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SUMMARY

This supplementary material contains all technical proofs of the main paper. § S1 gives the
proofs of Theorem 1 and Proposition 1, which rely on three auxiliary lemmas, Lemmas S1-S3,
whose proofs are relegated to § S1.4. § S2 contains the proofs of Lemmas 1-3. In § S3, we
first verify equation (15) in the main paper and then prove Proposition 2 through four auxiliary
lemmas, Lemmas S5-S8. § S4 contains the proof of Theorem 3. Lastly § S5 proves Theorem 4
and Corollary 1 after introducing two auxiliary lemmas, Lemmas S9 and S10.

S1. PROOFS OF THEOREM 1 AND PROPOSITION 1

S1.1. Three Auxiliary Lemmas

The proofs of Theorem 1 and Proposition 1 rely on three auxiliary lemmas, Lemmas S1-
S3. Lemma S1 contains key results on covering and discretization. Lemma S2 gives a poinwise
lower bound of X™ X through aggregation of all the |n/k| blocks of size k using the Chernoff
bound. Notice that the probability guarantee in Lemma S2 will degrade as k increases, since the
probability guarantee of the Chernoff bound will degrade as the number of blocks decreases.
Lemma S3 is a multivariate concentration bound for dependent data, respectively. We state these
lemmas first and relegate their proofs to § S1.4.

The following notations will be used throughout our proofs: For any integer d > 1 and matrix
0 <T' e R™?, Jet |I'V/2(.)|| be the ellipsoidal vector norm associated to T, i.e., the mapping
from w € R to (w™Tw)'/? € (0, 00). In addition, we denote the corresponding unit ball, or el-
lipsoid, by St = {w € R? : |[I'1/2w|| = 1}. For any set S, we denote its cardinality, complement
and volume by |S|, §¢ and vol(S), respectively.

LEMMA S1. Suppose that Z € R™*™ and 0 < T'jnin < Timax € R™*™. Let T be a 1/4-net of
Sr,., in the norm HF}J@X()H Then, the following holds:
(i) If Trmin/2 A Z7Z < Tax, then inf,e7w™ 2" Zw < 1.
(ii) If T is a minimal 1/4-net, then log |T| < mlog9 + (1/2)log det(T max i) )-

min
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2 Y. ZHENG AND G. CHENG
(iii) If T ipin = Z%Z < T'nax, then for any v € R™, we have
wTZTV wTZTV wrZTy
sup

TE—— su maxX ———.
wesmt 126 wes, IIZwII weT || 2w

LEMMA S2. Suppose that the process {Xt}?zl taking values in R? satisfies the (k, Ty, o)-

BMSB condition. Let X = (X1, ..., X,)". Then, for any w € R% we have
2k|n/k 2in/k
pr <wTXTXw < agmwTFSbw> < exp (—OCL?;/J> .

LEMMA S3. Let {F,t=1,2,...} be a filtration. Suppose that {x;,t=1,2,...} and
{ni,t =1,2,...} are processes taking values in RY, and for each integer t > 1, x; is Fy-
measurable, 1y is Fyi1-measurable, and 1y | Fy is mean-zero and o2-sub-Gaussian. Then, for
any constants 5_, B+, > 0, we have

2

pr{(ZZt ”1 x‘t|m1/2 7 ZH%H [B- 5+]} ?exp< gz)' (S1)
t=111Tt -

S1.2.  Proof of Theorem 1
Define the m x m matrices
a’k|n/k|
8
where I'p = RT(I, ® T)R and I'; = R™(I, ® I'sp) R. Since R has full column rank, I'p and
I'p are both positive definite matrices. Thus, 0 < T in < min = Thax-

Consider the singular value decomposition Z = UDVT, where U € RI"*™ D VY € R™*™,
and U™U = I,, = V"V. Let Z' be the Moore-Penrose pseudoinverse of Z, i.e., Z! = VD~ UT,
where the diagonal matrix D~ is defined by taking the reciprocal of each nonzero diagonal entry
of D; in particular, Zt = (Z*Z)~tZ" if Z*Z = 0. Then, we have 0 — 6, = Z'n. As a result,

Fmax = nf]% Fmin = ER, Emin = 1_‘min/2a (S2)

B-B8.=R(O-6.,) =Rz = RvDU™.

Furthermore, since I,,;,, > 0, it holds on the event {Z"Z = I, ;. } that

i~ _ _ 1/2
1B = Bull < |RVD™ [|2|U ]| = [Amax{R(Z*Z) "' R"}] Pty
< Dunax (REZL ROV 1) (S3)

= min

Note that (S3) exploits the self-cancellation effect inside the pseudoinverse Z: the bound would
not be as sharp if R, Z*Z and Zn were bounded separately.
By (S3) and Assumption 2, i.e., pr(Z*Z £ T'max) < 6, for any K > 0, we have

pr[118 = Bull = K {Amax(RLLED ]
< pr [HB Bl > K {Amax(ROZL RO 272 < rmax} )

=min

+ pr 1 min f VAVA = I‘max) + 6
<pr(|U"n|] > K, < Z"Z 2 Tiax) + Pr (Loin 2 Z7Z < Tipax) + 0. (S4)

S pr |:H6 - /B*H 2 K{)\max RF RT)}l/Q? Emin j ZTZ j Fmax:|

—mll’l
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Notice that condition (5) implies & < n/10, so that

kln/k] >n—Fk>(9/10)n. (S5)
As a result,
1/2
Amax(RC 2L RT
O RE 4 EDY < 0 { R )} - (56)

In view of (S4) and (S6), to prove this theorem, it remains to show that Z*Z is bounded below
and [|{/"n|| is bounded above, with high probability. Specifically, we will prove that

Pr (Lopin 2 272 < Tiax) <0 (ST)
if condition (5) of the theorem holds, and
pr([U'n| > K, Tpin 2 Z27Z 2 Tiax) <0 (S8)

if we choose
K = 20 {12mlog(14/a) + 9log det(TrL ;) + 6log(1/6)}"/2.

Proof of (S7): Let T be a minimal 1/4-net of Sr_, in the norm HFrln/fx()H By Lemma S1(i),
we have

pr (Cmin/2 A Z"Z < Tax) < pr <inf w7 Zw < 1) <|T] sup pr(w'Z"Zw<1).

weT wGSFmin
(S9)
By Lemma S1(ii) and (S5), we have
log |T] < mlog9+ (1/2)log det(TmaxI i, )
8n - 1
=mlog9+ (1/2)mlog Kn/k]a? + (1/2)logdet(I'rLy")
< mlog(27/a) + (1/2) log det(T gL R"). (S10)

Note that Z*Z = R™(I, ® X" X)R = >_1_, RT X" X R;, where each R; is a d x m block in
R=(R{,...,R])". Likewise, T'min = (1/8)a’k|n/k] Y7 RfT,R;. By a change of vari-
ables and Lemma S2, we have

sup pr(w'Z"Zw <1)= sup pr(w'Z"Zw < w' Tyinw)
wEST weR™

I o2k|n/k] &
= sup pr ZwTR;FXTXRiw < TZwTR;FFSbRiw

weR™ i=1 i=1

min

o’k

q
k
< Z sup pr (wTRiTXTXRZ-w < Sn/JwTR;PFsbRiW>

i— weR™

o?|n/k]| a’n
< gexp T < gexp ok )

where we used (S5) again in the last inequality. This, together with (S9) and (S10), yields

27 1 — 2
pr (Tmin/2 A Z7Z < T'ax) < exp {mlog + ilog det(FRL_%l) +logq — agkn} <4,
o
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4 Y. ZHENG AND G. CHENG

as long as condition (5) of the theorem holds.
Proof of (S8): Recall that Z = UDV™ and U™U = I,,,. Thus, on the event {[' ;, <X 277 <
s I'max}, we have

1/2 1/2
Wil = sp S W i VDU _ W72y
werm\ (0} ||| weR"L\{O} IDVIT || weRm\{O} 12D 2|
TZT
= sup

WESEmin HZWH ’

where the second equality uses the fact that DV'T_ . 2 s nonsmgular if Z%Z = I, > 0. Then

it follows from Lemma S1(iii) that, on the event {I',;, < Z"Z < T'max}, we have

min —
(/JTZTT}

U] < 2max
T 2w’

o where 7 isa1/4-net of Sp__ in the norm HFmax( )||- Therefore,
pr(HuTU” Z K: Emin = VAV = Fmax)

wTZTn
< > K/2, Tpin 2 277 < Tiax
< o (S > 72 Lo <22 % o

w'Z™n -
S |I| Sup pr N7 2 K/27 Emin j Z Z j Fmax
S P

W2 7 —1/2 1/2 1/2 —1/2
=|T| sup pr %1/2 >K/2, 1, <L J°ZYZT 7 < T Thal 2
1 2L il
w'l, UQZT ~1/2 2 ~1/2 —1/2
<|T] Es.;p pr W > K/2, 1 <||ZL_ ., "wll” < Amax (L TmaxL il ) ¢ -
w m min

(S11)
Similarly to (S10), we can show that

< mlog(38/a) + (1/2)log det(T gL z").
(S12)
Now it remains to derive a pointwise upper bound on the probability in (S11) for any fixed
w € 8™~ 1. Let n; + be the ith element of 7, and denote

log |T] < mlog9+ (1/2)log det(T'maxl

mlH)

NGy = Mits - Mim) "

s Note that n = (n(Tl), el na))T. Fixing w € 8™1, define z; = (z14,...,24+)", where z;; =
X/'R; I‘mllfw, and denote

2y = @ity win)" = XRIp w0,

=min

Then, we have wTL:ﬁlI{QZT =w'l 1/2RT(Iq ®XT) = (LL'(TI), . ,x(Tq)). As a result,

—Imin

n
Wil 2" = Z T(yNG) = Z > wimie =Y wim
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and
q n
—1/2
1Zi ol = Y lal? = lle.
=1 t=1

Applying Lemma S3 to {z;} and {n;}, with _ =1 and B4 = )\max(Ef.l/szaXFilm), we

min =min
have 100

W7 ~1/2 1/2 ~1/2
pr {uzfn/u > K/2, 1< | 205 °0)” < Amax(Doit Tinax Lot ”)

N1

2

- Zoim T 2 ¢ By K
_pr{(Z?:tlulxt” )1/2 > K/2, ZthH = B+]} < /Biexp(—2402). (S13)

Moreover, by a method similar to that for (S12), we can show that

ZJF < det( 1/2Fmax£7.1/2) = det(FmaXme) < exp {mlog 22 + log det(FRI‘Rl)} .
o

L min min
. (S14)
Combining (S11)-(S14), we have 10
pr(|lUTn]| > K, Ty 2 Z27Z 2 Thax) < exp {2mlog1;L + %log det(TrIp") — 2‘2(;] <6,

if we choose K as mentioned below (S8). This completes the proof of this theorem.

S1.3.  Proof of Proposition 1

Define the matrices I'iax, I'min and L' ;, as in (S2), and consider the singular value decom-
position of Z as in the proof of Theorem 1. Note that

X—A*:{I(,@(@—e*)T}é:{fq@(zT )YR = (I, @ n"U)(I, ® D"V)R.

Since ', ;;, > 0, it holds on the event {Z"Z = ' ;, } that 110

~ o~ 1/2
1A= Al < (I @ DV R [U ]| = (max[RT{fq®<ZTz> DR
< [l B 1 0 Tt BY] 7 .

Consequently, by a method similar to that for (S4), under Assumption 2, we can show that

pr (14 Al > & el B0 0 1,307 )
<o (U = K. Dy < 27 = T + 00 Lo £ 277 <L) £6 0

for any K > 0. Moreover, similarly to (S6), we have

n_9 [Am‘“‘x{@uqm;)ﬁ} v

P B0 0 TR < n

2a n

g {)\max (2321 RlLIjZlR;F) }1/2
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6 Y. ZHENG AND G. CHENG

Then, along the same lines of the arguments for Theorem 1, we accomplish the proof of this
proposition.

S1.4.  Proofs of Lemmas S1-S3

The covering and discretization results in Lemma S1 are modified from Lemmas 4.1, D.1
and D.2 in Simchowitz et al. (2018). For clarity, we rewrite the proofs of Lemma S1(i)—(ii) to
correct any typographical error in their proofs, and present our own proof of Lemma S1(iii).
Lemma S2 establishes a pointwise lower bound on X T X via the BMSB condition, which will be
strengthened into a union bound in the proof of Theorem 1 via Lemma S1(i); see also Proposition
2.5 in the above paper. Finally, as a multivariate generalization of Lemma 4.2(b) in their paper,
Lemma S3 gives a concentration bound on Y7, xfn: /(3" ||2¢]|?)!/2. Note that it is crucial to
bound this self-normalized process as a whole, instead of bounding the numerator y ;" ; 2{n; and
the denominator (3", ||2¢[|?)!/? separately; otherwise, the bound would degrade for slower-
mixing processes.

Proof of Lemma S1. Note that claim (i) will be used to cover 8™ 1 in terms of 'y, and
" max for deriving the union upper bound on Z™* Z in the proof of Theorem 1. The corresponding
covering number is given in claim (ii), which is larger when I'},,, is farther away from I'y,;, as
measured by log det(T'yaxI' 1 ). Claim (iii) is a discretization result for w™Zv /|| Z"w|.

To prove (i), it is equivalent to show that

€={inf W' 7" Zw > 1} N{Z"Z < Tinax} € {277 = Trmin/2}. (S15)
we

Since 7 is a 1/4-net of Sp__  in the norm HFrln/fx() ||, on the event £, we have

min

1/4 > sup ;IGlf ITY2 (w—v)|| > sup Jlelf |1 Z(w— )|
> inf (|| Zv|| = |Zw|) = inf || Zw| — inf ||Zw
Z Ssup JIEI’T(H vl = [|Zwl]) JQTH | el |1 Zw]]

min

where the second and last inequalities are due to Z*7 < T'hax and inf,cr w27 Zw > 1, re-
spectively. As a result,

_ _ _ 1/2
3/4< nf |Zwl = nf 120050 = {27 2r 0 b
WES min weSanl

Therefore, Z*Z »= (9/16)'min = T'min/2, i.e., (S15) holds.

The proof of claim (ii) is basically the same as that in Simchowitz et al. (2018), except for some
minor corrections. Note that | 7| is equal to the covering number of the shell of the ellipsoid F =
{weR™: W T e Tmin T w < 1} in the Euclidean norm. Let B = {x € R™ : ||z|| < 1} be
the unit ball in R, and denote by + the Minkowski sum. If 7 is a minimal e-net of Sr_. in the

min
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norm ||I‘max( )||, then it follows from a standard volumetric argument that
7] vol{E + (¢/2) B} < vol{(1+¢/2)E}  (1+¢€/2)"vol(E)
= vol{(¢/2)B} — wvol{(¢/2)B} (¢/2)™vol(B)
(I4+¢€/2)™

- 150

_ 1/2
(¢/2)m {det(rmifrmmrmiff)}

= (2/e+ 1)™ {det(T 7] T } /2.

Taking € = 1/4 yields the result in (ii).
Finally, we prove (iii). First note that since ['y;, > 0, we have

wr'Z"v w'Z Tl“mlleT wrZy
sup = sup s = su Z
SR T2~ ey T2l wemnbioy (20w, N2l
For a fixed v € R, define ¢ : R™ \ {0} — R by
w'Z%v
p(w) = :
2]
To prove (iii), we will show that for any w € Sr,,, , there exist wg € 7 and u € R?\ {0} such s
that
$(w) < ¢(wo) + (1/2)p(u). (S16)
Let
w wo
u= - .
12wl ([ Zwoll

Then, u # 0 as long as w # wy, and we have

P(w) — d(wo) = u"Z"v = || Zul|p(u).
Therefore, to prove (S16), it suffices to show that

|Zul < 1/2. (s17)
Note that 160
o Zlw—w) | Zwy || Zw] — | Zwo]
| Zwl]| | Zwol| | Zw]|
As a result,
211 Z(w — 211 Z(w —
| Zw]| infues, [|Zw]
Since 0 < I'pin =< Z%Z, we have
. —1/2 ~1/2 12,1 /2
Lnf (1 Zwf = inf 120500 = { e (T P27 2005 T 2
1/2

Moreover, since Z*Z < T'yax and 7T is a 1/4-net of Sp
that

in ||Trax(+)||, there is wy € T such

min

1Z(w = wo)|| < IFf(w — wo) | < 1/4.

max
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8 Y. ZHENG AND G. CHENG

Combining the results above with (S18), we have (S17), and hence (S16). Taking the supremum
with respect to w € Sr . on both sides of (S16), we have

min

wrZTy < wy Z v n 1 utZ v wrZTy . 1 wrZTy

sup —=—— <max —>——+ - Sup - =maxX————+ = SuUp —=—r—
wese,,, 12wl weT [Zwoll 2 yerarioy 1Zull  weT [IZ0]l  2wesy, 12wl
which yields the inequality in (iii). O

Proof of Lemma S2. This lemma directly follows from Proposition 2.5 of Simchowitz et al.
(2018), where the Chernoff bound technique is applied to lower bound the Gram matrix via
aggregating all the |n/k| blocks of size k. O

Proof of Lemma S3. Along the lines of the proof of Lemma 4.2 in Simchowitz et al. (2018),
we can show that the left-hand side of (S1) is bounded above by log[ 3+ /8-] exp{—~2/(60%)}.
Then (S1) follows from the fact that log[z] < log(1 + z) < z for z > 0. O

S2. PROOFS OF LEMMAS 1-3
S2.1.  Proof of Lemma 1
First note that for any s € Z and positive integer ¢,
t—1
Xort = Mort—1 + Autoe—z + -+ A s + ALX =Y~ Alnereo + ALX,,
£=0
where, by Assumption 4(ii), ZZ;%) Aﬁnsﬂ,g,l is independent of F, and A’ X, € F,. Then, for
any w € S, we have
WTXert

o (WTTw) /2 = Sy + Cuw,

where ¢, = w" A X, /{o(w Tyw)'/?}, and S, can be written as a weighted sum of real-valued
independent random variables,

t—1 40 t—1
S — W' D g AN t—t—1 _ Z ages
w U(WTFtW)l/Q — ’
with
1/2
ag = W AL(AD) w / s = W Alns 01
wTTw ’ o{wTAL(AT)lw}L/2
Notice that ZZ% a% =1,and ey, . .., e;—1 are real-valued independent random variables. More-

over, by Assumption 4(iii), the density of each ey is bounded by Cjy almost everywhere. Applying
Theorem 1.2 in Rudelson & Vershynin (2015), it follows that the density of .S,, is bounded by
\/2C( almost everywhere. In addition, S,, is independent of Fg, and ¢,, € Fs. Therefore,

pr {|wTXs+t\ > a(wTFtw)1/2(4Co)_1 \ ]:8} = pr {|Sw + ¢l > (4(70)_1 | ]:5}

=1—pr{|S,+co| < (4Co)"" | Fs}
>1—/2/2>0. (S19)
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For any integer k£ > 1, by (S19) and the fact that I'; > I'y, for ¢ > k, we have

2k
1 -
5 pr{ " Xore] 2 (@ Thw) 2(4C0) | 7.

=1
1 2k
2 1/2 ~1
> % tEk pr {\wTXs+t| > o(w'Trw) 7 =(4CH) " | .7:3}

Y

2k

1

% Zpr {\wTXS+t| > o (w Tw) 2 (4Co) 1 | ]:S}
t=k

LGkt -v2/2) 1

- 2k 10°

Choosing Ty, = 0%I'y/(4Cp)?, we accomplish the proof of this lemma.

S2.2.  Proof of Lemma 2
Since E(XTX) = o2 STy < o2nT,,, we have

E(Z°Z) = R™{I;® E(X"X)}R < 0>nR"(I; ® T,)R.
Then, with Tg = (0?m/8) R* (I; ® T',,) R, it follows from the Markov inequality that
pr(Z"Z £ nl'g) = pr {)\max{(nfR)*l/QZTZ(nfR)*lﬂ} > 1}
< B [Anae{ (nTR) 227 Z(nT'r) 2}
<t {(nfR)*WE(ZTZ)(nfR)*W}
<tr{(6/m)Ipn} =9,

which completes the proof of this lemma. Note that the factor of m in the definition of I'f; is a
consequence of upper bounding Apax () by tr(-).

S2.3.  Proof of Lemma 3
Recall that R = (R7,...,R])", where each R; is a d x m block. For simplicity, de-
note (; = XRZ‘(R;fRi)_l/2 =(Qi1,---,Qin)" € R™™ with i =1,...,d, where Q;; =
(R} R;)~Y 2RT X; € R™. To prove this lemma, it suffices to verify the following two results:

d
pr(Z"Z 4 nTg) <Y P{|Qf Qi — E(QFQ:)l2 > no’¢}, (S20)

i=1
where ' = 0?R™(I; ® ') R + 026 R R, and
We first prove (S20). Note that Z"Z = R"™{[; ® (X" X)}R and E(Z"Z)=R"{[;®
E(X™X)}R =0?R*{I; ® Y., Tt} R. Then, since nI';, = Y1, I';, we have

nLp = c?R™{I;®Y T }R+no*¢R"R = E(Z"Z) + no’¢R"R.
t=1

190

195

205

210
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As a result,
pr(Z*Z < nTg) =pr{Z*Z — B(Z"Z) < no*¢R"R}
d d

Y RI{X"X - E(X"X)}R; <no’¢ Y RIR;
=1 =1

{ﬂ [RT{X"X — B(X"X)}R; < no*¢RTR ]}

:pr

r [RI{X"X — E(X"X)}R; #no’¢RIR;] . (S22)

215

||M&

Moreover, fori =1, ..., d, we have
pr [RT{X"X — BE(X"X)}R; < no*¢RTR;]
= pr | (B R)T2RHX"X — E(X"X)}Ri(RER) ™% < no¢l, |
= pr{QF Qi — B(Q] Qi) = no’ELy}
220 > pr{[|QF Qi — E(QF Q)2 < no’¢},
which implies
pr[RIXTX = E(X*X)}R; £ no*¢RER:] < pr{|lQFQ: — B(QI Q)| > no’¢}. (523)

Combining (S22) and (S23), we accomplish the proof of (S20).
Next we prove (S21). Let 7y be a minimal (1/4)-net of the sphere S™! in the Euclidean
norm. It follows from a standard volumetric argument that 79| < 9. Moreover, by Lemma 5.4
225 in Vershynin (2012), we have

1QF Qi — E(Q; Qi)ll2 < 2 max W@ Qi — E(Qi Qi) - (S24)

Furthermore, since {7} are normal, vec(X ") = (X7, ..., X)T follows the multivariate normal
distribution with mean zero and covariance matrix X x. Then, for any w € & m=1 we have

Qiw = (QF 1w, ..., Qf ,w)" = [In ® {wT (R R))"'/*R} }} vee(XT) ~ N(0,%,),
where
S = [In @ (W (R R) V2RI Sx [T @ {Ri(RER) 20}

and hence there exists z ~ N (0, I,,) such that w" Q] Q;w = 273, z. As a result, it follows from
20 the Hanson-Wright inequality (Vershynin, 2018) that, for every £ > 0,

pr UwT{QgQi — B(Q Q) }w| > n02§/2] = pr [|zTsz — E(z"Y,2)| > n02§/2]

—imin ( n02£ >2 nazf
Cy 2(Zullr/ T20%ul2 f ]

(S25)

< 2exp
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where C7 > 0 is a universal constant. In view of (S24) and (S25), we have

pr{[|Q; Qi — E(Q; Q:)

2> o) < pr i 1QFQ: ~ E(QEQ)e] > noe 2]

< [Tol pr [lw™{QF Qi — BE(QF Qi)}w| > no¢/2]

1 . 7?,025 >2 no‘2£
< 2(9™ N — 7
< 2(9™)exp a m1n{(2||2w||p PIHE
<d/d
as long as
2
€> 2 [wim. d )} 8l + vlm. d. ) [Eal)]. (526)

where 1(m, d,d) = C1{mlog9 + logd + log(2/0)}.
To prove (S21), it now remains to choose ¢ such that (S26) holds. Note that

IZ0ll2 < Amax [In @ 0" (R R) V2R RiRTR) ™20} 9kl = [Sx ]2 (527)

Moreover, since

n

tr(Sw) = 0” > W (RfR:) " VPRIT,Ri(R} Ri) ™/ ?w

t=1
< 0'277)\max(rn)>\max {(R?Rl)il/QR;rRZ(RERZ)il/2}
= U2n)\max (Fn)7
in light of (S27), we have
1Sullr = {82(Z2)172 < {[|Sull2 tr(S)}? < {0%nAmax(T0) [Sx 12} 2. (S28)

Replacing || X, ||2 and || X, || 7 in (S26) by their upper bounds in (S27) and (S28), respectively, it
follows that (S21) holds if we choose £ as in (11) in the main paper. The proof of this lemma is
complete.

S3. PROOFS OF EQUATION (15) AND PROPOSITION 2
S3.1.  Proof of Equation (15)
The proof of Equation (15) relies on the following lemma:

LEMMA S4. Let A and B be m x m symmetric positive definite matrices such that
BY2ABY? = I,,. For any & >0, it holds logdet(AB + £I,,) < mlog{2max(1,&)} +
log det(AB).

Proof of Lemma S4. Let \y > Ay > --- > A\, > 1 be the eigenvalues of BY2ABY?, For any
¢ > 0, it can be readily shown that \; + ¢ < 2max(1,{)\; for all i. Moreover, by Theorem
1.3.20 in Horn & Johnson (1985), AB and B2 ABY/? have the same nonzero eigenvalues.
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Thus,
m m
log det(AB + £1,,) = Y log(Ai +&) <> [log{2max(1,£)} + log Aj]

i=1 i=1

= mlog{2max(1,¢)} + logdet(AB).
The proof of Lemma S4 is complete. O
Now we prove Equation (15). First note that
log det{T'r(c2RTR)™1(4Cy)?} = log det{T r(c2RTR) 1} + 2mlog(4Cy). (S29)
IfTg = fg) = o*mR*(I; @ T,) R/, itis easy to see that
log det{Tr(¢c2R"R) ™'} = mlog(m/d) + k, (S30)
where 1 = logdet { R"(I; ® I',)R(R"R)™'}.
On the other hand, if T, = T%2) = 62R™(I; @ Ty)R + 02¢R™ R, we have
log det{Tr(c>?R"R) ™'} = logdet { R (I; ® T\,)R(R"R) " + (11},
Note that (R"R)~'/?2R"(I; ® T',)R(R"R)~'/? = I,,,, since T',, = I,. Then, applying Lemma
S4 with A = R*(I; ® I',)Rand B = (R™R) ™!, we have
log det{Tr(¢2R"R)™ 1} < mlog{2max(1,£)} + k. (S31)
Combining (529)-(S31), we accomplish the proof of Equation (15).

S3.2.  Proof of Proposition 2

Proposition 2 is a direct consequence of Equations (14) and (15) in the main paper and the
upper bounds of « and ¢ in Lemmas S5 and S6 below. Note that the proofs of Lemmas S5 and
S6 rely crucially on the intermediate results on upper bounds of Apax(I'y,) and ||Xx |2 as given
in Lemmas S7 and S8 below, respectively. The proofs of Lemmas S5-S8 are collected in § S3.3.

Recall that Xx = [E(X;X7T)]1<t,s<n, where E(X; XT) = 02A1*Ts for 1 < s <t < nun-
der Assumptions 4(i) and (ii), = log det {RT(Id @I R(RTR)™! }, and

1/2
€ = &(m,d,n,6) =2 { Amax(FnW?;%d, 6)||Ex\lz} L 2u(m, d,25)HZX|]27

a°n a n

where ¢)(m, d,d) = Ci{mlog9 + logd + log(2/4)}, and C; > 0 is a universal constant.

As in the main paper, let the Jordan decomposition of A, be A, = SJS~L, where J
has L blocks with sizes 1 <by,...,br, <d, and both J and S are d X d complex ma-
trices. Let bmax = maxj<s<z, by, and denote the condition number of S by cond(S) =

{)\max(S*S)/)\min(S*S)}1/2, where S* is the conjugate transpose of S.
LEMMA S5. Forany A, € R4 ynder Assumption 5,
kS mllog{dcond(S)} + bpax logn] .
Moreover, if Assumption 6 holds, then k < m.
LEMMA S6. Forany A, € R4 ynder Assumption 5,
log ¢ < log{dcond(S)/d} + bmax logn.
Moreover, if Assumption 6' holds and n 2 m + log(d/J), then § < 1.
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LEMMA S7. Forany A, € R4 yunder Assumption 5,
Amax(Tn) S dbmaxn®™> ! {cond(S)}>.
Moreover, if Assumption 6 holds, then Ayax (') S 1.
LEMMA S8. Forany A, € R4 yunder Assumption 5,
[P2IPS dn‘72)‘maX(Fn)a

where Yx is the symmetric dn x dn matrix with its (t,s)th d x d block being o> AL=T, for
1 < s <t < n. Moreover, if Assumption 6' holds, then || Xx |2 < o2

S3.3.  Proofs of Lemmas S5—S8
Proof of Lemma S5. Note that
r = log [det {R"(I; ® T',) R} det{(R"R)'}]
< log [AI (') det(RTR) det{(R"R)"'}] = mlog Amax(T'n).
Thus, the upper bound of « follows directly from Lemma S7. O

Proof of Lemma S6. First consider the case under Assumption 5. Note that m < dn; see the
paragraph below (3) in the main paper. Then

logy(m,d,d) < logm + loglog(d/d) < log(d/d) + logn.

This, together with Lemmas S8 and S5, leads to the upper bound of log £ under Assumption 5.
Suppose that Assumption 6’ holds. Then it follows from Lemmas S8 and S5 that

€ S {v(m,d, ) /n}? +(m,d,8)/n.

Moreover, if n 2 m + log(d/d), then ¢)(m,d, ) /n < 1, and consequently £ < 1. The proof of
this lemma is complete. O

Proof of Lemma §7. We first prove the conclusion under Assumption 5. By the Jordan normal
form of A,, we have

I, = SZJS Y (J*)28* < {Amin(S*S 1SZJS (J*)*
Hence

Amax(Tn) < {cond(9)} Amax {Z J(J) } (S32)

For ¢/ =1,..., L, denote by J; the ¢th block of J with size b; and diagonal entries \y. Note
that the £th block of the block diagonal matrix Y 7~ J(J*)* € R*®is B, = 3" J3(J})®
Rbexbe, Moreover, the (i, 7)th entry of J§ is

(jii))‘z_(j_i)a if 1 <1< ] < mln(z + s, bg)

J; iy = )
(i {O, otherwise

where (§) = 1. Then the ith diagonal entry of By is

n—1 by n—1 min(i+s,by) s N2
(Belii =Y. Y (I} = Z > {<j_i>|)\g|s_(]_l)} . (S33)
Jj=t

s=0 j=1
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By Assumption 5,

M| < p(Ay) <1+ ¢/nfor e > 0. Thus
200} < (1 n 5)2"_
o n
Note that (1 + ¢/n)*" monotonically increases to exp(2c) as n — oo, which implies that
\)\g|2{3*(7*1)} is uniformly bounded by a universal constant C5 > 0. Moreover, for j — i <

by—1and s <n, (;°,) in (S33) is uniformly bounded above by n’*~'. As a result, for any
1<i<bpand1 </ < L, we have

(Be)is < Cobgn®L,

Notice that the diagonal entries of Z?;& J*(J*)? are {(By¢)ii }1<i<b,,1<e< 1 Therefore

n—1
S( T*\S < < 2bmax—1.
Ao {z_; J5(J") } < dlgigrlgfxl}; ESL(BZ)“ < Codbmaxn (S34)

Combining (S32) and (S34), we obtain the upper bound of Ay (I'y) under Assumption 5 as
stated in this lemma.
Next we verify the conclusion under Assumption 6. Since p(A,) < p < 1, we have '), <

Foo = ooy AS(AT)® < 0o. Note that p(A,) = lims_moHAiHys. Thus, for any € > 0, there
exists a positive integer ng = ng(€) such that HA;SFH;/S < p(Ay) + € for all s > ng. Taking € =
{1 —p(As)}/2, we have p(As) +e= (1+p)/2 < 1. As aresult,

no—1

[ee) ) . [e%e] 1—|—ﬁ 2s
Amax(Tn) < Amax(Too) < D NASI5 < D AR+ D <2>
s=0 s=0

S=ng

no—1 N 2 -1
SZCQS+{1—<1;’)>} ;
s=0

where the last upper bound is a fixed constant. The proof of this lemma is complete. O

Proof of Lemma S8. The result under Assumption 5 is straightforward, since

1Zx ]2 = Mmax(Bx) < tr(Tx) = o2 Ztr(f‘t) < no?tr(Ty) < dno®Amax(Tn)-
t=1

However, showing that ||~ x||2 is bounded by a fixed constant proportional to o> under As-
sumption 6’ requires a much more delicate argument. This is largely because || X x||2 is affected
by not only the growing diagonal blocks 0Ty, ..., oI, but also the growing off-diagonal
blocks; note that for any 1 < ¢, s < n, the (¢, s)th block of X x is

02T (AT)st, ift <s

. S35
o2AST, ift>s (535)

BE(XX]) = {

To overcome this difficulty, under Assumption 6', we consider the following ‘coupled’ stable
VAR(1) process {X;} with independent and identically distributed innovations {7;} such that
E(n;) = 0 and var(n;) = 0214, but assuming that X; starts from ¢ = —oo:

Xip1= A X, +m, tELZ (S36)
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Unlike {X}};>0 in the main paper, this process is weakly stationary. Indeed, for any ¢ € Z, it
holds E(X;) = 0 and

~ =~ T oo (AN, ifk >0
BE(XiX{\) = { (4.) (S37)

g2 ART ifk<0’

where T'og = limy, 00 'y = Y o0 AS(AT)® < 0. Analogously to X x, let ¥ x be the symmet-
ric dn X dn matrix with its (¢, s)th d x d block being E(XtXT) for1 <t,s < n.Inother words,
Sy is the covariance matrix of the dn x 1 vector vec(X™) = (X17 ., XI)T. Note that in s
contrast to X x, the blocks of 5 x do not grow in the diagonal direction, in the sense that all
E(X;X!)’s share the same factor matrix I'so. By Basu & Michailidis (2015), for the weakly
stationary VAR (1) process {X;} in (S36), it holds

2 2

~ o o
Yxlle < ——FFH < —, (S38)
1Xx |2 D S h
where fimin (A) > pq1 > 0 is defined as in Assumption 6.
In view of (S38) and the triangle inequality 340
1Sxll2 < 1Zx 2 + [Ex — Exll2, (S39)

it remains to prove that [|[Sx — Sx |2 < ¢2. To this end, for any 1 < ¢, s < n, consider the dif-
ference between the (¢, s)th blocks of ¥ x and ¥ x:

Y X 2 — T\s—t .
E(XiX])— E(X¢ X)) = {U (Too —T) (AL, ift <s

02 AL 3Ty — 1), ift > s
= 02 ALT o (AT)®. (S40)
Note that under Assumption 6, ||Tsoll2 < 372 [IALIIE < C2 30, 0* CZQ, where p € s
(0, 1). This, together with (S40), implies that for any 1 < ¢,s < n,
o . 252 gtts
IE(X:XS) — BE(XiX{)ll2 < o7 [|ALll2/Tooll2l| AZll2 < 17792
Consequently, for any u = (uf, ..., ul)" € S with u; € R%, we have

n

uwix—zXﬁ“:}:}:uﬂﬂu%Xf)—Ecmxgnm
t=1 s=1

U {E(X, XT) — B(X: XT)}us
3oy e B(X.XT)}

222 e T |

<> Y IBXXT) - B(XeXT))

t=1 s=1

02 2 N i t—i—s 02 2 2 .
_1—@“51 T (1=0)(1-0)
Thus,

020292
(1-0)(1—0)?*

IZx — Sx]2 < (S41)
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Combining (S38), (S39) and (S41), the proof of this lemma is complete. O

S4. PROOF OF THEOREM 3

We will prove claim (i) of Theorem 3 only, as claims (ii) and (iii) can be proved by a method
similar to that for (i).
First, by an argument similar to that in Liitkepohl (2005, p. 199), we can show that

R{R"(I;®Ty)R} 'R* < ;o ; %

In addition, note that

k—1 k-1 k-1
Amin(Tr) = ) Amin{AL(AL)°} = ) omin(AAL) = ) oh(AL)
s=0 s=0 s=0
As a result,
Amax [R{RT(Ide@rk)R}*l RT} < Amax(T 1) = L . — ! . (542
)\min (Fk) ZS;O U?rfm(A*)

Now we prove the rate in (S.1) under condition (A.1). By the existence condition of k in (18),
we can choose
con

b= m [log{d cond(S)/d} + bmax logn]’ (543)
where ¢y > 0 is a universal constant. Then, (A.1) can be written as
omin(Ax) <1 —ca/k, (S44)
where ¢y = c1¢9 > 0. Since
1 _ 1—opin(4)
S om(A) T on (A

by Theorem 2(i) and (S42), to prove the rate for HB — B«|| in (S.1), it suffices to show that there
exists a universal constant c3 € (0, 1) such that

1—o2k (A,) > cs. (545)

min
Moreover, by (S44), we can show that (S45) is satisfied if
—2klog(1l — ca/k) > —log(1 — c3). (S46)

Note that the function f(k) = —2klog(1l — c2/k) monotonically deceases to 2co as k — oc.
Thus, by choosing c3 such that — log(1 — ¢3) = 2¢g, i.e., c3 = 1 — exp(—2c2) € (0,1), we ac-
complish the proof of (S.1).
Next we prove the rate in (F.1) when the opposite of (A.1) is true, i.e., when
cim [log{d cond(S)/d} + bmax log n]

Omin(Ay) > 1 - . (S47)

Again, we choose k in (S43), and then (S47) becomes
Umin(A*) >1- CQ/ky
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where ¢ is defined as in (S44). Thus,

E
—_
E
—_

02 (A) > (1 —ca/k)® > k(1 —co/k)%, (S48)

min

Il
=)
»
Il
o

s

In view of Theorem 2(i), (S42), (S43) and (S48), to prove the rate for HE — B«|| in (F.1), we
only need to show that there exists a universal constant ¢4 € (0, 1) such that
(1—co/k)* > ¢y (549)

By the choice of k in (S43), we have k > co. Hence, there exists € > 0 such that & > co + €.
Moreover, notice that the function g(k) = (1 — co/k)?* is monotonically increasing in k. As a
result, by choosing ¢4 = g(ca + €), we complete the proof of (F.1).

S5. PROOFS OF THEOREM 4 AND COROLLARY 1

S5.1.  Two Auxiliary Lemmas

The proof of Theorem 4 is based upon Lemmas S9 and S10 below. Denote by KL(Q, P) the
Kullback-Leibler divergence between two probability measures P and (Q on the same measurable
space.

LEMMA S9. Fixd € (0,1/2), € > 0 and R € RN*™. Suppose that N is a finite subset of R™
such that ||R(61 — 62)|| > 2¢,V6, # 02 € N If

inf sup prf’” { | R(E - 0)] > e} <3, ($50)
0 beN
where the infimum is taken over all estimators of @ which are F, 41-measurable, then

. n n INT—1
inf  sup KL pr( ),pr( ) > (1—29)log
OoeN 6eNM\{6o} ( o fo ) ( ) 20

Proof of Lemma S9. For any F,1-measurable estimator 6, let £ = {HR(@— 0)|| < €} for
6 € N.Since N is a 2e-packing of R™, the events £y’s with § € N are pairwise disjoint in F, 1.
By (S50), there exists a 8 such that SUPge prén) (&§) <6 <1/2,ie., infgep prén) (&) >1—
d > 1/2. Applying Birgé’s inequality (Boucheron et al., 2013, Theorem 4.21) and an argument
similar to that for Lemma F.1 in Simchowitz et al. (2018), we can readily prove that for any

90 GN,

n n 1—-90 -1 -1
sup KL(pré ),préo)) > (1 —26)log ( V= 1) > (1—20)log W] .
0N \{00} 0 20
Taking the infimum over 6y € N, we accomplish the proof of this lemma. O

LEMMA S10. For the linearly restricted vector autoregressive model, under the conditions of
Theorem 4, for any 0,0y € R™, we have

n n 1
KL(prf”, prfy)) = 5 (0 = 60) Tra(6) (6 — bo).
where T (0) = S0 RF ST Ty(0)R; = R™{I; @ Y1 T+(0)}R.

Proof of Lemma S10. Without loss of generality, we assume that v = 0, so that § = R6.
Let X;; be the ith entry of X, and denote Z;; = R} X;. For any § € R™, under prgn) we

375

380

385

390
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have X; ;11 | Fi ~ N(0%Z;4,0%), where 0 < t < n and Fy = (). Hence, the log-likelihood of
(X1,...,Xnyt1) under prén) is

(Xipp1 — 07 Z;)?
log H H 1/2 exp {_ 902

t011

n d
= —(n+1)dlog((2)"%0 202 Z Z(Xi,t—l-l —0"Zi1)*.
=0 i=1

As a result,

n

d
n n dpr 1
KL (pry", pr§)”) = E o (log %) =323 E o [{mie + (6 =00 21} — ]
t=0 i=1
n d

= 9 0o)" E ) mZM)(H o)
Pry

t=1 =1
1
= 5(9 —00)'Trn(0)(0 — 6o),

where the last equality is because of Epr(n) (Zi+ ZT,) = RTT(0)R;. The proof is complete. [
0 b

S5.2.  Proof of Theorem 4

Without loss of generality, we assume that v = 0, so that 3 = Rf. Define the ellipsoid £ =

{6 cR™:|RA|| < p} = {(R"R)"'/?w :w € B(0,)}, where B(0,r) denotes the Euclidean

1/2
ball in R with center zero and radius 7. Since p{A(0)} < ||A(0)|lFr = (Zf:1|]Ri6HQ) =
,we have £ C O(p).

For any € € (0, p/4], let N7 be a maximal 2e-packing of B(0,4¢) in R™, and define N =
{(R"R)"'/2w : w € N1}. Then, N is a 2e-packing of E in the norm || (R"R)'/2(-)|. As a result,
2¢ < ||R(0 — 6p)|| < 8eforall @ # 6y € N. In addition, by a standard volumetric argument, we
have |[N| = [N7| > 2™. By Lemma S9, for any 6 € (0, 1/2), this theorem holds if

() () NV -1
inf  sup KL(pr, ,pr,’) < (1 —2)log . (S51)
00EN geN {00} (Pro” Py ) < { 20
Since ;' I't(0) < nI',(0) for any # € R™, and
n—1
SUP  Amax{I'n(6)} < Z Amax[A%(0){A™(0)}"] < P = (D),
0eO(p) s=0

it follows from Lemma S10 that

) )y o1 _
Jmax KL(pry ", prg,’) < 5 max (6 — o) L'rn(0)(6 — b0)
n
< o T RT _
<3 ggt&gﬁ/(@ 00)" R™{I4 @ T'n(0)} R(0 — 6o)
n
< 5 8 max HR(H 00)||* sup Amax{Tn(6)}
0,0 0€0(p)

< 326%n7,(p)
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As aresult, a sufficient condition for (S51) is
1-26 2m
g log —.
32¢2 46
In particular, for any § € (0,1/4), we can show that there exists a universal constant ¢ > 0 such

that the right-hand side of (S52) is bounded below by c¢{m + log(1/d)} /€2, i.e., the conclusion
of this theorem follows.

nyn(p) < (S52)

S5.3.  Proof of Corollary 1
Under the conditions of Theorem 4, we have

o |~ log(1/6)) /2
inf sup pré) \Iﬁ—ﬂl!ZC{W} > 4,
3 0e6(p) 1Yn (D)

where C' > 0 is fixed. It then suffices to derive lower bounds of 1/, (p) for p € (0, 00).
First, suppose that 5 € (0,1). Then we have ~,(p) = .77 p*° = (1 — p*")/(1 — p?) <
min{n, (1 — p?)~'}, and therefore

L 1—p%, if pe(0,(1—1/n)1/?)
W) " \1/n, it pel(l-1/n)V/2 1)

(S53)

Next, suppose that p € [1,1 + ¢/n] for a fixed ¢ > 0. Then

n—1

nlp) 1

Y

1 n—1
7<= S (L4 e/m)® < (L+¢/n)™.
s=0 n s=0

Since (1 + ¢/n)?" monotonically increases to exp(2c) as n — oo, there exists a constant Cy > 0
free of n such that ,,(p) /n is uniformly bounded above by Cb, i.e.,

1 1,
— > —n if pell,1+4c¢/n|. (S54)
W) = G L1+ c/n]
Moreover, for any p € (1,00), we have
1 P —1  p?—1
=2 S (S55)

Yn(P) PP —1 P
Combining (S53)—(S55), we have

oy ({a=mmy i pe 0.0 -1/
{n%(ﬁ)} > S ml/2/n, it pell—-1/n)Y%1+c¢/n],
p (P = )m/n} 2, i pe (1+c/n o)

and this completes the proof of Corollary 1.
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