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Summary

This paper develops a unified finite-time theory for the ordinary least squares estimation of pos-
sibly unstable and even slightly explosive vector autoregressive models under linear restrictions,
with the applicable region ρ(A) � 1 + c/n, where ρ(A) is the spectral radius of the transition
matrix A in the var(1) representation, n is the time horizon and c > 0 is a universal constant.
The linear restriction framework encompasses various existing models such as banded/network
vector autoregressive models. We show that the restrictions reduce the error bounds via not only
the reduced dimensionality, but also a scale factor resembling the asymptotic covariance matrix
of the estimator in the fixed-dimensional set-up: as long as the model is correctly specified, this
scale factor is decreasing in the number of restrictions. It is revealed that the phase transition
from slow to fast error rate regimes is determined by the smallest singular value of A, a measure
of the least excitable mode of the system. The minimax lower bounds are derived across differ-
ent regimes. The developed non-asymptotic theory not only bridges the theoretical gap between
stable and unstable regimes, but precisely characterizes the effect of restrictions and its interplay
with model parameters. Simulations support our theoretical results.

Some key words: Consistency; Empirical process theory; Least squares estimation; Non-asymptotic analysis; Stochastic
regression; Unstable process; Vector autoregressive model.

1. Introduction

The vector autoregressive model (Sims, 1980) is arguably the most fundamental model for
multivariate time series (Lütkepohl, 2005; Tsay, 2013). Applications of the model and its variants
can be found in almost any field that involves learning the temporal dependency: economics
and finance (Wu & Xia, 2016), energy forecasting (Dowell & Pinson, 2016), psychopathology
(Bringmann et al., 2013), neuroscience (Gorrostieta et al., 2012) and reinforcement learning
(Recht, 2018), among others.

Consider the vector autoregressive model of order one, var(1), in the following form:

Xt+1 = AXt + ηt ,
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470 Y. Zheng AND G. Cheng

where Xt ∈ Rd is the observed time series, A ∈ Rd×d is the unknown transition matrix, and
ηt ∈ Rd is the innovation. In modern applications, the dimension d is often relatively large.
However, since the number of unknown parameters increases as d2, leading to problems such
as overparameterization, the model cannot provide reliable estimates or forecasts without fur-
ther restrictions (Stock & Watson, 2001). A classical approach to dimensionality reduction for
vector autoregressive models, which recently has enjoyed a resurgence of interest, advocates
the incorporation of prior knowledge into modelling. For example, motivated by the fact that in
spatiotemporal studies it is often sufficient to collect information from neighbours, Guo et al.
(2016) proposed the banded vector autoregressive model, where the nonzero entries of A are
assumed to form a narrow band along the main diagonal, after arranging the d components of
Xt by geographic location. To analyse users’ time series over large social networks, the network
vector autoregressive model of Zhu et al. (2017) used the follower-followee adjacency matrix to
determine the zero-nonzero pattern of A, together with equality restrictions to further reduce the
dimensionality. In fact, the above models can both be incorporated by the general framework of
linear restrictions

Cvec(AT) = μ, (1)

where C is a prespecified restriction matrix, μ is a known constant vector and AT is the transpose
of A. This form of restrictions is traditionally well known by time series modellers; see books on
multivariate time series analysis such as Reinsel (1993), Lütkepohl (2005) and Tsay (2013).

Meanwhile, drawing inspiration from recent developments in high-dimensional regression,
another well-studied approach concerns penalized estimation, where the modeller is agnostic to
the locations of nonzero coordinates in A while assuming a certain sparsity (Davis et al., 2015;
Han et al., 2015a; Basu & Michailidis, 2015), or the directions of low-dimensional projections
while, e.g., assuming a low-rank structure of A (Ahn & Reinsel, 1988; Negahban & Wainwright,
2011). In the former case, once the locations of nonzero coordinates are identified, the model can
be formulated as an instance of (1).Although we focus on fully known restrictions, the framework
of (1) allows us to study the theoretical properties of a much richer variety of restriction patterns
in this paper.

On the other hand, in the literature on large vector autoregressive models there has been
an almost exclusive focus on stable processes. Technically, this means that the spectral radius
ρ(A) < 1, or often, more stringently, that the spectral norm ‖A‖2 < 1. However, the analysis of
stable processes typically cannot be carried over to unstable processes. In this paper we provide
a novel finite-time, non-asymptotic analysis of the ordinary least squares estimator for stable,
unstable and even slightly explosive vector autoregressive models within the general framework
of (1).

Our analysis sheds new light on the phase transition phenomenon of the ordinary least squares
estimator across different stability regimes. This is made possible by adopting the non-asymptotic,
nonmixing approach of Simchowitz et al. (2018). Resting upon a generalization of Mendelson’s
(2014) small-ball method, this approach is particularly attractive because: (i) it unifies stable
and unstable cases, whereas in asymptotic theory these two cases would require substantially
different techniques; and (ii) in contrast to existing non-asymptotic methods, it can capture well
the fundamental trait that the estimation will be more accurate as ρ(A) → 1. While relaxing
the normality assumption in Simchowitz et al. (2018), we precisely characterize the impact of
imposing restrictions on the estimation error. More importantly, we reveal for the first time that
the phase transition from slow to fast error rates depends on the the smallest singular value of
A, a measure of the least excitable mode of the system. In addition, we expand the applicable
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Finite-time analysis of vector autoregression 471

region ρ(A) � 1 in the above paper to ρ(A) � 1 + c/n, where c > 0 is a universal constant,
so slightly explosive processes are also included. Compared to Guo et al. (2016), which focused
on the case with ‖A‖2 < 1, our assumption on the innovation distribution is stronger, and our
error rate for the stable regime is larger by a logarithmic factor which, however, can be dropped
under the normality assumption; see § 3.4 for details. Although Zhu et al. (2017) relied on even
milder assumptions on the innovations than Guo et al. (2016), they assumed that the number of
unknown parameters is fixed, and hence their theoretical analysis is not comparable to ours; see
Example 5 in § 3.1.

Throughout, we denote by ‖·‖ the Euclidean norm and by Sd−1 = {ω ∈ Rd : ‖ω‖ = 1}
the unit sphere in Rd . For a real matrix A = (aij), we let λmax(A) and λmin(A), or σmax(A) and
σmin(A), be its largest and smallest eigenvalues, or singular values, respectively; additionally, we
let ρ(A) = |λmax(A)|, ‖A‖2 = sup‖ω‖=1‖Aω‖ and ‖A‖F = (

∑
i,j a2

ij)
1/2 be the spectral radius,

spectral norm and Frobenius norm of A, respectively. For x ∈ R, let �x� = max{k ∈ Z : k � x}
and �x� = min{k ∈ Z : k � x}, where Z is the set of integers. We write A 	 0, or A 
 0, if A is
a positive definite, or positive semidefinite, matrix. Moreover, for any real symmetric matrices A
and B, we write A ≺ B (or A � B) if B − A 	 0 (or B − A 
 0), and write A ⊀ B (or A � B)
if A ≺ B, or A � B, does not hold. For any quantities X and Y , we write X � Y if there exists
a universal constant c > 0 independent of (n, d, m, R, k , σ , δ), whose meaning will become clear
later, such that X � cY .

2. Linearly restricted stochastic regression

2.1. Problem formulation

Consider a sequence of time-dependent covariate-response pairs {(Xt , Yt)}n
t=1 following

Yt = A∗Xt + ηt , (2)

where Yt , ηt ∈ Rq, Xt ∈ Rd , A∗ ∈ Rq×d and E(ηt) = 0. In particular, (2) becomes the var(1)
model when Yt = Xt+1. In model (2), the process {Xt , t = 1, 2, . . .} is adapted to the filtration

Ft = σ {η1, . . . , ηt−1, X1, . . . , Xt}.

Let β∗ = vec(AT∗) ∈ RN , where N = qd. The parameter space of the linearly restricted model
can be defined as

L = {β ∈ RN : Cβ = μ},

where C is a known (N − m) × N matrix of rank N − m, representing N − m independent
restrictions, and μ ∈ RN−m is a known constant vector which may simply be set to zero in
practice. Let C+ be an m × N complement of C such that Cfull = (CT+, CT)T is invertible, with
its inverse partitioned into two blocks as C−1

full = (R, R+), where R is the matrix of the first m
columns of C−1

full. Additionally, define γ = R+μ. Then Cγ = CR+μ = μ. If Cβ = μ, then
β = C−1

fullCfullβ = RC+β + R+Cβ = Rθ + γ , where θ = C+β. Conversely, for any θ ∈ Rm, if
β = Rθ + γ , then Cβ = CRθ + Cγ = μ. Thus, we have

L = {Rθ + γ : θ ∈ Rm},
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472 Y. Zheng AND G. Cheng

i.e., the linear space spanned by columns of the restriction matrix R, shifted by the constant
vector γ . This immediately implies that, given (R, γ ), there exists a unique unrestricted parameter
θ∗ ∈ Rm such that β∗ = Rθ∗+γ . Note that γ = 0 if and only ifμ = 0. Moreover, the unrestricted
model corresponds to the special case where R = IN and γ = 0.

The following examples illustrate how the linear restrictions can be encoded by (R, γ ) or
(C,μ), where, without loss of generality, we set μ = γ = 0. Let β∗i denote the ith entry of β∗.

Example 1 (Zero restriction). The restriction β∗i = 0 may be encoded by setting the ith row
of R to zero, or by setting a row of C to (0, . . . , 0, 1, 0, . . . , 0) ∈ RN , where the ith entry is one.

Example 2 (Equality restriction). Consider the restriction β∗i − β∗j = 0. Suppose that the
value of β∗i = β∗j is θ∗k , the kth entry of θ∗. Then this restriction may be encoded by setting both
the ith and jth rows of R to (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm, where the kth entry is one. Alternatively,
we may set a row of C to the 1 × N vector c(i, j) whose �th element is defined as [c(i, j)]� =
1(� = i)− 1(� = j), where 1(·) is the indicator function.

Define n × q matrices Y = (Y1, . . . , Yn)
T and E = (η1, . . . , ηn)

T, and the n × d matrix
X = (X1, . . . , Xn)

T. Then (2) has the matrix form Y = XAT∗ + E. Let y = vec(Y ), η = vec(E),
Z = (Iq ⊗ X )R and ỹ = y − (Iq ⊗ X )γ . By vectorization and reparameterization, we have

ỹ = (Iq ⊗ X )(β∗ − γ )+ η = Zθ∗ + η.

As a result, the ordinary least squares estimator of β∗ for the linearly restricted model is

β̂ = Rθ̂ + γ , θ̂ = arg min
θ∈Rm

‖ỹ − Zθ‖2, (3)

where Z ∈ Rqn×m. To ensure the feasibility of (3), we need qn � m. Let R = (RT
1, . . . , RT

q)
T and

γ = (γ T
1 , . . . , γ T

q )
T, where Ri are d×m matrices andγi are d×1 vectors.Then, A∗ = (Iq⊗θT∗ )R̃+G,

where

R̃ = (R1, . . . , Rq)
T ∈ Rmq×d , G = (γ1, . . . , γq)

T ∈ Rq×d .

Consequently, the ordinary least squares estimator of A is Â = (Iq ⊗ θ̂T)R̃ + G.

2.2. General upper bounds analysis

To derive upper estimation error bounds for the stochastic regression model in § 2.1, we
begin by introducing a key technical ingredient, namely the block martingale small-ball condi-
tion (Simchowitz et al., 2018). As a generalization of Mendelson’s (2014) small-ball method to
time-dependent data, this condition can be viewed as a non-asymptotic stability assumption for
controlling the lower tail behaviour of the Gram matrix X TX , or ZTZ in our context.

Definition 1 (Block martingale small-ball condition). (i) For a real-valued time series {Xt , t =
1, 2, . . .} adapted to the filtration {Ft}, we say that {Xt} satisfies the (k , ν,α)-bmsb condition
if there exist an integer k � 1, and constants ν > 0 and α ∈ (0, 1) such that, for every
integer s � 0, k−1 ∑k

t=1 pr(|Xs+t| � ν | Fs) � α with probability 1. (ii) For a time series
{Xt , t = 1, 2, . . .} taking values in Rd , we say that {Xt} satisfies the (k ,�sb,α)-bmsb condition
if there exists 0 ≺ �sb ∈ Rd×d such that, for every ω ∈ Sd−1, the real-valued time series
{ωTXt , t = 1, 2, . . .} satisfies the {k , (wT�sbw)1/2,α}-bmsb condition.
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Finite-time analysis of vector autoregression 473

The value of the probability α is unimportant for our purpose as long as it exists. The threshold-
ing matrix �sb, or ν in the univariate case, captures the average cumulative excitability over any
size-k block; e.g., if {Xt} is a mean-zero vector autoregressive process, then �sb will scale propor-
tionally no less than k−1E(

∑k
t=1 Xs+tX T

s+t | Fs), which is constant for all s. Since every time-point
is associated with a new shock to the process, E(Xs+tX T

s+t | Fs)will increase as t increases. Con-
sequently,�sb will be monotonic increasing in k; see Lemma 1 in § 3.2. Moreover, by aggregating
all the size-k blocks,�sb will essentially become the lower bound of n−1 ∑n

t=1 XtX T
t . For ordinary

least squares estimation, a larger lower bound on the Gram matrix will yield a sharper estimation
error bound. Thus, a larger block size k is generally preferred; see Theorem 3 in § 3 for details.

Let �sb and � be d × d positive definite matrices, and denote

�R = RT(Iq ⊗ �sb)R, �R = RT(Iq ⊗ �)R. (4)

In our theoretical analysis, properly rescaled matrices �R and �R will serve as lower and upper
bounds of the Gram matrix ZTZ , respectively, and the covering numbers derived from them will
give rise to the quantity log det(�R�

−1
R ) in Theorem 1. The regularity conditions underlying our

upper bound analysis are listed as follows:

Assumption 1. The covariates process {Xt}n
t=1 satisfies the (k ,�sb,α)-bmsb condition.

Assumption 2. For any δ ∈ (0, 1), there exists�R defined as in (4) such that pr(ZTZ � n�R) �
δ, where Z = (Iq ⊗ X )R, and �R is dependent on δ.

Assumption 3. For every integer t � 1, ηt | Ft is mean zero and σ 2-sub-Gaussian.

Theorem 1. Let {(Xt , Yt)}n
t=1 be generated by the linearly restricted stochastic regression

model. Fix δ ∈ (0, 1). Suppose that Assumptions 1–3 hold, 0 ≺ �sb � �, and

n � 9k

α2

{
m log

27

α
+ 1

2
log det(�R�

−1
R )+ log q + log

1

δ

}
. (5)

Then, with probability at least 1 − 3δ, we have

‖β̂ − β∗‖ � 9σ

α

[
λmax(R�

−1
R RT)

n

{
12m log

14

α
+ 9 log det(�R�

−1
R )+ 6 log

1

δ

}]1/2

,

where ‖β̂ − β∗‖ = ‖Â − A∗‖F. The result in Theorem 1 is new even for the unrestricted sto-
chastic regression, where R = IN . For vector autoregressive processes, we will specify the
matrices �R and �R in § 3.2, where �R will depend on the block size k through �sb. As k
increases, �sb will become larger, and hence the factor λmax(R�

−1
R RT) will become smaller,

resulting in a sharper error bound. However, k cannot be too large due to condition (5). Specif-
ically, this condition arises from applying the Chernoff bound technique to lower bound the
Gram matrix via aggregation of all the size-k blocks, since the probability guarantee of the Cher-
noff bound will degrade as the number of blocks decreases; see the Supplementary Material.
Therefore, to apply Theorem 1 to vector autoregressive processes, a crucial step will be to
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474 Y. Zheng AND G. Cheng

derive a feasible region for k that guarantees condition (5); see the Supplementary Material for
details.

Similarly, we can obtain an analogous upper bound for Â − A∗ in the spectral norm:

Proposition 1. Let {(Xt , Yt)}n
t=1 be generated by the linearly restricted stochastic regression

model. Fix δ ∈ (0, 1). Then, under the conditions of Theorem 1, with probability at least 1 − 3δ,
we have

‖Â − A∗‖2 � 9σ

α

⎡
⎣λmax

(∑q
i=1 Ri�

−1
R RT

i

)
n

{
12m log

14

α
+ 9 log det(�R�

−1
R )+ 6 log

1

δ

}⎤⎦
1/2

.

3. Linearly restricted vector autoregression

3.1. Representative examples

We begin by illustrating how the formulation in § 2 can be used to study vector autoregressive
models. Four representative examples will be discussed: the var(p) model, the banded vector
autoregressive model, the network vector autoregressive model and the pure unit root process.

Consider the var(1) model, i.e., model (2) with Yt = Xt+1 ∈ Rd :

Xt+1 = A∗Xt + ηt , (6)

subject to β∗ = Rθ∗ +γ , where β∗ = vec(AT∗) ∈ Rd2
, R = (RT

1, . . . , RT
d)

T ∈ Rd2×m with Ri being

d × m matrices, θ∗ ∈ Rm and γ = (γ T
1 , . . . , γ T

d )
T ∈ Rd2

with γi ∈ Rd .

Example 3 (var(p) model). Interestingly, vector autoregressive models of order p < ∞ can
be viewed as linearly restricted var(1) models. Consider the var(p) model

Zt+1 = A∗1Zt + A∗2Zt−1 + · · · + A∗pZt−p+1 + εt , (7)

where Zt , εt ∈ Rd0 and A∗i ∈ Rd0×d0 for i = 1, . . . , p. Denote d = d0p, Xt =
(ZT

t , ZT
t−1, . . . , ZT

t−p+1)
T ∈ Rd , ηt = (εT

t , 0, . . . , 0)T ∈ Rd and

A∗ =

⎛
⎜⎜⎜⎝

A∗1 · · · A∗p−1 A∗p
Id0 · · · 0 0
...

. . .
...

...
0 · · · Id0 0

⎞
⎟⎟⎟⎠ ∈ Rd×d . (8)

As a result, (7) can be written into the var(1) form in (6). As shown in (8), all entries in the last
d − d0 rows of A∗ are restricted to either zero or one. The restriction β∗i = 1 can be encoded in
(C,μ) in the same way as Example 1, but with the ith entry of μ set to one. Thus, with or without
restrictions, the var(p) model can be studied by the same method as that for a linearly restricted
var(1) model. The special structure of the innovation ηt that some entries of ηt are fixed at zero
will not pose any extra difficulty.
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Finite-time analysis of vector autoregression 475

In the following examples, we consider var(1) models with various structures for A∗ =
(a∗ij)d×d , and set γ = 0 so that the restrictions are in the form of Rθ = 0:

Example 4 (Banded vector autoregression). Guo et al. (2016) proposed the vector autoregres-
sive model with the following zero restrictions:

a∗ij = 0, |i − j| > k0, (9)

where the integer 1 � k0 � �(d − 1)/2� is called the bandwidth parameter. Let b∗i ∈ Rd be the
transpose of the ith row of A∗. Hence, β∗ = (bT∗1, . . . , bT

∗d)
T. The restrictions are imposed on each

b∗i separately. As a result, the b∗i are determined by non-overlapping subsets of entries in θ∗; that
is, we can write b∗i = R(i)ϑ∗i, where R(i) ∈ Rd×mi , ϑ∗i ∈ Rmi , θ∗ = (ϑT∗1, . . . ,ϑT

∗d)
T ∈ Rm and

m = ∑d
i=1 mi. In this case, R is a block diagonal matrix:

R =
⎛
⎜⎝ R(1) 0

. . .
0 R(d)

⎞
⎟⎠ ∈ Rd2×m,

and (9) can be encoded in R as follows: (i) mi = k0 + i and R(i) = (Imi , 0)T if 1 � i � k0 + 1;
(ii) mi = 2k0 + 1 and R(i) = (0mi×(i−k0−1), Imi , 0mi×(d−i−k0))

T if k0 + 1 < i < d − k0; and
(iii) mi = k0 + 1 + d − i and R(i) = (0, Imi)

T if d − k0 � i � d.

Example 5 (Network vector autoregression). Consider the network model in Zhu et al. (2017).
Let us drop the individual effect and the intercept to ease the notation. This model assumes that
all diagonal entries of A∗ are equal: a∗ii = θ∗1 for 1 � i � d. For the off-diagonal entries, the
zero-nonzero pattern is known and completely determined by the social network: a∗ij =| 0 if and
only if individual i follows individual j. Moreover, all nonzero off-diagonal entries are assumed
to be equal: a∗ij = θ∗2 if a∗ij =| 0, for 1 � i =| j � d. This model is actually very parsimonious,
with only m = 2, while the network size d can be extremely large. To incorporate the above
restrictions, we may define the d2 × 2 matrix R as follows: for i = 1, . . . , d2, the ith row of
R is (1, 0) if β∗i corresponds to a diagonal entry of A∗, (0, 1) if β∗i corresponds to a nonzero
off-diagonal entry of A∗, and (0, 0) if β∗i corresponds to a zero off-diagonal entry of A∗.

Example 6 (Pure unit root process). Another simple but important case is A∗ = ρId withρ ∈ R.
Then, the smallest true model has m = 1, and the corresponding restrictions, a∗11 = · · · = a∗dd

and a∗ij = 0 for 1 � i =| j � d, can be imposed by setting R = (eT
1, . . . , eT

d)
T ∈ Rd2

, where ei
is the d × 1 vector with all elements zero except the ith being one. When ρ = 1, the underlying
model becomes the pure unit root process, a classic example of unstable vector autoregressive
processes (Hamilton, 1994). In particular, the problem of testing A∗ = Id , or unit root testing in
panel data, has been extensively studied in the asymptotic literature; see Chang (2004) and Zhang
et al. (2018) for studies in low and high dimensions, respectively. Zhang et al. (2018) focused on
asymptotic distributions of the largest eigenvalues of the sample covariance matrix of the pure
unit root process under limn,d→∞ d/n = 0. It does not involve parameter estimation, and hence
cannot be directly compared to this paper.

The stochastic regression can also incorporate possibly time-dependent exogenous inputs such
as individual effects (Zhu et al., 2017) and observable factors (Zhou et al., 2018), leading to the
class of varx models (see, e.g., Wilms et al., 2017). Since varx models can be analysed similarly
to vector autoregressive models, we do not pursue the details in this paper.
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476 Y. Zheng AND G. Cheng

3.2. Verification of Assumptions 1–3 in Theorem 1

In light of the generalizability to var(p) models via the var(1) representation, to apply the
general results in § 2.2 to linearly restricted vector autoregressive models, it suffices to restrict
our attention to the var(1) model in (6) from now on.

Following the notation in § 2, let Y = (X2, . . . , Xn+1)
T, Z = (Id⊗X )R and A∗ = (Id⊗θT∗ )R̃+G,

where R̃ = (R1, . . . , Rd)
T and G = (γ1, . . . , γd)

T, where q = d for the var(1) model. In addition,
{Xt} is adapted to the filtration

Ft = σ {η1, . . . , ηt−1}.
The following conditions on {Xt} will be invoked in our analysis:

Assumption 4. (i) The process {Xt} starts at t = 0 with X0 = 0; (ii) the innovations {ηt} are
independent and identically distributed with E(ηt) = 0 and var(ηt) = �η = σ 2Id ; (iii) there
is a universal constant C0 > 0 such that, for every ν ∈ Rd with νT�ην =| 0, the density of
νTηt/(ν

T�ην)
1/2 is bounded from above by C0 almost everywhere; and (iv) {ηt} are σ 2-sub-

Gaussian.

Under Assumption 4(i), we can simply write Xt in the finite-order moving average form,
Xt = ∑t−1

s=0 As∗ηt−s−1 for any t � 1. Then, by Assumption 4(ii), var(Xt) = σ 2�t , where

�t =
t−1∑
s=0

As∗(AT∗)s (10)

is called the finite-time controllability Gramian (Simchowitz et al., 2018). Here var(Xt) < ∞
for any A∗. By contrast, the typical set-up in asymptotic theory of stable processes assumes
that {Xt} starts at t = −∞. In this case, {Xt}t∈Z has the infinite-order moving average form
Xt = ∑∞

s=0 As∗ηt−s−1, so var(Xt) = σ 2 ∑∞
s=0 As∗(AT∗)s = σ 2 limt→∞ �t < ∞ if and only if

ρ(A∗) < 1. Thus, an important benefit of Assumption 4(i) is that it allows us to capture the
possibly explosive behaviour of var(Xt) over any finite time horizon, and derive upper bounds of
the Gram matrix over different stability regimes; see Lemmas 2 and 3 in this subsection.

The condition�η = σ 2Id inAssumption 4(ii) is imposed for simplicity. However, we can easily
extend all the proofs in this paper to the general case with any symmetric matrix�η 
 0: we only
need to rederive all results with the role of �t replaced by

∑t−1
s=0 As∗�η(AT∗)s. Assumption 4(iii)

is used to establish the block martingale small-ball condition, i.e., Assumption 1, for vector
autoregressive processes, and it allows us to lower bound the small-ball probability by leveraging
Theorem 1.2 in Rudelson & Vershynin (2015) on densities of sums of independent random
variables; see also Remark 3. Essentially, Assumption 4(iii) only requires that the distribution
of any one-dimensional projection of the innovation is well spread on the real line. Examples
of such distributions include multivariate normal and multivariate t (Kotz & Nadarajah, 2004)
distributions and, more generally, elliptical distributions (Fang et al., 1990) with the consistency
property in Kano (1994). Lastly, it is clear thatAssumptions 4(ii) and (iv) guaranteeAssumption 3.

Remark 1. In asymptotic theory, stable and unstable processes require substantially different
techniques, and results derived under ρ(A∗) < 1 typically cannot be carried over to unstable
processes. For example, the convergence rate of the ordinary least squares estimator for fixed-
dimensional unstable var(1) processes is n instead of n1/2, and the limiting distribution is no
longer normal (Hamilton, 1994).
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Finite-time analysis of vector autoregression 477

Remark 2. The controllability Gramian �t is interpretable even without Assumption 4(i). By
recursion, we have Xs+t = ∑t−1

�=0 A�∗ηs+t−�−1+At∗Xs for any time-point s and duration t � 1.As a
result, var(Xs+t | Fs) = ∑t−1

�=0 A�∗�η(AT∗)�, and it simply becomes σ 2�t if�η = σ 2Id ; var(Xs+t |
Fs), or equivalently�t , is a partial sum of a geometric sequence due to the autoregressive structure.
Roughly speaking, larger A∗ means more persistent impact of ηt .

In the following, we present three lemmas for the linearly restricted vector autoregressive
model. Lemma 1 establishes the block martingale small-ball condition by specifying �sb, while
Lemmas 2 and 3 verify Assumption 2 by providing two possible specifications of �.

Some additional notation to be used in Lemma 3 is introduced as follows: denote by �X the
covariance matrix of the dn × 1 vector vec(X T) = (X T

1 , . . . , X T
n )

T, so the (t, s)th d × d block of
�X is E(XtX T

s ), for 1 � t, s � n. Then define

ξ = ξ(m, d, n, δ) = 2
{
λmax(�n)ψ(m, d, δ)‖�X ‖2

σ 2n

}1/2

+ 2ψ(m, d, δ)‖�X ‖2

σ 2n
, (11)

where ψ(m, d, δ) = C1{m log 9 + log d + log(2/δ)} and C1 > 0 is a universal constant.

Lemma 1. Suppose that {Xt}n+1
t=1 follows Xt+1 = A∗Xt +ηt for t = 0, 1, . . . , n. Under Assump-

tions 4(ii) and (iii), for any 1 � k � �n/2�, {Xt}n
t=1 satisfies the (2k ,�sb, 1/10)-bmsb condition,

where �sb = σ 2�k/(4C0)
2.

Lemma 2. Let {Xt}n+1
t=1 be generated by the linearly restricted vector autoregressive model.

Under Assumptions 4(i) and (ii), for any δ ∈ (0, 1) we have pr(ZTZ � n�R) � δ, where
�R = RT(Id ⊗ �)R, with � = σ 2m�n/δ.

Lemma 3. Let {Xt}n+1
t=1 be generated by the linearly restricted vector autoregressive model.

Under Assumptions 4(i) and (ii), if {ηt} are normal, then for any δ ∈ (0, 1) we have pr(ZTZ �
n�R) � δ, where �R = RT(Id ⊗ �)R, with � = σ 2�n + σ 2ξ Id and ξ = ξ(m, d, n, δ) as defined
in (11).

Remark 3. Unlike Simchowitz et al. (2018), by leveraging Rudelson & Vershynin (2015),
we establish the block martingale small-ball condition without the normality assumption. If
Assumption 4(ii) is relaxed to the general var(ηt) = �η 
 0, by a straightforward extension of
the proof of Lemma 1, we can show that Lemma 1 holds with �sb = ∑k−1

�=0 A�∗�η(AT∗)�/(4C0)
2.

Remark 4. Lemma 2 is a simple consequence of the Markov inequality and the property that
λmax(·) � tr(·), so no distributional assumption on ηt is required. However, Lemma 3 relies on
the Hanson–Wright inequality (Vershynin, 2018), where the normality assumption is invoked.
Although adopting the � in Lemma 3 can eliminate a factor of log m in the resulting estimation
error bounds, the � in Lemma 2 actually leads to sharper bounds under certain conditions on A∗;
see § 3.3 and § 3.4 for details.

By Lemma 1, for any 1 � k � �n/2�, the matrix �R in Theorem 1 can be specified as

�R = σ 2RT(Id ⊗ �k)R/(4C0)
2. (12)

By Lemmas 2 and 3, the matrix �R in Theorem 1 can be chosen as �R = �
(1)
R or �

(2)
R , where

�
(1)
R = σ 2mRT(Id ⊗ �n)R/δ, �

(2)
R = σ 2RT(Id ⊗ �n)R + σ 2ξ(m, d, n, δ)RTR; (13)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/108/2/469/5895298 by guest on 20 M
ay 2021



478 Y. Zheng AND G. Cheng

recall the definitions of �R and �R in (4), where q = d for the var(1) model. Furthermore,
observe that �R in (12) and the two �Rs in (13), which serve as lower and upper bounds of ZTZ ,
respectively, are all related to the controllability Gramian �t , and 0 ≺ Id � �k � �n.

3.3. Feasible region of k

With �R and �R chosen as in (12) and (13), the term log det(�R�
−1
R ) in condition (5) in

Theorem 1 is intricately dependent on both k and n. Thus, in order to apply the theorem to model
(6), we need to verify the existence of the block size k satisfying (5). This boils down to deriving
an explicit upper bound of log det(�R�

−1
R ) free of k .

By (10) and (12), it is easy to show that det(�R) is monotonic increasing in k . Then, as �R

is free of k , log det(�R�
−1
R ) is maximized when k = 1. As a result, we can first upper bound

log det(�R�
−1
R ) by its value at k = 1 to get rid of its dependence on k . That is,

log det(�R�
−1
R ) � log det{�R(σ

2RTR)−1(4C0)
2}. (14)

Now it suffices to upper bound the right-hand side of (14), where �R can be chosen from �
(1)
R

and �
(2)
R in (13). As shown in the Supplementary Material,

log det{�R(σ
2RTR)−1(4C0)

2} �
{

m log(m/δ)+ κ , if �R = �
(1)
R ,

m log{2 max(1, ξ)} + κ , if �R = �
(2)
R ,

(15)

where ξ = ξ(m, d, n, δ) is defined as in (11), and

κ = log det
{
RT(Id ⊗ �n)R(R

TR)−1}. (16)

Obviously, without imposing normality, we can only choose �R = �
(1)
R ; see Lemmas 2 and 3

in § 3.2. However, if {ηt} are normal, �R can be set to whichever of �
(1)
R and �

(2)
R delivers the

sharper upper bound. Both κ and ξ depend on n, and their growth rates with respect to n depend

on the magnitude of A∗. This will ultimately affect the choice between �
(1)
R and �

(2)
R ; e.g., if κ

is the dominating term in both upper bounds in (15), we will be indifferent between the two.
Assumptions 5–6′ below summarize the three cases of A∗ we consider:

Assumption 5. ρ(A∗) � 1 + c/n, where c > 0 is a universal constant;

Assumption 6. ρ(A∗) � ρ̄ < 1 and ‖A∗‖2 � C, where ρ̄, C > 0 are universal constants;

Assumption 6′. ρ(A∗) � ρ̄ < 1, μmin(A) = inf ‖z‖=1 λmin{A∗(z)A(z)} � μ1 and ‖At∗‖2 �
C�t for any integer 1 � t � n, where ρ̄,μ1, C > 0 and � ∈ (0, 1) are universal constants, and
A(z) = Id − A∗z for any complex number z.

Assumption 5 is the most general case among the above three, and Assumption 6 is weaker
than Assumption 6′. Assumption 6′ does not require ‖A∗‖2 < 1 because C may be greater than
one. Guo et al. (2016) assumed ‖At∗‖2 � �t for � ∈ (0, 1) and any positive integer t, while it
is unclear if this can be relaxed to ‖At∗‖2 � C�t as in Assumption 6′. We need μmin(A) to be
bounded away from zero in order to derive a sharp upper bound on ‖�X ‖2; see Remark 6. This
condition is also necessary for the estimation error rates derived in Basu & Michailidis (2015)
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Finite-time analysis of vector autoregression 479

for a similar reason. In particular, if A∗ is diagonalizable, it is shown in Proposition 2.2 therein
that μmin(A) � [{1 − ρ(A∗)}/ cond(S)]2, where S is defined in (17).

Remark 5. From (16), κ is dependent on n through �n. If ρ(A∗) < 1 then �n � �∞ =
limn→∞ �n < ∞ and κ � log det

{
RT(Id ⊗ �∞)R(RTR)−1

}
, an upper bound free of n. By

contrast, ifρ(A∗) � 1 then�∞ no longer exists, and we need to carefully control the growth rate of
�n; see Lemma S7 in the Supplementary Material. This is achieved via the Jordan decomposition
of A∗ in (17), and the mildest condition we need is Assumption 5. The upper bound of κ under
Assumption 5 or 6 is given in the Supplementary Material.

Remark 6. For ξ defined in (11), ‖�X ‖2 depends on n, as �X = [E(XtX T
s )]1�t,s�n, where

E(XtX T
s ) = σ 2At−s∗ �s for 1 � s � t � n under Assumptions 4(i) and (ii). Unlike κ discussed

in Remark 5, even under Assumption 6, ‖�X ‖2 is not guaranteed to be bounded by a constant
free of n; indeed, we need Assumption 6′ for this purpose, since ‖�X ‖2 is affected by not only
the growing diagonal blocks σ 2�1, . . . , σ 2�n, but also the growing off-diagonal blocks; see the
Supplementary Material for details. The upper bound of ξ under Assumption 5 or 6′ is given in
the Supplementary Material.

Let the Jordan decomposition of A∗ be

A∗ = SJS−1, (17)

where J has L blocks with sizes 1 � b1, . . . , bL � d, and both J and S are d × d com-
plex matrices. Let bmax = max1���L b�, and denote the condition number of S by cond(S) =
{λmax(S∗S)/λmin(S∗S)}1/2, where S∗ is the conjugate transpose of S.

The following proposition, which follows from (14), (15) and upper bounds of κ and ξ under
Assumptions 5, 6 or 6′, is proved in the Supplementary Material.

Proposition 2. For any A∗ ∈ Rd×d , under Assumption 5 we have log det(�R�
−1
R ) �

m [log{d cond(S)/δ} + bmax log n] for �R = �
(1)
R or �

(2)
R . Moreover, if Assumption 6 holds then

log det(�
(1)
R �−1

R ) � m log(m/δ). Furthermore, if Assumption 6′ holds and n � m + log(d/δ),

then log det(�
(2)
R �−1

R ) � m.

The condition n � m + log(d/δ) in Proposition 2 is not stringent, because it is necessary for

condition (5) in Theorem 1, where q = d for the var(1) model. By Proposition 2, �
(2)
R yields

a sharper upper bound of log det(�R�
−1
R ) than does �

(1)
R only under Assumption 6′. Thus, we

shall always set �R = �
(1)
R unless Assumption 6′ holds and {ηt} are normal. As a result, under

Assumption 4, the feasible region of k that is sufficient for condition (5) in Theorem 1 is

k �

⎧⎪⎨
⎪⎩

n
m[log{d cond(S)/δ}+bmax log n] , if Assumption 5 holds,

n
m log(m/δ)+log d , if Assumption 6 holds,

n
m+log(d/δ) , if Assumption 6′ holds and {ηt} are normal.

(18)

Because the upper bound of log det(�R�
−1
R ) and the feasible region of k are both dependent

on the assumption on A∗ and whether {ηt} are normal, the resulting estimation error bounds will
vary slightly under different conditions; see Theorems 2 and 3 in § 3.4.
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3.4. Analysis of upper bounds in vector autoregression

We focus on the upper bound analysis of ‖β̂ − β∗‖; nevertheless, from Proposition 1 we can
readily obtain analogous results for ‖Â − A∗‖2, which are omitted here. For simplicity, denote

�R,k = R
{
RT(Id ⊗ �k)R

}−1 RT.

The first theorem follows directly from Theorem 1, Lemmas 1–3 and Proposition 2.

Theorem 2. Let {Xt}n+1
t=1 be generated by the linearly restricted vector autoregressive model.

Fix δ ∈ (0, 1). For any 1 � k � �n/2� satisfying (18), under Assumption 4, we have the following
results: (i) If Assumption 5 holds, with probability at least 1 − 3δ,

‖β̂ − β∗‖ �
(
λmax(�R,k)

m [log{d cond(S)/δ} + bmax log n]

n

)1/2

.

(ii) If Assumption 6 holds, with probability at least 1 − 3δ,

‖β̂ − β∗‖ �
{
λmax(�R,k)

m log(m/δ)

n

}1/2

.

(iii) If Assumption 6′ holds and {ηt} are normal, with probability at least 1 − 3δ,

‖β̂ − β∗‖ �
{
λmax(�R,k)

m + log(1/δ)

n

}1/2

.

To gain an intuitive understanding of the factor λmax(�R,k) in Theorem 2, consider the asymp-
totic distribution of β̂ under the assumptions that ρ(A∗) < 1 and that d, m and A∗ are all fixed:

n1/2(β̂ − β∗) → N
[
0, R{RT(Id ⊗ �∞)R}−1RT︸ ︷︷ ︸

�R,∞

]
(19)

in distribution as n → ∞, where �∞ = limk→∞ �k ; see Lütkepohl (2005). Thus, λmax(�R,k)

in Theorem 2 resembles the limiting covariance matrix �R,∞. However, by adopting a non-
asymptotic approach, Theorem 2 retains the dependence of the estimation error on �R,k across
stable, unstable and slightly explosive regimes. Similarly to (19), the error bounds in Theo-
rem 2 are free of σ 2, as the scaling effect of σ 2 on ηt is cancelled out by that on Xt due to the
autoregressive structure.

As a special case, bmax = 1 if A∗ is diagonalizable. Moreover, if A∗ = ρId , then bmax = 1,
cond(S) = 1, �k = γk(ρ)Id , with γk(ρ) = ∑k−1

s=0 ρ
2s, and thus

λmax(�R,k) = γ−1
k (ρ)λmax{R(RTR)−1RT} = γ−1

k (ρ)λmax{(RTR)−1RTR} = γ−1
k (ρ), (20)

where the second equality is due to the fact that, for any matrices A ∈ RN×m and B ∈ Rm×N , AB
and BA have the same nonzero eigenvalues (Theorem 1.3.20, Horn & Johnson, 1985).

By Theorem 2, the linear restrictions affect the error bounds through both the factor λmax(�R,k)

and the explicit rate function of m and n. To further illustrate this, suppose that

β∗ = Rθ∗ + γ = R(1)R(2)θ∗ + γ ,
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Finite-time analysis of vector autoregression 481

where R(1) ∈ Rd2×m̃ has rank m̃, and R(2) ∈ Rm̃×m has rank m, with m̃ � m + 1. Then L(1) =
{R(1)θ + γ : θ ∈ Rm̃} ⊇ L = {Rθ + γ : θ ∈ Rm}. By an argument similar to that in Lütkepohl
(2005, p. 199), we can show that �R,k � �R(1),k , so

λmax(�R,k) � λmax(�R(1),k). (21)

The parameter space L(1) has fewer restrictions than L. Therefore, with fewer restrictions, the
effective model size will increase from m to m̃, and meanwhile λmax(�R,k) will increase to
λmax(�R(1), k), both leading to deterioration of the error bound.

Remark 7. The preservation of the factor λmax(�R,k) in Theorem 2 is achieved by bound-
ing ZTZ and ZTη simultaneously through the Moore–Penrose pseudoinverse Z†, where Z† =
(ZTZ)−1ZT if ZTZ 	 0; see also Simchowitz et al. (2018). This key advantage is not enjoyed by
the non-asymptotic analyses in Basu & Michailidis (2015) and Faradonbeh et al. (2018). In their
analyses, X TX and X TE, or ZTZ and ZTη in our context, were bounded separately. This would
not only break down �R,k , but also cause degradation of the error bound as ρ(A∗) → 1 due to
the inevitable involvement of the condition number of X TX in the resulting error bound.

Remark 8. If A∗ = ρId , then (21) becomes an equality. However, the equality generally
does not hold even for diagonal matrices A∗. For example, if A∗ = diag(ρ1, ρ2) ∈ R2×2, where
|ρ1| > |ρ2|, then �k = diag{γk(ρ1), γk(ρ2)}. Let R = (1, 0, 0, 0)T = R(1)R(2), where R(1) =
(I2, 0)T ∈ R4×2 and R(2) = (1, 0)T. Consequently, (21) is a strict inequality: λmax(�R,k) =
γ−1

k (ρ1) < γ−1
k (ρ2) = λmax(�R(1),k).

The next theorem sharpens the error bounds in Theorem 2 by utilizing the largest possible
k , since λmax(�R,k) is monotonic decreasing in k . The dependence of λmax(�R,k) on A∗ will be
captured by σmin(A∗), a measure of the least excitable mode of the underlying dynamics.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Fix δ ∈ (0, 1), and let c1 > 0 be
a universal constant.

(i) Under Assumption 5, if

σmin(A∗) � 1 − c1m [log{d cond(S)/δ} + bmax log n]

n
, (22)

then, with probability at least 1 − 3δ,

‖β̂ − β∗‖ �
(

{1 − σ 2
min(A∗)}m [log{d cond(S)/δ} + bmax log n]

n

)1/2

, (23)

and if inequality (22) holds in the reverse direction, then, with probability at least 1 − 3δ,

‖β̂ − β∗‖ � m [log{d cond(S)/δ} + bmax log n]

n
. (24)

(ii) Under Assumption 6, if

σmin(A∗) � 1 − c1{m log(m/δ)+ log d}
n

, (25)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/108/2/469/5895298 by guest on 20 M
ay 2021



482 Y. Zheng AND G. Cheng

then, with probability at least 1 − 3δ,

‖β̂ − β∗‖ �
[

{1 − σ 2
min(A∗)}m log(m/δ)

n

]1/2

, (26)

and if inequality (25) holds in the reverse direction, then, with probability at least 1 − 3δ,

‖β̂ − β∗‖ � m log(m/δ)+ log d

n
. (27)

(iii) Under Assumption 6′, if {ηt} are normal and

σmin(A∗) � 1 − c1{m + log(d/δ)}
n

, (28)

then, with probability at least 1 − 3δ,

‖β̂ − β∗‖ �
[

{1 − σ 2
min(A∗)}{m + log(1/δ)}

n

]1/2

, (29)

and if inequality (28) holds in the reverse direction, then, with probability at least 1 − 3δ,

‖β̂ − β∗‖ � m + log(d/δ)

n
. (30)

Theorem 3 reveals an interesting phenomenon of phase transition from slow to fast error rate
regimes, i.e., from about O{(m/n)1/2} as in (23), (26) and (29) to about O(m/n) as in (24), (27)
and (30), up to logarithmic factors. Within the slow-rate regime, the estimation error decreases
as σmin(A∗) increases. The slow rates in (23), (26) and (29) differ from each other only by
logarithmic factors, and so do the fast rates in (24), (27) and (30). Moreover, the point at which
the transition occurs is dependent on σmin(A∗) instead of ρ(A∗); see conditions (22), (25) and
(28). Since σmin(A∗) � ρ(A∗), conditions (22), (26) and (28) may be mild as long as ρ(A∗) is
not too large. However, the fast rates require the opposite of (22), (25) and (28), which cannot
be directly inferred from ρ(A∗).

Remark 9. For the special case of A∗ = ρId with ρ ∈ R, Assumptions 6 and 6′ both simply
reduce to |ρ| < 1, and Assumption 5 to |ρ| � 1 + O(1/n). Also, cond(S) = 1 and bmax = 1.
Thus, under Assumption 4, by (24), (26) and (27), the following holds with high probability:

‖β̂ − β∗‖ �

⎧⎪⎨
⎪⎩

O[{(1 − ρ2)m log m/n}1/2], if |ρ| � 1 − O{(m log m + log d)/n},
O{(m log m + log d)/n}, if 1 − O{(m log m + log d)/n} � |ρ| < 1,

O{m log(dn)/n}, if 1 � |ρ| � 1 + O(1/n).

Moreover, if {ηt} are normal, by (29) and (30), we can eliminate all factors of log m in the above
results; that is, every m log m will be replaced by m.

Remark 10. Faradonbeh et al. (2018) derived error bounds for the ordinary least squares
estimator of explosive unrestricted vector autoregressive processes when (i) |λmin(A∗)| > 1 or
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(ii) A∗ has no unit eigenvalue. In contrast to case (i), we focus on slightly explosive processes
with ρ(A∗) � 1 + O(1/n). Moreover, the no unit root requirement of case (ii) may be quite
restrictive; e.g., it excludes the case of |ρ| = 1 in Remark 9. Thus, the conditions in Theorem 3
may be more reasonable in practice.

Remark 11. Guo et al. (2016) obtained the error rate Op{(m/n)1/2} for the banded vector
autoregressive model under weaker conditions on {ηt} yet stronger conditions on A∗ than those
in this paper; see Theorem 2 therein. In particular, they required ‖A∗‖2 < 1. This rate matches
(29). In view of the lower bounds to be presented in § 4, we conjecture that the rate in (26) is
larger than the actual rate by a factor of log m.

4. Analysis of lower bounds

For any θ ∈ Rm, let β = Rθ + γ , and the corresponding transition matrix is denoted by
A(θ) = (Id ⊗θT)R̃+G, where R, γ , R̃ and G are defined as in § 3.1.As β is completely determined
by θ , it is more convenient to index the probability law of the model by the unrestricted parameter
θ . Thus, we denote by pr(n)θ the distribution of the sample (X1, . . . , Xn+1) on (X n+1, Fn+1), where
X = Rd and Fn+1 = σ {η1, . . . , ηn}. For any fixed ρ̄ > 0, we write the subspace of θ such that
the spectral radius of A(θ) is bounded above by ρ̄ as

�(ρ̄) = {θ ∈ Rm : ρ{A(θ)} � ρ̄}.
The corresponding linearly restricted subspace of β is denoted by L(ρ̄) = {Rθ + γ : θ ∈ �(ρ̄)}.

The minimax rate of estimation over β ∈ L(ρ̄), or θ ∈ �(ρ̄), is provided by the next theorem.

Theorem 4. Suppose that {Xt}n+1
t=1 follow the vector autoregressive model Xt+1 = AXt + ηt

with linear restrictions defined as in § 3. In addition, Assumptions 4(i) and (ii) hold, and {ηt}
are normally distributed. Fix δ ∈ (0, 1/4) and ρ̄ > 0. Let γn(ρ̄) = ∑n−1

s=0 ρ̄
2s. Then, for any

ε ∈ (0, ρ̄/4], we have

inf
β̂

sup
θ∈�(ρ̄)

pr(n)θ

{
‖β̂ − β‖ � ε

}
� δ,

where the infimum is taken over all estimators of β subject to β ∈ {Rθ + γ : θ ∈ Rm}, for any n
such that

nγn(ρ̄) � m + log(1/δ)

ε2 .

As a result, we have the following minimax rates of estimation across different values of ρ̄.

Corollary 1. For the linearly restricted vector autoregressive model in Theorem 4, the
minimax rates of estimation over β ∈ L(ρ̄) are given as follows:

(i) {(1 − ρ̄2)m/n}1/2, if 0 < ρ̄ < (1 − 1/n)1/2;
(ii) m1/2/n, if (1 − 1/n)1/2 � ρ̄ � 1 + c/n for a fixed c > 0; and
(iii) ρ̄−n{(ρ̄2 − 1)m/n}1/2, if ρ̄ > 1 + c/n.

While the phase transition in Corollary 1 depends on ρ(A∗) instead of σmin(A∗), we may still
compare the lower bounds to the upper bounds in Theorem 3. For case (i) in Corollary 1, since
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Table 1. Comparison of upper and lower bounds
Range of |ρ| Lower bound Upper bound

(0, 1 − O {(m + log d)/n}] �[{(1 − ρ2)m/n}1/2] O[{(1 − ρ2)m/n}1/2]
[1 − O{(m + log d)/n}, (1 − 1/n)1/2) �[{(1 − ρ2)m/n}1/2] O{(m + log d)/n}

[(1 − 1/n)1/2, 1) �(m1/2/n) O{(m + log d)/n}
[1, 1 + O(1/n)] �(m1/2/n) O{m log(dn)/n}
(1 + O(1/n), ∞) �[|ρ|−n{(ρ2 − 1)m/n}1/2] —

Ω(m1 2 n)

O[{(1 – r2)m/n}1/2]

O{(m + logd/n}

|| 
bÓ  –

 b
*|

|

1 – O{(m + logd)/n} 1(1 – 1/n)1/2 1 + O(1/n)

|r|

O{mlog(dn)/n}

O(m/n)

W[{(1 – r2)m/n}1/2]

W[|r|–n{(r2 – 1)m/n}1/2]

Fig. 1. Illustration of theoretical upper (dot-dashed) and lower (dashed) bounds and the actual rates (solid) suggested
by simulation results in § 5 for the var(1) model with A∗ = ρId and normal innovations.

σmin(A∗) � ρ(A∗) < (1 − 1/n)1/2 < 1, we may expect that condition (25) will hold in most
cases, and hence the upper bound O{(m log m/n)1/2} differs from the lower bound by a factor
of log m. However, for case (ii), the upper bound may lie in either the slow- or fast-rate regime,
depending on the magnitude of σmin(A∗), whereas the lower bound lies in the fast-rate regime. As
shown by our first experiment in § 5, the transition from slow to fast error rates actually depends
on σmin(A∗) instead of ρ(A∗). This also suggests that the results in Theorem 3 are sharp in the
sense that they correctly capture the transition behaviour.

Remark 12. If A∗ = ρId with ρ ∈ R and {ηt} are normal, in view of Remark 9 and Corollary 1,
a more straightforward comparison of the upper and lower bounds can be made; see Table 1. See
Fig. 1 for an illustration of the theoretical bounds and actual rates suggested by simulation
results in § 5. The actual rates and the theoretical upper and lower bounds exactly match when
0 < |ρ| � 1 − O{(m + log d)/n}. In addition, the suggested actual rate is m/n for 1 − O{(m +
log d)/n} < |ρ| < 1 + O(1/n) and even faster for |ρ| beyond this range.

Remark 13. Han et al. (2015b) considered the estimation of a class of copula-based station-
ary vector autoregressive processes which includes the Gaussian var(1) process as a special
case, and extended the theoretical properties to var(p) processes by arguments similar to those
in Example 3. Under a strong-mixing condition on the process and the low-rank assump-
tion rank(A∗) � r, the proposed estimator Ã was proved to attain the minimax error rate
‖Ã−A∗‖F = O{(dr/n)1/2}. While we consider different restrictions and estimation methods, the
rate {(1 − ρ̄2)m/n}1/2 in Corollary 1 for the stable regime resembles that in Han et al. (2015b)
if we regard dr as the effective model size m of the low-rank var(1) model. However, similarly
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to our upper bound analysis in § 3, the factor of (1 − ρ̄2)1/2 in our lower bound also reveals that
the estimation error may decrease as A∗ approaches the stability boundary.

5. Simulation experiments

We conduct three simulation experiments to verify the theoretical results in the previous
sections, including the estimation error rates, the transition from slow- to fast-rate regimes, and
the effect of the ambient dimension d on the estimation. The data are generated from var(1)
processes with {ηt} drawn independently from N (0, Id) and the following structures of A∗:

DGP1: Banded structure defined by the zero restrictions a∗ij = 0 if |i − j| > k0, where
1 � k0 � �(d − 1)/2� is the bandwidth parameter; see Example 4 in § 3.1. As a result, if all
restrictions are imposed, the size of the model is m = d + (2d − 1)k0 − k2

0 .
DGP2: Group structure defined by equality restrictions as follows. Partition the index set

V = {1, . . . , d} of the coordinates of Xt into K groups of size b = d/K as V = ⋃K
k=1 Gk , where

Gk = {(k − 1)b + 1, . . . , kb} (k = 1, . . . , K).

In each row of A∗, the off-diagonal entries a∗ij with j belonging to the same group are assumed
to be equal: for any 1 � k � K and 1 � i � d, all elements of {a∗ij, j ∈ Gk , j =| i} are equal.
Thus, m = (K + 1)d, as there are (K + 1) free parameters in each row of A∗.

DGP3: A∗ = ρId , whereρ ∈ R. The smallest true model with size m = 1 results from imposing
zero restrictions on all off-diagonal entries of A∗ and equality restrictions on all diagonal entries;
see Example 6 in § 3.1.

Throughout the experiments, the �2 estimation error ‖β̂ − β∗‖ is calculated by averaging over
1000 replications. Except for DGP3, nonzero entries of A∗ are generated independently from
U [−1, 1] and then rescaled such that ρ(A∗) is equal to a certain value.

The first experiment aims to verify the error rates in Theorem 3 and the implication of
Theorem 2 that the restrictions can reduce the estimation error through both the explicit rate
(m/n)1/2 and the decrease in the factor λmax(�R,k). Fixing d = 24 and ρ(A∗) = 0.2, 0.8 or
1, we generate data from DGP1 with k0 = 1, DGP2 with K = 2, and DGP3. For DGP1 and
DGP3, we fit banded vector autoregressive models with k0 = 1, 5 or 7 such that m = 70,
156 or 304, respectively. For DGP2, we fit the group-structured model with K = 2, 8 or 12
such that m = 72, 120 or 312, respectively. For DGP1 and DGP2, σmin(A∗) � 0.1 even when
the randomly generated matrix A∗ has ρ(A∗) = 1. However, for DGP3, σmin(A∗) = ρ(A∗).
The �2 estimation error ‖β̂ − β∗‖ is plotted against (m/n)1/2 in Fig. 2, where we consider
(m/n)1/2 ∈ {0.15, 0.35, 0.55, 0.75, 0.95}. Our findings are summarized below.

(i) When ρ(A∗) = 0.2, for all the data-generating processes the lines for different m coincide
completely with each other and scale perfectly linearly with (m/n)1/2. This suggests that the
actual error rate is (m/n)1/2 when σmin(A∗) lies in the slow-rate regime of Theorem 3.

(ii) When ρ(A∗) = 0.8 or 1, for DGP1 and DGP2, although ‖β̂ − β∗‖ is still proportional to
(m/n)1/2, the three lines for the same ρ(A∗), but different m do not coincide: fixing ρ(A∗), the
slope increases as m increases, and the variation in slope is greater as ρ(A∗) is larger. For DGP1
and DGP2, σmin(A∗) is very small. As finding (i) suggests that the actual error rate is (m/n)1/2 for
small σmin(A∗), this extra variation in slope may be partially explained by the factor λmax(�R,k)

in the error bound in Theorem 2 due to the effect of R. However, ‖β̂ − β∗‖ actually depends on
the spectrum of �R,k , and its largest eigenvalue merely serves as an upper bound. When ρ(A∗)
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Fig. 2. Plots of ‖β̂ − β∗‖ against (m/n)1/2 for three data-generating processes with ρ(A∗) = 0.2 (dashed lines, grey-
filled symbols), 0.8 (dotted lines, unfilled symbols) or 1 (solid lines, black-filled symbols) and different m. DGP1 and
DGP3 were fitted as banded vector autoregressive models with m = 70 (squares), 156 (circles) or 304 (triangles), and

DGP2 was fitted as grouped vector autoregressive models with m = 72 (squares), 120 (circles) or 312 (triangles).

is smaller, we will have more control over the spectrum of A∗, and hence that of �R,k . This may
explain why the variation in slope is smaller when ρ(A∗) is smaller.

(iii) For DGP3 with ρ(A∗) = 0.2 or 0.8, the three lines corresponding to different m still com-
pletely coincide with each other. This can be explained by the fact that λmax(�R,k) is independent
of R when A∗ = ρId ; see (20).

(iv) For DGP3 with ρ(A∗) = 1, in sharp contrast to all other cases, the error rate appears
to be a quadratic function of (m/n)1/2. This matches the implication of Theorem 3 that when
σmin(A∗) = 1, the error rate falls into the fast-rate regime.

(v) Fixing both m and n, ‖β̂ − β∗‖ always decreases as ρ(A∗) increases. Moreover, when
σmin(A∗) < 1, fixing m, the lines become less steep as ρ(A∗) increases. Note that σmin(A∗) is
larger when ρ(A∗) is, due to our method of generating A∗. Thus, this finding can be explained by
the factor {1 − σ 2

min(A∗)}1/2 in the error bound for the slow-rate regime in Theorem 3.
In the second experiment, we focus on DGP3 to further investigate the error rates and the

phase transition. We set d = 24 and m = 1, 70, 156 or 304, where m = 1 results from fitting the
smallest true model, and m = 70, 156 or 304 from fitting a banded model with k0 = 1, 3 or 7,
respectively. Figures 3 and 4 display the results, where we have the following findings:

(i) The combination of results from the first experiment and Fig. 3(a) suggests that ‖β̂ − β∗‖
scales as O[{(1 − ρ2)m/n}1/2] when |ρ| is fixed at a level well below one.

(ii) Figure 4 suggests that when |ρ| = 1 the actual error rate is m/n. Specifically, when m is
fixed, Fig. 4(a) shows that n‖β̂ − β∗‖ becomes stable for n sufficiently large, while ‖β̂ − β∗‖
multiplied by n1/2 or n/ log n appears to diminish as n → ∞. On the other hand, when n is fixed,
Fig. 4(b) shows that ‖β̂ − β∗‖/m becomes stable for m sufficiently large.

(iii) Figure 3(b) suggests that the regime of rate m/n is reached as early as |ρ| = 1 − O{(m +
log d)/n} and maintained even as the process becomes slightly explosive with |ρ| = 1+O(1/n).
This lends support to the boundaries of the fast-rate regime suggested by Theorem 3; see
Remarks 9 and 12. By contrast, when ρ = 0.99 the rate appears to be (m/n)1/2, similar to
our findings in the first experiment. On the other hand, when ρ is fixed at a level slightly above 1,
the rate becomes even faster than m/n. This matches the conclusion in Remark 12 that the
corresponding lower bound diminishes at a rate faster than |ρ|n as n increases.

The third experiment aims to check whether the ambient dimension d directly affects the
estimation error. We generate data from DGP3 with ρ = 0.2, 0.8 or 1, n = 100 or 500 and
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(a) (b)

Fig. 3. Error rates for DGP3 as ρ is fixed or approaching 1 at different rates. (a) Plot of ‖β̂−β∗‖ against {(1−ρ2)/n}1/2

with ρ = 0.2 (dashed lines, squares), 0.4 (dotted lines, circles) or 0.6 (solid lines, triangles), and m = 70. (b) Plot of
‖β̂−β∗‖ against m/n with ρ = 0.99 (squares), 1− (m+ log d)/n (circles), 1+1/n (triangles) or 1.01 (diamonds), and
m = 1 (solid lines, filled symbols) or 70 (dotted lines, unfilled symbols). The case of (m, ρ) = (70, 1.01) is omitted as

the process becomes so explosive that the computation is numerically infeasible.
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Fig. 4. Error rates for DGP3 when ρ = 1. (a) Plot of ‖β̂ − β∗‖ multiplied by n/8 (squares), n/(2 log n) (circles) or
n1/2 (triangles) against n, fixing m = 70. (b) Plot of ‖β̂ − β∗‖ divided by m (squares) or 8m1/2 (triangles) against m,

fixing n = 400.

d ∈ [25, 500]. For the estimation, we consider m = 1 or 20, where m = 1 corresponds to the
smallest true model, and m = 20 corresponds to a model subject to (i) a∗11 = · · · = a∗dd , and
(ii) the restriction that all but m − 1 of the off-diagonal entries of A∗ are zero. To generate the
pattern in (ii), we sample the m−1 positions uniformly without replacement from all off-diagonal
positions of A∗.

Figure 5 shows that the estimation error is constant in d for almost all cases. This confirms
that d does not affect the estimation error when |ρ| < 1 − O {(m + log d)/n}; see Remark 12.
Moreover, the extra factor of log d in the theoretical upper bounds for the other regimes might not
be necessary. For (n, m, ρ) = (100, 20, 1), the estimation error seems less stable when d � 75;
see Fig. 5(a). This might be explained by the indirect effect of R on λmax(�R,k) in Theorem 2.
As m is fixed at 20, different d corresponds to different R. The spectrum of �R,k may be more
sensitive to R when d is smaller, and the resulting impact on the estimation error may be more
pronounced when n is smaller. However, as d grows, the restrictions will become relatively more
sparse, so eventually the spectrum of �R,k will be stable, and the impact of d will be negligible.
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Fig. 5. Plots of ‖β̂ −β∗‖ against d for DGP3 with (a) n = 100 and (b) n = 500, when ρ = 0.2 (squares), 0.8 (circles)
or 1 (triangles), and m = 1 (solid lines, filled symbols) or 20 (dotted lines, unfilled symbols).

6. Discussion

An interesting future direction is dimensionality reduction for vector autoregressive models
with data-driven restrictions. Such a procedure involves first suggesting possible restrictions
based on subject knowledge and then selecting the true restrictions by a data-driven approach.
The lasso method (Basu & Michailidis, 2015; Davis et al., 2015) can be viewed as a procedure
where zero restrictions are initially suggested for all entries of A, and then the true zeros are
identified by penalized estimation. Adopting a more general point of view, the modeller can
initially suggest the general linear restrictions (1) instead. This will enable a more flexible and
data-driven integration of expert knowledge. On the other hand, if it is known that only zero and
equality restrictions are true, yet the locations of the restrictions are unknown, we can select the
true restrictions efficiently by the delete or merge regressors algorithm proposed by Maj-Kańska
et al. (2015) based on the Bayesian information criterion. The consistency of this procedure can
be easily extended to vector autoregressive models.
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