iu 2k qbggyt{ tno- Notice that both . h; and *h; depend on ng. By a method similar

to the proof of Lemma S4, we can verify that for all ¢ and all n > ng, ¢, is bounded below and
above by, respectively,

so+ S0 spraidoo Ly vi

T J t—k—i t—k—j—~

7nltno Ze Bgey he (0 +Z 8i ktip, +Zsp "+ Z%e ki,
t:n0(60) ~

and

*

00 q ) p
(u) TBk 50 + Z]’:l Sp*+j¢n00 yt Yt—k—ing yt*k‘*j*é,no
Tt,no - Z €1 Dpe1 +Z +Z Sp* +j Z gbnoﬁi

hy

prd P k+j+eht

k+i ht

and that the processes {rt(l,)l} and {rt(lil)} satisfy Assumption 7, where rgl% and rﬁ) are defined

by replacing all n with ng on the right-hand sides of the above expressions as well as in the yh;
and the *h; for all k. Moreover, for any m > 0, we can show that E {(rt no) } < oo. O
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Proof of Theorem 3. As in the proof of Theorem 1, we first establish two intermediate results:

S {Gulle)Gallésl) - GallaNGallers]) )

t=k+1
K {dg;Tnl/?(én — o) — vg} = 0p(1), (S49)
n~t? Z {Gnllee)Gnlei—k]) — Gn(lee)Grllee—k])}
t=k+1
05k {(d;; )20, — 60) — (vf + v;;)} = 0,(1) (S50)

for any positive integer k, where, for k > 1, d is defined as in the proof of Theorem 1 and
v, = E{G(let—k[)re}-

To prove (S49), let W; = G,(|&]) + |clg(|€:){d5T (6, — 60) — n~'/20%}.  Applying
Lemma S6 with w; = 1, we have n'/2 max; <i<,, |G (|é:]) — Wi| = 0p(1), which implies

12y {Gulla)Gallaril) = WiWiy } = op(1),

t=k+1

Hence, to prove (S49), it remains to show that

n
w23 A WWe s = Gull) G2 kl) | — 5 {di™n2(6n — 00) = v } = 0y(1).
t=k+1
(851)
Notice first that (S6) holds under H1,, by the same arguments as those in the proof of Theorem 1.
Moreover, for any A > 0 and n > ng, by (S88), (S90), (S91) and Lemma S5 we have

sup sup - \G{xzm< )} - G@)|

[lul| <A 0<z<oco n

S a5z {mw
t=1

1 aht,n(‘g) (u) . -1/2
@ 5| = 0

nzng 6€O
where Z; ,(u) is defined in (S86). This, together with the fact that n'/2 (0 — 0p) = Op(1), im-
plies that (S7) also holds under H1,,, and hence so does (S8). In addition, by (S43) and a method
similar to that for (S9), we can show that

sup Z |Een (D) g{IEen (O]} = letn(0)lg{leen(O)]}| = 0p(1), (852)

which, combined with (S94), establishes (S10) under Hy,,. As a result, (S11) holds under Hj,,.
Then, by a method similar to that for (S4), we can readily verify (S51) and hence (S49).

Furthermore, (S50) can be proved along the lines of (S2) in the proof of Theorem 1, while here
we apply Lemmas S6 and S7 with w; = G(|e;—x|) and w; = G(|e4x|), respectively. Finally, by
a method similar to that in the proof of Theorem 1, we obtain

n1/2;yk — 05k {(da _ dZ)Tnl/Q(én — 90) — (1)8 — U/:)} + n1/2'7k + Op(l))
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where ~;, is defined as in the proof of Theorem 1, and similarly 49 = vo + 0p(1) = 1/12 +
op(1). Applying Slutsky’s lemma, the martingale central limit theorem and the Cramér—Wold
device, we accomplish the proof of this theorem. O

Proof of Theorem 4. By a method similar to that used for Theorems 2 and 3, we can show
that n!/24¥ = /24 ¥ 0-5f£q/{d,‘fn1/2(én —0p) — v} + 0p(1) for k > 1 and similarly ver-
ify that 5y = 7y + op(1) = 02, + 0p(1) under Hy,. By Slutsky’s lemma, the martingale central
limit theorem and the Cramér—Wold device, we complete the proof of this theorem. O

S5-2.  Proof of Lemma S3

First note that model (1) can be viewed as a GARCH(p* + 1, ¢* + 1) model with ag; = 0 for
p<i<p"+1and By; =0 for g <j<qg"+ 1 Let m =p* 4+ ¢* + 1, and define the m x m
matrix Ag, written in block form by

Qa;fr 60q*+1 a(§2:p* Qop*+1
. | Iy 0 0 0
Aot = eZel 0 0 0 ’
0 0 Iy O

where Qét = (ﬁgl + 040153, Bo2, - - . ,ﬁoq*)T, Qp2:p* = (0402, - ,Oz()p*)T, I isthe k x k identity
matrix, and O denotes a zero vector or matrix with compatible dimensions. By Bougerol & Picard
(1992), {y:} is a strictly stationary solution to model (1) if and only if (Af) < 0, where

V(4p) = (t+ 1) E(log | Ao - Age);

inf
0<t<oo
see also Berkes et al. (2003). Let 2, = (ht’n,...,ht,q*m,ytz_l’n,...,yffp*m)T and z =
(hey. ., ht_q*,yt{l, e ,yf_p*)T. Then the equations in (1) and (6) can be written equiva-
lently as 241 = Aj2e + woer and 211, = Af2en + (wo + n71/23t7n)61, respectively. Con-
sequently,

/2

2ti1n — 241 = Ay (2t — 2) + 17 sy nen, (S53)

Zit1m — Zt+1m+1 = Ao (Ztn — Zent1) + n71/2(3m — Stnt1)el. (S54)

For any z = (x1,...,2,)" € [0,00)™, define the function § by 5(z) = s(xa, ..., 2, ); then by
Assumption 5 we have V3(z) = (0, Vs(za,...,2,)")" > 0, where V3 is the gradient of 3.

Define the m x m matrix D(x) = (V5(z), 0 (m—1)) "> Where 0, (m—1) is an m x (m — 1)
zero matrix. Notice that s; = 5(z) and s¢,, = 5(2,,,). It follows from (S53), (S54) and Taylor
expansion that

Zi4ln — 241 = %61 + < Ao + n (2t;m — 2t)s (S55)

s s " D(z{7,)
Ziln — Zlndl = { \;Z - \/nt’i 1 } er+ {AOt + 7n Tl} (2t;n — 2tnr1),  (S56)

where zz‘ » 18 between z; , and 2, and z;‘; is between z; ,, and z; ,,1-1. Note that, by Assumptions 1
and 6, z; and z; ,, are almost surely finite for any n > ng and for all ¢. Since sy, s¢ 5, D and Ag,
are all nonnegative, the recursive equations (S55) and (S56) imply that

2t S Ztpntl S Ztn
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for any n > ng and for all ¢£. Moreover, by iterating (S53), we have

o0

: : —1/2

0 < limsup (Zt+1,n — zt41) = limsup n / (St,n + Z Ape -+ Agt—kst—k—l,n)el
n—o0 n—o0 k=0

o]
<limsup 772 (5100 + Y Aby - Af_gSt—h-1m0)€1 = 0
k=0

n—oo

do
t7n0

with probability 1, where we have used the facts that v(Aj) <0 and E(s;%, ) < co. Fi-
nally, by iterating zi11 ., = A{2tne + (Wo + ngl/QstvnO)el, we have that 2y, = (wo +

nal/zstm)el + > oAb A (wo + nal/Qst_k_Lno)el. Then, along the lines of the
proof of Lemma 2.3 in Berkes et al. (2003), we can show that there exists 0 < ¢; < min(dg, 1)
such that E (|2, ||**) < oo. This completes the proof of the lemma.

S5-3.  Proof of Lemma S4
One can see from (S70) that i ,,(6) can be written in the form

hen(0) = ¢o + Z (bfthf@,n?

(=1
where
q min(¢,p) '
¢o = w/ <1 — Z@-), bp = Z efBe_Zelai (t=1,2,...). (S57)
j=1 i=1

To prove (b), we first introduce the following notation:

hin(0) = G0+ SkUi e + D OV tns Thin(0) =0+ BYE g+ D Geipms

0=14#£k =1tk
o o
i (0) = G0+ Ui pmo T D Gei s “hi(0) = b0+ BYi okt D O iy
=104k =104k

Consider y?_, . /h¢ () as a function of y? , ., which has the form x — z/(a + bz) for some
a>0and b > 0. Since this function is increa’lsing on (0,00) and yfﬁk < yt{k’n < yt{k’no for
any n > ng, we have y2_, /*hy ,(6) < yt{k’n/ht’n(e) < yfﬁkm/kht,n(ﬁ), which, together with
the facts that ¥y ,,(0) < *hy(6) and 1k, (0) > phe(6), implies

th—k y?—k,n yf—k,no
khe(0) = hen(0) = khe(0)

(S58)

Moreover, for any n > ng, since yf < yfn < yf’no,

)

hi(0) < hin(0) < hing (0). (859)
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As aresult, by (S58), (S59) and (S75), for any n > ng we have

1 8ht7n(0) >0 ‘ th_k_i
hen(0) 0B, 7 Z:: “ "‘ ex {h IW ; (S60)
1 aht n(@) thikii no
5 S + ) i s S61
hen(®) 05, Z: v {ht ;a kil (0) (s61)

Similarly, we can obtain lower and upper bounds for the rest of the elements of
hip (0)Ohy 7 (6)/06 for n > no:

1 N ok 1 Ohin(0) 1 k
BFe; < BFey, S62
@ 22 ST e S @ (562
0 2 [e%¢) 2
Y p—i 1 8ht n(e) k Y k—in
TBke, 2L < : < T Bke, Zi2izbo S63
2B o S @) o < 2B ) (563

Denote by {Yt(}llo)} and {Yt(yg)} the lower and upper bounds, respectively, in (S60)—(S63) evalu-
ated at 6 = 6. It can be verified that both processes are strictly stationary and ergodic and that
for any n > ny,

1 Ohyn(fo) !
Y(ll) < t,n < (u)
b0 hy(60) 06 bmo

Moreover, by Lemma S3, we have that for each fixed ¢, {Y;(}ll)} is a monotone increasing se-
(Tu)q . .
quence, {Y;n } is a monotone decreasing sequence, and
1) _ iy y (0 = L 9he(Bo)
o Yot = Yo =0 =

with probability 1.
Turning now to the second-order derivatives, by (S58), (S59), (S79) and (S80), we can simi-
larly show that for any n > ny,

ht,nl< >%gjt5ﬁ] é {htno +Z zﬁih’“ ; } (364)

ht,i( >%§;§5J < g&B,i ') {h:Q +Z} i;’;%”‘)} (S65)
and

@ Ze Wi 82]35/? <h@ g;@fBzij ler, (S66)

Ii 5y )61ﬁihk(5) S ht;@) 8;2?55) < iewg’elm. (867)

Denote by {Yt } and {Y, 2u)} the lower and upper bounds, respectively, in (S64)—(S67) eval-
uated at 0 = «90 In a similar way, one can show that both processes are strictly stationary and
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ergodic and, for any n > ng,

1 0%hyn(6o) 2
0< Y(Ql) < t,n < (u)
t,no ht,n(90) 0000T t,ng

Again, it follows from Lemma S3 that for each fixed ¢, {Yt(il)} is monotone increasing, {Y;(iu)}
is monotone decreasing, and

1 9%hy(6o)
Y(Qu) . t
nheo 7T Ry 90007
with probability 1. In addition, the facts that £ (HY (1w) Hm) < ooand £ (HY (2u) Hm) < oo for any

t,no t,no

m > ( are implied by the proof of Lemma S5. This completes the proof of Lemma S4.

S5-4.  Proof of Lemma S5
Proof of (a): For any 6 € ©, we can rewrite h; ,, () in vector form as

ht,n(e) Ct,n(e) htfl,n(e)
htfl,n(e) 0 ht72,n(9)

. = . +B . (S68)
ht*qﬂ,n(e) 0 htfq,n(e)

where ¢, (0) = w + Zle aiy?—i,n and

Pr . Bqlﬂq

1 0 0
B = _

0 10

Let p(B) be the spectral radius of the square matrix B. By Assumption 1(iii) we have

sup p(B) < 1. (S69)
0cO
Hence, iterating (S68) yields
t—1 o)
hin(0) = Z el B*eici_.n(0) + el Blerhon(0) = Z eI BFerci_pn(0), (S70)
— k=0

where the last equality holds almost surely for any n > ng. Similarly, we have

t—p—1 t—1
hin(0) = Y elBrercpn(®) + Y elB e1épn(0) + e Blerho(9), (ST
k k=t—p

=]
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where ¢ ,(0) is obtained by replacing 43 ,,, ..., ¥;_,,, With their initial values in ¢, (). By
(S69)—(S71), Lemma S3 and the compactness of ©, we have that for any n > ny,

sup |i.n(6) = i (0)]

0cO
p
S heh Z T B e {ein(0) = Gn(0)} + €7 Bler { hon(0) - ho(e)}‘
< sup Z e B e1{Cinq (0) + Gino (0)} + e Ber{ hony (0) + ﬁow)}'
S
< Cp Cl, (572)

where (7 is a random variable independent of ¢ and n satisfying F/(|(1]"*) < oo with +1 defined
as in Lemma S3, whence the first result in (S43).

Forany j=1,...,q, let 1Y) be the ¢ x ¢ matrix whose (1, 7)th element is 1 and other ele-
ments are all zero. For any positive integer k, let

k
B,g]) _ Z Bm—110) gk—m j=1,...,9). (S73)

m=1
Notice that, since [3;1 () < Band © is compact, we have
BY <« Zpk <k (S74)
BB B
where 8 = infgee min(3y,. .., B;) > 0. By (S70) we have

oh Ohy.n(6 >
il z eiBrey, Mnl®) _NSorpree

o k=0
oh ~ - (875)
5’”( ) = ZefBlgj)elct_kyn(G).
B k=1
Similarly, using (S71), we have
8htn ey ' Gkn®) v, Ohol0) 976
-3 dnta s Y dnalnl gen 0
k= k=t—p
t—p—1 t—1 ~ >
8htn k oc t—k,n(‘g) t ahO(e)
aal = > Byt ) Bl = e Bla— =, (STD)
k=0 k=t—p
8h t—p—1 —1 . . .
5; Z eTBk €1Ct— kn )+ Z 6?3,2:])61515_]%”(9)+61FB§])61h0(0)
J k=1 k=t—p
Oho (0
+ el Ble; 8%(. ). (S78)
J

In view of (S69) and (S74)—(S78), using a method similar to that for (S72), we can prove the
second result in (S43).
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Furthermore, for any positive integer k, let

k
=" BY) 10 Bk m+ZBm HOBY) (=1, =1,....q),

m=2 m=1

where B,(f) is defined in (S73). From (S75) we have

Phin(0)  0Phppn(0)  0%hen(0 ?hin( -
tal8) _ Phen®) _ Phen®) o Phunl®) 2 57
Ow? Owday; Ja; 0 c%@ﬁj —
Phin(0) = 1 ,0) hin(0)
) BU 2 n eT B (4.3") (0 S80
606186] ; €1 Dk "ClYt—k—in> 8/8]86] g 1 €1Ct—k, ( ), ( )
and the expressions with initial values can be obtained similarly. Note that by (S74) we have
. -1
B < WBQ ) . (s81)

Then, using a method similar to that for (S72), (S44) can also be verified, and so the proof of (a)
is complete.

Proof of (b): First, notice that (S69) implies supyco efBKel < Cp for any integer £ > 0
Then, by (S57) we have supgcg ¢r < C’pg for ¢ > 0. Asaresult,forany0 < d < land ¢ > 1

¢£yt2 £no cbgyf,g’no (CP )63/1525@ o
Sup S 53 sy S 5 ’
oco (h(0) W (Peyi ) W
where w = infygco w > 0. Moreover, it follows from (S57), (S61) and (S74) that

in(¢,p)

[e's)
ytfﬁn

eTB(] €1+Su TB(J e 10
Z 1k EZ — 0—i Zght(e)

(S82)

sup sup
nzng €O

< sup
0cO ht

1 Ohin(9) ’
hin(0) 0B,

- k=1
<C+-— ZE Pevi ‘”0 (S83)
g ;5 eee ¢hi (0

where W = supycg w € (0,00). For any m > 0 and § € (0,¢1/m), where ¢ is defined as in
Lemma S3, by Lemma S3 and the Minkowski inequality we obtain

5yt26€ 0(5 e

n (Y4 [

Zf ol < O B [ < o0,
m = =2

which, together with (S82) and (S83), implies
1 Ohin(0) ’m}
: < oo0. (S84)
ht n (9) aﬁj
Similarly, using the upper bounds in (S62), (S63) and (S65)—(S67), we can establish (§45) for
the rest of the quantities. Notice that the foregoing proof implies that E(HYt( |™ < oo and

E{ sup sup
nzno €O

(||thO |™) < oo for any m > 0, since these are the special cases where 6 = 6.
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For the third-order derivatives, in a similar fashion we can first obtain their upper bounds,
which are independent of n as in the proof of Lemma S4, and then verify (S46) along the lines
of the proof of (S84).

Finally, we prove (S47). For any § € © and r > 1, define the set

U(r,@):{9*:(w*,aiﬁ,...,az,ﬁiﬁ,...,ﬁ) € 0: max ﬁ<r}.

To prove (S47), it suffices to verify a more general result: for any m > 0, there exists > 1 such

that
hen(0))
{ sup sup sup tn(0) } ] < 0. (S85)

E
n>no €0 6+l (r,0) Nt (0)

Note that for any 6, the set U (r, #) imposes an upper bound only on the f;, while the condition
|01 — 02| < c restricts the distance between the parameter vectors ¢, and 3. For any 6 € O,
write ¢y = ¢y(0) for £ > 0, where ¢, is defined in (S57). By the compactness of ©, we have

sup sup Pu(0 )<C7"€
0c0 o+cU (r0) Pe(0)

for any £ > 1, and supycg ¢0(6) < C. This, together with (S58), implies

ht n(@*) C > ¢ ¢£y?—f no
sup sup  sup ’ <=—+C E rfsup ——=2
n>no 9e0 0+cU(r0) Min(0) ~w = geo hi(0)

Then, using (S82) and a method similar to that for (S84), we can show that (S85) holds for r
close enough to 1. This completes the proof of the lemma.

S5-5.  Proofs of Lemmas S6 and S7
Let Z;,, = h1/2(90)/h%2 and, for any u € RPHa+1

Zy(u) = W02 (00 + 0 2u) 112, Zyn(u) = Byl (00 +n= Y 2u) 12 (S86)

t,n >

Note that hy,, > hy n(6). For simplicity, without causing confusion we shall write, for any u €
RO+

hi (W) = hen (00 + 17 20),  hyp(u) = hen(Bo +n 7 2w),
Et7n(u) = gtvn(eo + n71/2u)7 ét,n(u) = gt,n(e() + nfl/ZU).

LEMMA S8. Suppose that L = sup., . £g(x) < 0o and that {w;} is a strictly stationary
and ergodic process with wy € Fi—1 and 0 < wy < 1 for all t. If Assumptions 1, 3(i) and 5-7

hold with E{(rtn )2} < oo, then for any A > 0,

ey Zwt [I{]stn )| <ot = I(led] < @) — G{aZun(u)} + G(x)]

t=1

sup  sup
lu||<A 0Lz <00

Proof of Lemma S8. For z € [0,00) and u € RPTI+! et

Hkn Z, u Zwt¢tn x, u ¢t,n($7u) = ¢lt,n($au) + (;52,57”(1’711,),

= op(1).
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where

0 Orn(z,u) = [{le] < eZin(w)} — GleZin(w)}] = H{led] < 2Zin(w)} = GleZin(w)}],
Poun(2,u) = [I{ler] < 2Zin(u)} — GlrZin(w)}] = {I(le:| < 2) = G(2)}-

Note that I{|e;| < :th,n(u)} = I{|étn(u)| < x}and I{|e| < 2Z;p(w)} = I{|ern(u)| <z}
As in the proof of Lemma S2, we prove this lemma in the following three steps:
(i) For any A > 0, there is a constant C' depending on A such that for any 0 < z < oo and u
oo satisfying ||ul| < A, pr{|Hy,..(z,u)| = sn'/?} < C/(s'n) for all s > 0.
(i) For any [ju|| < A with A > 0, supg<,<oo |[Hnn(z,u)| = op(n nl/?).
(iii) For any A > 0, Sup|,|j<4 SUPo<g<oo [Hnn (2, u)| = op(n nl/?).

Sz
S

We first verify (i). Let n be a fixed positive integer. Then for any = > 0 and u € RPT4H!,
{Hyn(z,u), Fi, k=1,...,n}is amartingale. Applying Theorem 2.11 in Hall & Heyde (1980)
es and arguments similar to those for (S18), we obtain
E{H, ,(z,u)}
2
W)} - G{eZi,(u) 1
2

} = G(2)]

(S87)

Similarly to (S19), by Taylor expansion and (S43) we can show that for any n > ng,
sup  sup ’G{thn(u)} — G{zZ, (u)}‘

Jull <4 0<a<o0
0-5a .’Bh*l/Q
h1/2

t,n

0-5L
) ‘htn ht,n(u)‘ X 7Cp C1, (S88)

= sup sup
| <A 0z <00 hl/Qh*l/Q

where Ay, is between hin(u) and he (1), and w = infgeg w > 0. This implies that

W)} = GlaZin(w)}

| < zn: HG{th,n(u)} _ G{a;Zt,n(u)}H2 < C. (S89)
9 =1

o Similarly to (S21), for any n > ng we have

sup sup |G{thn( )}—G(th,n)’

lu| <A 0<w<oo

05 - T xh}f(&*) ut  Ohypn(0%)

TP 0srtee | 2T\ TR [ 11y 00
0-5AL 1 Ohyn(6)

< , , 90
Ak TR .

where 6* is between A and 6y + n~'/?u. Moreover, by Taylor expansion and Assumption 7, for
55 any m = ng we have

sup |G(2Z,) — G(z)| <0-5 sup

0<zr<oo 0<z<0o h

v WP\ iy — hen(60) L 05 ()
1/2 h%f hﬁzﬂ = pl/2 tno

(S91)



Robust diagnostic checking for time series models 33
where hy,,(00) < b, < hu,n. Then, using (S90), (S91), (S45), the fact that E{(r{") 2} < oo

and Minkowski’s inequality, we have that for n large enough,

< Ont/2, (S92)
2

> |G Zin(u)} — G(2)|

t=1

Combining (S87), (S89) and (S92) and applying the Markov inequality, we establish (i).
The proof of (ii) can be accomplished along the lines of (ii) in the proof of Lemma S2. Simi-
larly to (S26), we have

sup ‘Hn,n(xa U)| < 314171 + 2121271 + ASn + A4n + A5n7

0<z<oco

where As,, and Ag, are defined as in (S26) and

Aln—lg%IHnn(% u)l, A2n=2137§)§vzwt‘(?{%2m( w)} = Gl{zjZen ()},

It is implied by the intermediate result (i) that Ay,, = 0, (n'/2), and by (S88) that Az, = O, (1).
Moreover, following arguments similar to those used for Ay, in the proof of Lemma S2, to-
gether with (S90) and (S91), we can show that [14,1 = AOp(nl/ 2). Combining these with the
established results for As, and As,, we complete the proof of (ii).

Finally, (iii) can be readily verified in a similar way to that in the proof of Lemma S2, with all
Zi(u) and Z;(u) being replaced by Z; ,,(u) and Z; ,, (u), respectively; the lemma thus follows.O]

Proof of Lemma S6. The proof of this lemma resembles that of Lemma Al. In view of
Lemma S8, (S88) and the fact that n'/2(,, — 6y) = O, (1), it remains to show that for any
A>0,

n~4/2 Zwt (G{2Z1n(u)} — G(2)] — 0-5xg(z)(dhu — vy)

t=1

sup sup
0<z <00 |Jul|<A

= op(1). (S93)

By Assumption 3, for any A >0 we can choose 0< () < Cy < oo such that
SUPg<g<ac, T9(T) < A and supe, /2<z<o0 £9(x) < A. By Taylor expansion and Assumption 7,
for any n > ng we have

sup |Zyn(u) — 1| < sup |Zyn(u) — Zin| + | Zip — 1

fJull<A [[ull<A

< 0-5
sup
7 Jlullca i/

05A h%{E(G) sup sup
= 02 o o< h/2(Gg) neno o<6

ut Ohyn(0%)|  0-5{h¢p — hen(00)}
h;{fh%fw*) 96 /212

t,n "“t,n

1 3ht n( r(u)
htn(e) 1/2 t,ng?

where 6* is between 0y and 6y + n_ /24, and hy n(00) < hi,, < hin. Then, by (S45), (S47), As-
sumption 3 and the fact that £/ {( )4+51} < oo with §; > 0, together with arguments similar
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to those for (S37) in the proof of Lemma A1, we can show that

sup max sup |22 n(u)g{xZyn(u)} — xg(x)| = 0p(1). (S94)

0<a<oo LSEST |1y <A

On the other hand, by Lemma S5(b), (S45), the ergodic theorem and the monotone convergence
theorem, we can show that

1 n Wt 6ht n(u)
sup - - — dw = 0 (1) (895)
lull<a |7 = hen(u) 00 P
Similarly, it can be verified that
1 — hyn(0
2 WTn ) | = opl) (S96)
n t=1 7 h;fk,n

e for {hy,, } satisfying hy,(00) < hi,, < hyp.
Finally, by (S94)—(S96) and the Taylor expansions in (S90) and (S91), we have

sup sup
0<z <00 ||ul|<A

T2y w[GleZun(w)} - Gla)] - 0-5eg(@)(du — v)
t=1

< sup sup
0<z<0 |Ju||l<A

2 Z wi [GlaZyn(u)} — G(2Z,)] — 0-5zg(z)dyu
t=1

n
+ sup |n~/? Z wi{G(xZn) — G(2)} + 0-bzg(x)vy
0<er<oo —1
0-5 wiu™ Ohy g (u®)
= sup sup |— Y zZ,(u")g{rZ,(u* ’ — 0-bxg(z)dyu
690 OQIEOOHUHEA n ; t»”( )g{ t:”( )}ht,n(u*) 80 g( ) w
0-5 hin (6
+ sup ——ZmZan(a:ZZn)wtrm t’]:*( ) + 0-5xg(x)vy
0<r<oo —1 t,n
= op(1),
where u* is between zero and u, hyn(60) < hi,, < hiy and Zf,, = h;ln/ 2 / h;{f. This proves
(S93) and hence the lemma. O

695 Proof of Lemma S7. By Lemma S6,

sup
0<er<oo

n
w2 {8 < 0) — Il < 0)} - wg(w) {diTnY2(B, — 0) vz';}| = ap(1),
t=1
where &; = ém(én). Hence we only need to show that for any A > 0,

sup  sup = op(1).

|[ul|<A 0<z<oco

n—1/2 Z{wt — E(we)}[I{[Etn(u)| < 2} — I(|ee] < )]

t=1
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This can be accomplished by verifying steps (i)—(iii) as in the proof of Lemma S6 for H, nn (T, 0),

where

Hy,n(, u) Z{wt (W) }bun(,u),  bun(e,u) = Grun(e,u) + Gorn(z,u),

with
Grn(w,u) = Hler] < wZin(u)} — | < 22, 0(w)},
ot (x,u) = Hler] < wZpn(u)} — I(led| < ).

Along the lines of the proof of (S39) and using methods similar to those in the proof of
Lemma S6, we can readily establish (i)—(iii) and thereby complete the proof of this lemma. O

<
<

S6. PROOFS OF THEOREMS 5 AND 6

S6-1.  Proof of Theorem 5
Strong consistency: Write

7 7 ’ytn’ 1/2 |yt
ln(0) =log hy/2(0) + —2L"  1,(0) = log ht/*(0) + ,
t " RRe) C e

t,n

where {y; .} is generated by (6) and {y;} is generated by (1). Define I ,,(8) by replacing hy,,(6)
with i, (0) in Iy, (0). Let Ly (0) = n= 1 S0 lin(6) and Ly, (0) = n=t 370 1.0 (0).

To show the strong consistency, as in Huber (1967) and Francq & Zakoian (2004) it suffices
to establish the following intermediate results:
(C-i) supgee | Ln(0) — L, (8)| — 0 almost surely as n — oco.
(C-ii) Ly, (0p) — E{l:(6p)} almost surely as n — oc.
(C-iii) E{|l:(6p)|} < oo, and if 6 # 6y then E{I;(0)} > E{l:(00)}.
(C-iv) For any 0 # 6, there exists a neighbourhood V' (6) such that, with probability 1,

lim inf mf( )L n(0%) > E{l;(6p)}.

n—oo Q*

We first prove (C-i). By Taylor expansion and (S43), we can show that for any n > ny,

; L (L [yl -
L,(0) — L,(0)| < — — v hi g (0) — hi (0
)= Eu0)] < 532 (35 357 ) s r®) =

C < ;
< =D (L [yemol)p'Gr
t=1

By the Cesaro lemma as in the proof of Theorem 2.1 in Francq & Zakoian (2004), to prove (C-1)
it suffices to show that (1 + |y¢.n,|)p'¢1 — 0 almost surely as ¢ — co. By the Markov inequality
and Lemma S3, we have that for any € > 0,

> 0o

E (1 + yt, )Llpblt<L1
Zpr{(l + [Ytmo ) p'C1 > 5} < Z { ‘ ;(1 1} < oo,
t=1 =1

which, together with the Borel-Cantelli lemma, implies (C-i).
For (C-ii), by the ergodic theorem, it suffices to show that n=1 Y"1 | |l; »(60) — 1(69)| — O
almost surely as n — oo. By Taylor expansion, Lemma S3, (S59) and the ergodic theorem, we
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have

1
lim sup E E |lt,n(00) - lt(90)|
t=1

n—o0
n 1/2 n
1 hi oy — By (0
< limsup — Zl t’n1§2 ) + limsup — Z @ t717;2 t,n*(l/OQ)
n—oo M hy n—oo T4 2 hiln (00)hy

n—oo 2n

<l 1< 1 Rt.no (60) I 1 < (u)
< 1msup2n; ogT+ 1TIln_)sol<1)p 373 ;|Et’rt,no

o 1 ht,no (00)
=3 E{log 7}” (897)

with probability 1, where hy,(60) < hy,, < htp; in the last equality we have used the facts that
Ellog{hing(00)/he}] < o1V log E{hi, (60)} — logw < oo and Ef|e/|r{) } = E(ri) ) < cc.

t,n
Applying the monotone convergence fh(z:orem, we have that the expectation in (S97) converges
to zero almost surely as ng — oo. This establishes (C-ii).
Now we prove (C-iii). First note that E{|l;(6p)|} < oo, since 0-5logw + 1 < E{l:(6p)} =
0-5E(log hy) + 1 < oco. In addition, using the fact that x — 1 > log x for any = > 0, with equal-

ity if and only if z = 1, we have

1/2
E{1(0)} - E{li(60)} = ;E{l"g hth(f) } i E{ hlh/g(e) ) 1}

1 hi(0) 1 hy
> —FE<1 —FE<1 =0,
2 { % T 1 T2 % )
where equality holds if and only if h,(6) = h; with probability 1. From the proof of Theorem 2.1
in Francq & Zakoian (2004), there exists ¢ € Z such that h.(6) = h; with probability 1 if and
only if § = 6y. Hence (C-iii) follows.

Next we prove (C-iv). For any § € © and any positive integer k, let Vi (#) be the open ball
with centre 6 and radius 1/k. It follows from (C-i) that

liminf inf L,(0) >liminf inf L,(0) —limsupsup |L,(6) — L,(6)

n—00 g*eVj(6) n—00 9*cVy(0) n—oo 0O
n

1
> liminf — inf 1;,(07).
mint 7 D o8 g ln(®)

Moreover, by (S59) and Lemma S3,

im in n;wg&kw) n(07) = limin n;me“&kw){z oehun0) hifw*)}
> lim inf — Zn: inf llog h(07) + 2
n—o0 M *€Vy(6) 2 h%fo(e*)

f —log h:(0 _
9*52(9){2 og he(0") + 172 (9*)}]

t,no
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with probability 1, where we have used the ergodic theorem as in Francq & Zakoian (2004): if
{X.} is a stationary and ergodic process such that E(X;) € RU {+oc}, thenn ! 37 | X; —
E(X}) almost surely as n — oo. By the monotone convergence theorem, the expectation in the
last equality increases to E{l;(6)} as k and ng tend to co. In view of (C-iii), (C-vi) holds. Finally,
by a standard compactness argument, we establish strong consistency.

Asymptotic normality: In view of the Taylor expansion

1/2 t, —1/2 t, 0 t 1/2
iy ) iy Clh) { i }n/ (6.~ ).
t=1

where 6* is between Hn and 6y, we first establish the following intermediate results:
(AN-i) ||n= Y231 {01;.,(00)/00 — 1. (60)/0}|| — O in probability as n — oo, and there
exists a neighbourhood V() of 6y such that supgey (g, =t >0 {0%1:.0(0)/(00007) —
9%1;.,(6)/(0096™)}|| — 0 in probability as n — co.
(AN-ii) n /237 Ol; ., (00)/00 — N[—\/4, {E(?) — 1}J/4] in distribution as n — co.
(AN-iii) n =t 571 | 021, (0%)/(0000T) — J/4 in probability as n — oc.

Note that the matrix J is positive definite (Francq & Zakoian, 2004). In addition, the deriva-
tives of I; , () are as follows:

8lt,n(9)_1 1— ‘yt,n‘ 1 aht,n(e)
h'2(9) ) hea0) 00

azlt,n(e)_l 1_ Y.l 1 32ht,n(9)+ 3 |yl 1 1 Ohyp(0) Ohy yn(0)
hiﬁ(@) hien(60) 0006T 4@%2(9) hi.(0) 00 00T

0000 2
By a method similar to that for verifying (C-i) above, we can show that for any n > no,
In=2 50 {011.1(00) /00 — Dly n(00)/D0}]| is bounded above by

Cn Y27 (1 ) (14 [V50]) 2
t=1

00 2

and supgey (g,) =t S0 {0%1:.0(0)/(80007) — 9%1;.,(6)/(0096™)}|| is bounded above by

C n
=D (1 [ym)) <1 + sup sup ‘
n3 n=np €O
1 Ohn(0) Ohn(6
tn(0) O (0) )m
As a result, (AN-i) follows from the Markov inequality.
Next we verify (AN-ii). By Taylor expansion and an elementary calculation, we can show that

hi, () 00 00"
~ az 9 _ Ttn  Ohen(f0)
1/2 tn 0 _ 1/2 t,n t,n (V0
/ Z —nV ZX Z| t|htn(90) 50 T B (S98)
t 1

1 0%h(0)
hin(0) 00007

+ sup sup
nzno €O

3/2
. _Lolel 1 Ohen(60) Z\ | r?n aht,n(ew hu,n (60)
t,n ) n 4 3/2 €t ht 69 h;n y
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with Ay, (00) < hi,, < htpn. Then, by the ergodic theorem we have that for any n > ny,

|Rn‘ 3/2 Z’ t|

where we have used (S45) and the fact that E{(rﬁfﬁo)“‘sl} < oo for some d; > 0.

Notice that { X; ,, F;—1} is a strictly stationary martingale difference with £(X; ,, X\,,) < oo
for each n > ng. We will next use the Lindeberg central limit theorem for triangular arrays of
martingale differences and the Cramér—Wold device to show that

Tt2n aht n 90
hin(00) 00

3/2 Z e (P VY| = 0p(1),  (S99)

w25 Xy, o N [0, i{E(Ef) - 1}4 (S100)
t=1

in distribution as n — oc. For ¢ € RPT9! let 2;,, = ¢* Xy ,,. By the ergodic theorem,

1 u 1u)
lim sup ZExm\ft 1)< 4{E<s§>1}cTnmsup{ ZYJ}m }

1 u u
— B - 1B fio)(nfno)f}c

with probability 1. Similarly, we can show that, with probability 1,

hmmf—ZE xtn\ft 1) { (e ) 1}CTE{ t<rlzi))(y;5(rlzlo)) }c.

n—oo

Then it follows from the monotone convergence theorem that
1 - 2 1 2 T
~ Y B, | Fia) & {B() - 1}t e (S101)

almost surely as n — oco. Moreover, by Holder’s inequality and the Markov inequality, we can
show that for any € > 0,

n
% Z E{w?nl(]xtn\ > nl/Qa)} —0
t=1

as n — oo, where I(+) is the indicator function. Combining this with (S101), by the Lindeberg
central limit theorem and the Cramér—Wold device we obtain (S100).
In addition, similarly to (S101), we can verify that

Ttn 8htn(00) 1
’ —-A
Z' t|htn ) 06 4

in probability as n — oo, which, in conjunction with (S98)—(S100), implies (AN-ii).
Now we prove (AN-iii). It is implied by (S46) and the strong consistency of LML that

3980T Z 8939T op(L).
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Furthermore, by methods similar to those for (S98) and (S99), we can show that

"~ 0%y (00) lz”: Blee] =2 1 Ohy (o) Ohyn(bo)
o n

= —~ 4 i) 00 07
1 1 — e 1 82htn(90)
hl 7 N
T ; 2 hgn(fo) 060007 +op(1) (S102)

For the first term on the right-hand side of (S102), by the ergodic theorem we have

lim sup — Z Bled — 2 1 8ht,n(90) Ohin (o)

n—oo N 4 hQ,n(GO) oo 09T
3\Et! 2 2\ (1u) 1 (10) (1) (LN T
hmsup g Il edl = <) Yiny (Vi ) + I | < Ying Ying)
n—oo N 3 )

3let| — 2\ a lu)\ T 3let| — 2 2\ () (1, (1T
- E{4I s> 2 ) v o)} e P2 (e < 2) vt
with probability 1. Then, by the monotone convergence theorem and the fact that ¢ is indepen-

dent of both Y;(,lllo) and Y;(;l), we have that the sum of the two expectations converges to .J/4 as

ng — oco. Similarly, we can show that

. . 3|€t| -2 1 8ht n(GO) 8ht n(90)
1 fi ) )
oo 1 Z 4 hZ,(00) 00 oo™

> J/4

with probability 1, and hence the first term on the right-hand side of (S102) converges to J/4
almost surely as n — co. Along the same lines, we can show that the second term on the right-
hand side of (S102) converges to zero almost surely as n — oo. Thus, (AN-iii) holds. Applying
(AN-1)—(AN-iii) and Slutsky’s lemma, we accomplish the proof of the theorem.

S6-2.  Proof of Theorem 6
Strong consistency: Write

ltn(0) = [10g Y7y —1og hen(6)],  1:(8) = |logy; —loghy(6)],

and let Iy ,,(6), L,,(0) and L,,(0) be defined in the same way as in the proof of Theorem 5.
The strong consistency can be proved in a similar way to Theorem 5, but unlike the proof of

(C-ii) therein, no moment condition on TE?Z)O will be required. Indeed, for é%AD, (S97) will be
replaced by

n . hing (6
lim sup — Z|ltn (60) — 1:(00)| < limsup — Zlog fit.ng + lim sup — Zl tuno ( 0)'

n—oo n—o0 t n—ro0 ht

Then, by arguments similar to those following (S97), we can show that the right-hand side con-
verges to zero almost surely as n and ng tend to oo, without imposing any moment condition
on 7"&)0. The rest of the proof is standard and proceeds along the same lines as the proof of
Theorem 5.

Asymptotic normality: The proof of asymptotic normality for %AD under Hy, mimics
that under Hy accomplished by Chen & Zhu (2015). For any v € A = {u : 6y + u € O}, let
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Dp(u) = 320 {le.n (B0 + u) — l;.n(Ao) }. Notice that for z # 0,
y
o=yl ~ lal = —ysgn(o) + 2 [ {Ia < 5) = 1w < 0)}ds,
0
where sgn(z) = I(z > 0) — I(x < 0); see Knight (1998). Let ¢; = log £7. Then, by an elemen-
tary calculation, we have
Qt n(u)

ZQtn u) sgn(e; — My, +22/ Iyn(s

where §; ,,(u) = log ﬁt,n(eo + u) — log Et,n(eo), My, = log Btyn(gg) — log hy . and ftyn(s) =
I(Gt g s+ Thtm) — I(Gt < mt7n).
We first show that

Dy (u) = Dy(u) + Op(|Jul) (S103)
holds uniformly in u € A, where
n Qt,n(“)
Z Ge.n () sgn(e, — myp) + 2 Z/ Ii 5 (s) ds,
t=170

with ¢, (u) =log ht (60 + u) —log e n(60), myn = loghyn(00) —log by, and Ipp(s) =
I(er < s +myp) — I(ep < myy).

Note that
Dy (u) = Dn(u) = Rin(u) + Ron(u) + Ran(u), (S104)
where
n paen(u)
Rin(u Z{Qt n(w) = Gen(uw)} sgnler — mep) + 2 ; /qt w Iin(s)ds,
R2n Z qt, n {sgn ft mt,n) - sgn(et - mt,n)}7

Rin(u _22 / (in(s) — Tin(s)} ds.

By (843), it is straightforward to show that for any n > ny,

sup — | Rip (u)| < 3sup — ) |gen(u) — Gen(u) <K C Y p'G=0p(1).  (S105)
o sup Z Z

Denote by G¢(-) and gc(-) the cumulative distribution function and the density function
of €, respectively. Notice that g.(z) = 0-5exp(0-5x)g{exp(0-5x)} for any —oo < z < oo.
By Assumption 3, we have that g. is continuous on (—o00,00) with lim, o ge(x) =0
and lim, o ge(z) = 0, which implies sup_ .., o ge(z) < 0o. Then, by Lemma S4, (S43),
Jensen’s inequality and Holder’s inequality, for any n > ng and the constant ¢; € (0, 1) defined
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in Lemma S3 we can show that

t1/2
E {sup | Ron ( )\}
ued [[uf
n t1/2
S %9 sgm(e — ) — s - mt,n»]
t=1
Z (HYt(lu HL1/2 E[{21(er < tgn) — 21 (e < mup)}/? | Fie 1})
t=1
< SB[ 2G ) — 2G ()}
t=1
) t1/2 n (1) (62 B s
s ge)} S BV} B~ men )y
—oo<r<oo =1
Ciput/Q
t=1
As a result,
sup — \Rgn( )| = Op(1). (S106)
uen [|ull

Similarly, we can show that sup,,c |R3n(u)|/||u|| = Op(1), which, in conjunction with (S104)—
(S106), implies (S103).

Since gt (u) = qie.n(w) + got,n(u), Where
uT 8ht’n(90)

nenl) =g @) o8
() = u® 1 Phn(09) 1 Ohyy(0%) Ohyn(07)
) =5 Y un(0r) 00007 2,000 o0 oo [

with 6 lying between 6 and 6y + u*, we can decompose Dy, (u) as

Dy (u) = (n'?u)" T}, + Ty, (w) + gy (w) + s, (w),

where 850

sgn €t — TNt n 8ht n(@g)
n1/2 Z hin(00) 00

TL_

T, (u ZE My (u) — E{Myn(u) | Fi1}], Ton(u ZE{MM )| Fio1},

n

qt,n( )
M3y, (u ZQQtn w) sgn(e; — myp) +2Z/ Iin(s) ds,
q

t=1 1t,n(u)

with M; ,,(u) = 2 [ are,n( It n(s)ds. Let u,, = 9,I;AD — 0p. By arguments similar to those used
for Lemmas 2 2 and 2.3 in Zhu & Ling (2011), we can show that TIy,,(u,) = op(n'/?|Juy,|| +  ess
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nHunH2)’ oy (un) = (n1/2un)T{g5(0)J}(n1/2un), and I3 (up) = 0p(”||un‘|2)- Thus, by
(S103), we have

Dn(un) = (nl/zu)TTn + (n1/2un)T{ge(O)J}(n1/2un) + Op(nl/QHUnH + nHunHZ)

Moreover, by methods similar to those used to show (AN-ii) in the proof of Theorem 5
and the techniques for proving Lemma 2.1 in Zhu & Ling (2011), we can show that T;, —
N[—2gc(0)\, J] in distribution as n — oo.

Finally, since g.(0) = g(1)/2, by applying the arguments for Theorem 2.2 in Zhu & Ling
(2011), we accomplish the proof of this theorem.
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