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SUMMARY

This supplementary material contains all technical proofs of the main paper. § S1 gives the
proofs of Theorem 1 and Proposition 1, which rely on three auxiliary lemmas, Lemmas S1–S3,
whose proofs are relegated to § S1.4. § S2 contains the proofs of Lemmas 1–3. In § S3, we 15

first verify equation (15) in the main paper and then prove Proposition 2 through four auxiliary
lemmas, Lemmas S5–S8. § S4 contains the proof of Theorem 3. Lastly § S5 proves Theorem 4
and Corollary 1 after introducing two auxiliary lemmas, Lemmas S9 and S10.

S1. PROOFS OF THEOREM 1 AND PROPOSITION 1
S1.1. Three Auxiliary Lemmas 20

The proofs of Theorem 1 and Proposition 1 rely on three auxiliary lemmas, Lemmas S1–
S3. Lemma S1 contains key results on covering and discretization. Lemma S2 gives a poinwise
lower bound of XTX through aggregation of all the bn/kc blocks of size k using the Chernoff
bound. Notice that the probability guarantee in Lemma S2 will degrade as k increases, since the
probability guarantee of the Chernoff bound will degrade as the number of blocks decreases. 25

Lemma S3 is a multivariate concentration bound for dependent data, respectively. We state these
lemmas first and relegate their proofs to § S1.4.

The following notations will be used throughout our proofs: For any integer d ≥ 1 and matrix
0 ≺ Γ ∈ Rd×d, let ‖Γ1/2(·)‖ be the ellipsoidal vector norm associated to Γ, i.e., the mapping
from ω ∈ Rd to (ωTΓω)1/2 ∈ (0,∞). In addition, we denote the corresponding unit ball, or el- 30

lipsoid, by SΓ = {ω ∈ Rd : ‖Γ1/2ω‖ = 1}. For any set S, we denote its cardinality, complement
and volume by |S|, Sc and vol(S), respectively.

LEMMA S1. Suppose that Z ∈ Rn×m and 0 ≺ Γmin � Γmax ∈ Rm×m. Let T be a 1/4-net of
SΓmin in the norm ‖Γ1/2

max(·)‖. Then, the following holds:
(i) If Γmin/2 � ZTZ � Γmax, then infω∈T ω

TZTZω < 1. 35

(ii) If T is a minimal 1/4-net, then log |T | ≤ m log 9 + (1/2) log det(ΓmaxΓ−1
min).
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2 Y. ZHENG AND G. CHENG

(iii) If Γmin � ZTZ � Γmax, then for any ν ∈ Rn, we have

sup
ω∈Sm−1

ωTZTν

‖Zω‖
= sup

ω∈SΓmin

ωTZTν

‖Zω‖
≤ 2 max

ω∈T

ωTZTν

‖Zω‖
.

LEMMA S2. Suppose that the process {Xt}nt=1 taking values in Rd satisfies the (k,Γsb, α)-
BMSB condition. Let X = (X1, . . . , Xn)T. Then, for any ω ∈ Rd, we have

pr

(
ωTXTXω ≤ α2kbn/kc

8
ωTΓsbω

)
≤ exp

(
−α

2bn/kc
8

)
.

LEMMA S3. Let {Ft, t = 1, 2, . . .} be a filtration. Suppose that {xt, t = 1, 2, . . .} and40

{ηt, t = 1, 2, . . .} are processes taking values in Rq, and for each integer t ≥ 1, xt is Ft-
measurable, ηt is Ft+1-measurable, and ηt | Ft is mean-zero and σ2-sub-Gaussian. Then, for
any constants β−, β+, γ > 0, we have

pr

{ ∑n
t=1 x

T
t ηt

(
∑n

t=1‖xt‖2)1/2
≥ γ,

n∑
t=1

‖xt‖2 ∈ [β−, β+]

}
≤ β+

β−
exp

(
− γ2

6σ2

)
. (S1)

S1.2. Proof of Theorem 1
Define the m×m matrices45

Γmax = nΓR, Γmin =
α2kbn/kc

8
ΓR, Γmin = Γmin/2, (S2)

where ΓR = RT(Iq ⊗ Γ)R and ΓR = RT(Iq ⊗ Γsb)R. Since R has full column rank, ΓR and
ΓR are both positive definite matrices. Thus, 0 ≺ Γmin ≺ Γmin � Γmax.

Consider the singular value decomposition Z = UDVT, where U ∈ Rqn×m, D,V ∈ Rm×m,
and UTU = Im = VTV . Let Z† be the Moore-Penrose pseudoinverse of Z, i.e., Z† = VD−UT,
where the diagonal matrix D− is defined by taking the reciprocal of each nonzero diagonal entry50

of D; in particular, Z† = (ZTZ)−1ZT if ZTZ � 0. Then, we have θ̂ − θ∗ = Z†η. As a result,

β̂ − β∗ = R(θ̂ − θ∗) = RZ†η = RVD−UTη.

Furthermore, since Γmin � 0, it holds on the event {ZTZ � Γmin} that

‖β̂ − β∗‖ ≤ ‖RVD−‖2‖UTη‖ =
[
λmax{R(ZTZ)−1RT}

]1/2 ‖UTη‖

≤
{
λmax(RΓ−1

minR
T)
}1/2 ‖UTη‖. (S3)

Note that (S3) exploits the self-cancellation effect inside the pseudoinverse Z†: the bound would55

not be as sharp if R, ZTZ and Zη were bounded separately.
By (S3) and Assumption 2, i.e., pr(ZTZ � Γmax) ≤ δ, for any K > 0, we have

pr
[
‖β̂ − β∗‖ ≥ K

{
λmax(RΓ−1

minR
T)
}1/2

]
≤ pr

[
‖β̂ − β∗‖ ≥ K

{
λmax(RΓ−1

minR
T)
}1/2

, ZTZ � Γmax

]
+ δ

≤ pr
[
‖β̂ − β∗‖ ≥ K

{
λmax(RΓ−1

minR
T)
}1/2

, Γmin � ZTZ � Γmax

]
60

+ pr (Γmin � ZTZ � Γmax) + δ

≤ pr (‖UTη‖ ≥ K, Γmin � ZTZ � Γmax) + pr (Γmin � ZTZ � Γmax) + δ. (S4)
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Notice that condition (5) implies k ≤ n/10, so that

kbn/kc ≥ n− k ≥ (9/10)n. (S5)

As a result,

{
λmax(RΓ−1

minR
T)
}1/2 ≤ 9

2α

{
λmax(RΓ−1

R RT)

n

}1/2

. (S6)

In view of (S4) and (S6), to prove this theorem, it remains to show that ZTZ is bounded below 65

and ‖UTη‖ is bounded above, with high probability. Specifically, we will prove that

pr (Γmin � ZTZ � Γmax) ≤ δ (S7)

if condition (5) of the theorem holds, and

pr (‖UTη‖ ≥ K, Γmin � ZTZ � Γmax) ≤ δ (S8)

if we choose

K = 2σ
{

12m log(14/α) + 9 log det(ΓRΓ−1
R ) + 6 log(1/δ)

}1/2
.

Proof of (S7): Let T be a minimal 1/4-net of SΓmin in the norm ‖Γ1/2
max(·)‖. By Lemma S1(i),

we have 70

pr (Γmin/2 � ZTZ � Γmax) ≤ pr

(
inf
ω∈T

ωTZTZω < 1

)
≤ |T | sup

ω∈SΓmin

pr (ωTZTZω < 1) .

(S9)
By Lemma S1(ii) and (S5), we have

log |T | ≤ m log 9 + (1/2) log det(ΓmaxΓ−1
min)

= m log 9 + (1/2)m log
8n

kbn/kcα2
+ (1/2) log det(ΓRΓ−1

R )

≤ m log(27/α) + (1/2) log det(ΓRΓ−1
R ). (S10)

Note that ZTZ = RT(Iq ⊗XTX)R =
∑q

i=1R
T
i X

TXRi, where each Ri is a d×m block in 75

R = (RT
1 , . . . , R

T
q )T. Likewise, Γmin = (1/8)α2kbn/kc

∑q
i=1R

T
i ΓsbRi. By a change of vari-

ables and Lemma S2, we have

sup
ω∈SΓmin

pr (ωTZTZω < 1) = sup
ω∈Rm

pr (ωTZTZω < ωTΓminω)

= sup
ω∈Rm

pr

(
q∑
i=1

ωTRT
i X

TXRiω <
α2kbn/kc

8

q∑
i=1

ωTRT
i ΓsbRiω

)

≤
q∑
i=1

sup
ω∈Rm

pr

(
ωTRT

i X
TXRiω <

α2kbn/kc
8

ωTRT
i ΓsbRiω

)
80

≤ q exp

(
−α

2bn/kc
8

)
≤ q exp

(
−α

2n

9k

)
,

where we used (S5) again in the last inequality. This, together with (S9) and (S10), yields

pr (Γmin/2 � ZTZ � Γmax) ≤ exp

{
m log

27

α
+

1

2
log det(ΓRΓ−1

R ) + log q − α2n

9k

}
≤ δ,
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as long as condition (5) of the theorem holds.
Proof of (S8): Recall that Z = UDVT and UTU = Im. Thus, on the event {Γmin � ZTZ �
Γmax}, we have85

‖UTη‖ = sup
ω∈Rm\{0}

ωTUTη

‖ω‖
= sup

ω∈Rm\{0}

ωTΓ
−1/2
min VDUTη

‖DVTΓ
−1/2
min ω‖

= sup
ω∈Rm\{0}

ωTΓ
−1/2
min ZTη

‖ZΓ
−1/2
min ω‖

= sup
ω∈SΓmin

ωTZTη

‖Zω‖
,

where the second equality uses the fact thatDVTΓ
−1/2
min is nonsingular if ZTZ � Γmin � 0. Then

it follows from Lemma S1(iii) that, on the event {Γmin � ZTZ � Γmax}, we have

‖UTη‖ ≤ 2 max
ω∈T

ωTZTη

‖Zω‖
,

where T is a 1/4-net of SΓmin
in the norm ‖Γ1/2

max(·)‖. Therefore,90

pr (‖UTη‖ ≥ K, Γmin � ZTZ � Γmax)

≤ pr

(
max
ω∈T

ωTZTη

‖Zω‖
≥ K/2, Γmin � ZTZ � Γmax

)
≤ |T | sup

ω∈SΓmin

pr

(
ωTZTη

‖Zω‖
≥ K/2, Γmin � ZTZ � Γmax

)

= |T | sup
ω∈Sm−1

pr

(
ωTΓ

−1/2
min ZTη

‖ZΓ
−1/2
min ω‖

≥ K/2, Id � Γ
−1/2
min ZTZΓ

−1/2
min � Γ

−1/2
min ΓmaxΓ

−1/2
min

)

≤ |T | sup
ω∈Sm−1

pr

{
ωTΓ

−1/2
min ZTη

‖ZΓ
−1/2
min ω‖

≥ K/2, 1 ≤ ‖ZΓ
−1/2
min ω‖2 ≤ λmax(Γ

−1/2
min ΓmaxΓ

−1/2
min )

}
.

(S11)

Similarly to (S10), we can show that

log |T | ≤ m log 9 + (1/2) log det(ΓmaxΓ−1
min) ≤ m log(38/α) + (1/2) log det(ΓRΓ−1

R ).
(S12)

Now it remains to derive a pointwise upper bound on the probability in (S11) for any fixed
ω ∈ Sm−1. Let ηi,t be the ith element of ηt, and denote

η(i) = (ηi,1, . . . , ηi,n)T.

Note that η = (ηT

(1), . . . , η
T

(q))
T. Fixing ω ∈ Sm−1, define xt = (x1,t, . . . , xq,t)

T, where xi,t =95

XT
t RiΓ

−1/2
min ω, and denote

x(i) = (xi,1, . . . , xi,n)T = XRiΓ
−1/2
min ω.

Then, we have ωTΓ
−1/2
min ZT = ωTΓ

−1/2
min RT(Iq ⊗XT) = (xT

(1), . . . , x
T

(q)). As a result,

ωTΓ
−1/2
min ZTη =

q∑
i=1

xT

(i)η(i) =

q∑
i=1

n∑
t=1

xi,tηi,t =

n∑
t=1

xT
t ηt
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and

‖ZΓ
−1/2
min ω‖2 =

q∑
i=1

‖x(i)‖2 =

n∑
t=1

‖xt‖2.

Applying Lemma S3 to {xt} and {ηt}, with β− = 1 and β+ = λmax(Γ
−1/2
min ΓmaxΓ

−1/2
min ), we

have 100

pr

{
ωTΓ

−1/2
min ZTη

‖ZΓ
−1/2
min ω‖

≥ K/2, 1 ≤ ‖ZΓ
−1/2
min ω‖2 ≤ λmax(Γ

−1/2
min ΓmaxΓ

−1/2
min )

}

= pr

{ ∑n
t=1 x

T
t ηt

(
∑n

t=1‖xt‖2)1/2
≥ K/2,

n∑
t=1

‖xt‖2 ∈ [β−, β+]

}
≤ β+

β−
exp(− K2

24σ2
). (S13)

Moreover, by a method similar to that for (S12), we can show that

β+

β−
≤ det(Γ

−1/2
min ΓmaxΓ

−1/2
min ) = det(ΓmaxΓ−1

min) ≤ exp

{
m log

9

2α
+ log det(ΓRΓ−1

R )

}
.

(S14)

Combining (S11)–(S14), we have 105

pr (‖UTη‖ ≥ K, Γmin � ZTZ � Γmax) ≤ exp

[
2m log

14

α
+

3

2
log det(ΓRΓ−1

R )− K2

24σ2

]
≤ δ,

if we choose K as mentioned below (S8). This completes the proof of this theorem.

S1.3. Proof of Proposition 1
Define the matrices Γmax,Γmin and Γmin as in (S2), and consider the singular value decom-

position of Z as in the proof of Theorem 1. Note that

Â−A∗ = {Iq ⊗ (θ̂ − θ∗)T}R̃ = {Iq ⊗ (Z†η)T}R̃ = (Iq ⊗ ηTU)(Iq ⊗D−VT)R̃.

Since Γmin � 0, it holds on the event {ZTZ � Γmin} that 110

‖Â−A∗‖2 ≤ ‖(Iq ⊗D−VT)R̃‖2‖UTη‖ =
(
λmax[R̃T{Iq ⊗ (ZTZ)−1}R̃]

)1/2
‖UTη‖

≤
[
λmax{R̃T(Iq ⊗ Γ−1

min)R̃}
]1/2
‖UTη‖.

Consequently, by a method similar to that for (S4), under Assumption 2, we can show that

pr

(
‖Â−A∗‖2 ≥ K

[
λmax{R̃T(Iq ⊗ Γ−1

min)R̃}
]1/2

)
≤ pr (‖UTη‖ ≥ K, Γmin � ZTZ � Γmax) + pr (Γmin � ZTZ � Γmax) + δ 115

for any K > 0. Moreover, similarly to (S6), we have[
λmax{R̃T(Iq ⊗ Γ−1

min)R̃}
]1/2
≤ 9

2α

[
λmax{R̃T(Iq ⊗ Γ−1

R )R̃}
n

]1/2

=
9

2α

{
λmax

(∑q
i=1RiΓ

−1
R RT

i

)
n

}1/2

.
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Then, along the same lines of the arguments for Theorem 1, we accomplish the proof of this
proposition.120

S1.4. Proofs of Lemmas S1–S3
The covering and discretization results in Lemma S1 are modified from Lemmas 4.1, D.1

and D.2 in Simchowitz et al. (2018). For clarity, we rewrite the proofs of Lemma S1(i)–(ii) to
correct any typographical error in their proofs, and present our own proof of Lemma S1(iii).
Lemma S2 establishes a pointwise lower bound on XTX via the BMSB condition, which will be125

strengthened into a union bound in the proof of Theorem 1 via Lemma S1(i); see also Proposition
2.5 in the above paper. Finally, as a multivariate generalization of Lemma 4.2(b) in their paper,
Lemma S3 gives a concentration bound on

∑n
t=1 x

T
t ηt/(

∑n
t=1‖xt‖2)1/2. Note that it is crucial to

bound this self-normalized process as a whole, instead of bounding the numerator
∑n

t=1 x
T
t ηt and

the denominator (
∑n

t=1‖xt‖2)1/2 separately; otherwise, the bound would degrade for slower-130

mixing processes.

Proof of Lemma S1. Note that claim (i) will be used to cover Sm−1 in terms of Γmin and
Γmax for deriving the union upper bound on ZTZ in the proof of Theorem 1. The corresponding
covering number is given in claim (ii), which is larger when Γmax is farther away from Γmin as
measured by log det(ΓmaxΓ−1

min). Claim (iii) is a discretization result for ωTZν/‖ZTω‖.135

To prove (i), it is equivalent to show that

E = { inf
ω∈T

ωTZTZω ≥ 1} ∩ {ZTZ � Γmax} ⊆ {ZTZ � Γmin/2}. (S15)

Since T is a 1/4-net of SΓmin in the norm ‖Γ1/2
max(·)‖, on the event E , we have

1/4 ≥ sup
ω∈SΓmin

inf
υ∈T
‖Γ1/2

max(ω − υ)‖ ≥ sup
ω∈SΓmin

inf
υ∈T
‖Z(ω − υ)‖

≥ sup
ω∈SΓmin

inf
υ∈T

(‖Zυ‖ − ‖Zω‖) = inf
ω∈T
‖Zω‖ − inf

ω∈SΓmin

‖Zω‖

≥ 1− inf
ω∈SΓmin

‖Zω‖,140

where the second and last inequalities are due to ZTZ � Γmax and infω∈T ω
TZTZω ≥ 1, re-

spectively. As a result,

3/4 ≤ inf
ω∈SΓmin

‖Zω‖ = inf
ω∈Sm−1

‖ZΓ
−1/2
min ω‖ =

{
λmin(Γ

−1/2
min ZTZΓ

−1/2
min )

}1/2
.

Therefore, ZTZ � (9/16)Γmin � Γmin/2, i.e., (S15) holds.
The proof of claim (ii) is basically the same as that in Simchowitz et al. (2018), except for some

minor corrections. Note that |T | is equal to the covering number of the shell of the ellipsoid E =145

{ω ∈ Rm : ωTΓ
−1/2
max ΓminΓ

−1/2
max ω ≤ 1} in the Euclidean norm. LetB = {x ∈ Rm : ‖x‖ ≤ 1} be

the unit ball in Rm, and denote by + the Minkowski sum. If T is a minimal ε-net of SΓmin in the
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norm ‖Γ1/2
max(·)‖, then it follows from a standard volumetric argument that

|T | ≤ vol{E + (ε/2)B}
vol {(ε/2)B}

≤ vol {(1 + ε/2)E}
vol {(ε/2)B}

=
(1 + ε/2)mvol(E)

(ε/2)mvol(B)

=
(1 + ε/2)m

(ε/2)m
{

det(Γ
−1/2
max ΓminΓ

−1/2
max )

}1/2
150

= (2/ε+ 1)m
{

det(Γ−1
minΓmax)

}1/2
.

Taking ε = 1/4 yields the result in (ii).
Finally, we prove (iii). First note that since Γmin � 0, we have

sup
ω∈Sm−1

ωTZTν

‖Zω‖
= sup

ω∈Rm\{0}

ωTZTν

‖Zω‖
= sup

ω∈Rm\{0}

ωTΓ
−1/2
min ZTν

‖ZΓ
−1/2
min ω‖

= sup
ω∈SΓmin

ωTZTν

‖Zω‖
.

For a fixed ν ∈ Rn, define φ : Rm \ {0} → R by

φ(ω) =
ωTZTν

‖Zω‖
.

To prove (iii), we will show that for any ω ∈ SΓmin , there exist ω0 ∈ T and u ∈ Rd \ {0} such 155

that

φ(ω) ≤ φ(ω0) + (1/2)φ(u). (S16)

Let

u =
ω

‖Zω‖
− ω0

‖Zω0‖
.

Then, u 6= 0 as long as ω 6= ω0, and we have

φ(ω)− φ(ω0) = uTZTν = ‖Zu‖φ(u).

Therefore, to prove (S16), it suffices to show that

‖Zu‖ ≤ 1/2. (S17)

Note that 160

Zu =
Z(ω − ω0)

‖Zω‖
+

Zω0

‖Zω0‖
‖Zω‖ − ‖Zω0‖

‖Zω‖
.

As a result,

‖Zu‖ ≤ 2‖Z(ω − ω0)‖
‖Zω‖

≤ 2‖Z(ω − ω0)‖
infω∈SΓmin

‖Zω‖
. (S18)

Since 0 ≺ Γmin � ZTZ, we have

inf
ω∈SΓmin

‖Zω‖ = inf
ω∈Sm−1

‖ZΓ
−1/2
min ω‖ =

{
λmin(Γ

−1/2
min ZTZΓ

−1/2
min )

}1/2
≥ 1.

Moreover, since ZTZ � Γmax and T is a 1/4-net of SΓmin in ‖Γ1/2
max(·)‖, there is ω0 ∈ T such

that

‖Z(ω − ω0)‖ ≤ ‖Γ1/2
max(ω − ω0)‖ ≤ 1/4.



8 Y. ZHENG AND G. CHENG

Combining the results above with (S18), we have (S17), and hence (S16). Taking the supremum165

with respect to ω ∈ SΓmin on both sides of (S16), we have

sup
ω∈SΓmin

ωTZTν

‖Zω‖
≤ max

ω0∈T

ωT
0Z

Tν

‖Zω0‖
+

1

2
sup

u∈Rd\{0}

uTZTν

‖Zu‖
= max

ω∈T

ωTZTν

‖Zω‖
+

1

2
sup

ω∈SΓmin

ωTZTν

‖Zω‖
,

which yields the inequality in (iii). �

Proof of Lemma S2. This lemma directly follows from Proposition 2.5 of Simchowitz et al.
(2018), where the Chernoff bound technique is applied to lower bound the Gram matrix via
aggregating all the bn/kc blocks of size k. �170

Proof of Lemma S3. Along the lines of the proof of Lemma 4.2 in Simchowitz et al. (2018),
we can show that the left-hand side of (S1) is bounded above by logdβ+/β−e exp{−γ2/(6σ2)}.
Then (S1) follows from the fact that logdxe < log(1 + x) ≤ x for x > 0. �

S2. PROOFS OF LEMMAS 1–3
S2.1. Proof of Lemma 1175

First note that for any s ∈ Z and positive integer t,

Xs+t = ηs+t−1 +A∗ηs+t−2 + · · ·+At−1
∗ ηs +At∗Xs =

t−1∑
`=0

A`∗ηs+t−`−1 +At∗Xs,

where, by Assumption 4(ii),
∑t−1

`=0A
`
∗ηs+t−`−1 is independent of Fs, and At∗Xs ∈ Fs. Then, for

any ω ∈ Sd−1, we have

ωTXs+t

σ(ωTΓtω)1/2
= Sω + cω,

where cω = ωTAt∗Xs/{σ(ωTΓtω)1/2}, and Sω can be written as a weighted sum of real-valued
independent random variables,180

Sω =
ωT
∑t−1

`=0A
`
∗ηs+t−`−1

σ(ωTΓtω)1/2
=

t−1∑
`=0

a`e`,

with

a` =

{
ωTA`∗(A

T
∗ )
`ω

ωTΓtω

}1/2

, e` =
ωTA`∗ηs+t−`−1

σ{ωTA`∗(A
T
∗ )
`ω}1/2

.

Notice that
∑t−1

`=0 a
2
` = 1, and e0, . . . , et−1 are real-valued independent random variables. More-

over, by Assumption 4(iii), the density of each e` is bounded byC0 almost everywhere. Applying
Theorem 1.2 in Rudelson & Vershynin (2015), it follows that the density of Sω is bounded by√

2C0 almost everywhere. In addition, Sω is independent of Fs, and cω ∈ Fs. Therefore,185

pr
{
|ωTXs+t| ≥ σ(ωTΓtω)1/2(4C0)−1 | Fs

}
= pr

{
|Sω + cω| ≥ (4C0)−1 | Fs

}
= 1− pr

{
|Sω + cω| ≤ (4C0)−1 | Fs

}
≥ 1−

√
2/2 > 0. (S19)
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For any integer k ≥ 1, by (S19) and the fact that Γt � Γk for t ≥ k, we have

1

2k

2k∑
t=1

pr
{
|ωTXs+t| ≥ σ(ωTΓkω)1/2(4C0)−1 | Fs

}
190

≥ 1

2k

2k∑
t=k

pr
{
|ωTXs+t| ≥ σ(ωTΓkω)1/2(4C0)−1 | Fs

}
≥ 1

2k

2k∑
t=k

pr
{
|ωTXs+t| ≥ σ(ωTΓtω)1/2(4C0)−1 | Fs

}
≥ (2k − k + 1)(1−

√
2/2)

2k
>

1

10
.

Choosing Γsb = σ2Γk/(4C0)2, we accomplish the proof of this lemma.

S2.2. Proof of Lemma 2 195

Since E(XTX) = σ2
∑n

t=1 Γt � σ2nΓn, we have

E(ZTZ) = RT{Id ⊗ E(XTX)}R ≤ σ2nRT(Id ⊗ Γn)R.

Then, with ΓR = (σ2m/δ)RT(Id ⊗ Γn)R, it follows from the Markov inequality that

pr(ZTZ � nΓR) = pr
[
λmax{(nΓR)−1/2ZTZ(nΓR)−1/2} ≥ 1

]
≤ E

[
λmax{(nΓR)−1/2ZTZ(nΓR)−1/2}

]
≤ tr

{
(nΓR)−1/2E(ZTZ)(nΓR)−1/2

}
200

≤ tr{(δ/m)Im} = δ,

which completes the proof of this lemma. Note that the factor of m in the definition of ΓR is a
consequence of upper bounding λmax(·) by tr(·).

S2.3. Proof of Lemma 3
Recall that R = (RT

1 , . . . , R
T
d )T, where each Ri is a d×m block. For simplicity, de- 205

note Qi = XRi(R
T
i Ri)

−1/2 = (Qi,1, . . . , Qi,n)T ∈ Rn×m with i = 1, . . . , d, where Qi,t =

(RT
i Ri)

−1/2RT
i Xt ∈ Rm. To prove this lemma, it suffices to verify the following two results:

pr(ZTZ � nΓR) ≤
d∑
i=1

P{‖QT
i Qi − E(QT

i Qi)‖2 > nσ2ξ}, (S20)

where ΓR = σ2RT(Id ⊗ Γn)R+ σ2ξRTR, and

pr{‖QT
i Qi − E(QT

i Qi)‖2 > nσ2ξ} ≤ δ/d (i = 1, . . . , d). (S21)

We first prove (S20). Note that ZTZ = RT{Id ⊗ (XTX)}R and E(ZTZ) = RT{Id ⊗
E(XTX)}R = σ2RT{Id ⊗

∑n
t=1 Γt}R. Then, since nΓn �

∑n
t=1 Γt, we have 210

nΓR � σ2RT{Id ⊗
n∑
t=1

Γt}R+ nσ2ξRTR = E(ZTZ) + nσ2ξRTR.
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As a result,

pr(ZTZ � nΓR) = pr{ZTZ − E(ZTZ) � nσ2ξRTR}

= pr

[
d∑
i=1

RT
i {XTX − E(XTX)}Ri � nσ2ξ

d∑
i=1

RT
i Ri

]

≥ pr

{
d⋂
i=1

[
RT
i {XTX − E(XTX)}Ri � nσ2ξRT

i Ri
]}

≥ 1−
d∑
i=1

pr
[
RT
i {XTX − E(XTX)}Ri � nσ2ξRT

i Ri
]
. (S22)215

Moreover, for i = 1, . . . , d, we have

pr
[
RT
i {XTX − E(XTX)}Ri � nσ2ξRT

i Ri
]

= pr
[
(RT

i Ri)
−1/2RT

i {XTX − E(XTX)}Ri(RT
i Ri)

−1/2 � nσ2ξIm

]
= pr{QT

i Qi − E(QT
i Qi) � nσ2ξIm}

≥ pr{‖QT
i Qi − E(QT

i Qi)‖2 ≤ nσ2ξ},220

which implies

pr
[
RT
i {XTX − E(XTX)}Ri � nσ2ξRT

i Ri
]
≤ pr{‖QT

i Qi − E(QT
i Qi)‖2 > nσ2ξ}. (S23)

Combining (S22) and (S23), we accomplish the proof of (S20).
Next we prove (S21). Let T0 be a minimal (1/4)-net of the sphere Sm−1 in the Euclidean

norm. It follows from a standard volumetric argument that |T0| ≤ 9m. Moreover, by Lemma 5.4
in Vershynin (2012), we have225

‖QT
i Qi − E(QT

i Qi)‖2 ≤ 2 max
ω∈T0

|ωT{QT
i Qi − E(QT

i Qi)}ω|. (S24)

Furthermore, since {ηt} are normal, vec(XT) = (XT
1 , . . . , X

T
n )T follows the multivariate normal

distribution with mean zero and covariance matrix ΣX . Then, for any ω ∈ Sm−1, we have

Qiω = (QT
i,1ω, . . . , Q

T
i,nω)T =

[
In ⊗ {ωT(RT

i Ri)
−1/2RT

i }
]

vec(XT) ∼ N(0,Σω),

where

Σω =
[
In ⊗ {ωT(RT

i Ri)
−1/2RT

i }
]

ΣX

[
In ⊗ {Ri(RT

i Ri)
−1/2ω}

]
,

and hence there exists z ∼ N(0, In) such that ωTQT
i Qiω = zTΣωz. As a result, it follows from

the Hanson-Wright inequality (Vershynin, 2018) that, for every ξ > 0,230

pr
[
|ωT{QT

i Qi − E(QT
i Qi)}ω| > nσ2ξ/2

]
= pr

[
|zTΣωz − E(zTΣωz)| > nσ2ξ/2

]
≤ 2 exp

[
− 1

C1
min

{(
nσ2ξ

2‖Σω‖F

)2

,
nσ2ξ

2‖Σω‖2

}]
,

(S25)
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where C1 > 0 is a universal constant. In view of (S24) and (S25), we have

pr{‖QT
i Qi − E(QT

i Qi)‖2 > nσ2ξ} ≤ pr

[
max
ω∈T0

|ωT{QT
i Qi − E(QT

i Qi)}ω| > nσ2ξ/2

]
≤ |T0| pr

[
|ωT{QT

i Qi − E(QT
i Qi)}ω| > nσ2ξ/2

]
235

≤ 2(9m) exp

[
− 1

C1
min

{(
nσ2ξ

2‖Σω‖F

)2

,
nσ2ξ

2‖Σω‖2

}]
≤ δ/d

as long as

ξ ≥ 2

nσ2

[
{ψ(m, d, δ)}1/2 ‖Σω‖F + ψ(m, d, δ)‖Σω‖2

]
, (S26)

where ψ(m, d, δ) = C1{m log 9 + log d+ log(2/δ)}.
To prove (S21), it now remains to choose ξ such that (S26) holds. Note that 240

‖Σω‖2 ≤ λmax

[
In ⊗ {ωT(RT

i Ri)
−1/2RT

i Ri(R
T
i Ri)

−1/2ω}
]
‖ΣX‖2 = ‖ΣX‖2. (S27)

Moreover, since

tr(Σω) = σ2
n∑
t=1

ωT(RT
i Ri)

−1/2RT
i ΓtRi(R

T
i Ri)

−1/2ω

≤ σ2nλmax(Γn)λmax

{
(RT

i Ri)
−1/2RT

i Ri(R
T
i Ri)

−1/2
}

= σ2nλmax(Γn),

in light of (S27), we have 245

‖Σω‖F = {tr(Σ2
ω)}1/2 ≤ {‖Σω‖2 tr(Σω)}1/2 ≤

{
σ2nλmax(Γn)‖ΣX‖2

}1/2
. (S28)

Replacing ‖Σω‖2 and ‖Σω‖F in (S26) by their upper bounds in (S27) and (S28), respectively, it
follows that (S21) holds if we choose ξ as in (11) in the main paper. The proof of this lemma is
complete.

S3. PROOFS OF EQUATION (15) AND PROPOSITION 2
S3.1. Proof of Equation (15) 250

The proof of Equation (15) relies on the following lemma:

LEMMA S4. Let A and B be m×m symmetric positive definite matrices such that
B1/2AB1/2 � Im. For any ξ > 0, it holds log det(AB + ξIm) ≤ m log{2 max(1, ξ)}+
log det(AB).

Proof of Lemma S4. Let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 1 be the eigenvalues ofB1/2AB1/2. For any 255

ξ > 0, it can be readily shown that λi + ξ ≤ 2 max(1, ξ)λi for all i. Moreover, by Theorem
1.3.20 in Horn & Johnson (1985), AB and B1/2AB1/2 have the same nonzero eigenvalues.
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Thus,

log det(AB + ξIm) =

m∑
i=1

log(λi + ξ) ≤
m∑
i=1

[log{2 max(1, ξ)}+ log λi]

= m log{2 max(1, ξ)}+ log det(AB).260

The proof of Lemma S4 is complete. �

Now we prove Equation (15). First note that

log det{ΓR(σ2RTR)−1(4C0)2} = log det{ΓR(σ2RTR)−1}+ 2m log(4C0). (S29)

If ΓR = Γ
(1)
R = σ2mRT(Id ⊗ Γn)R/δ, it is easy to see that

log det{ΓR(σ2RTR)−1} = m log(m/δ) + κ, (S30)

where κ = log det
{
RT(Id ⊗ Γn)R(RTR)−1

}
.

On the other hand, if ΓR = Γ
(2)
R = σ2RT(Id ⊗ Γn)R+ σ2ξRTR, we have265

log det{ΓR(σ2RTR)−1} = log det
{
RT(Id ⊗ Γn)R(RTR)−1 + ξIm

}
,

Note that (RTR)−1/2RT(Id ⊗ Γn)R(RTR)−1/2 � Im, since Γn � Id. Then, applying Lemma
S4 with A = RT(Id ⊗ Γn)R and B = (RTR)−1, we have

log det{ΓR(σ2RTR)−1} ≤ m log{2 max(1, ξ)}+ κ. (S31)

Combining (S29)–(S31), we accomplish the proof of Equation (15).

S3.2. Proof of Proposition 2
Proposition 2 is a direct consequence of Equations (14) and (15) in the main paper and the270

upper bounds of κ and ξ in Lemmas S5 and S6 below. Note that the proofs of Lemmas S5 and
S6 rely crucially on the intermediate results on upper bounds of λmax(Γn) and ‖ΣX‖2 as given
in Lemmas S7 and S8 below, respectively. The proofs of Lemmas S5–S8 are collected in § S3.3.

Recall that ΣX = [E(XtX
T
s )]1≤t,s≤n, where E(XtX

T
s ) = σ2At−s∗ Γs for 1 ≤ s ≤ t ≤ n un-

der Assumptions 4(i) and (ii), κ = log det
{
RT(Id ⊗ Γn)R(RTR)−1

}
, and275

ξ = ξ(m, d, n, δ) = 2

{
λmax(Γn)ψ(m, d, δ)‖ΣX‖2

σ2n

}1/2

+
2ψ(m, d, δ)‖ΣX‖2

σ2n
,

where ψ(m, d, δ) = C1{m log 9 + log d+ log(2/δ)}, and C1 > 0 is a universal constant.
As in the main paper, let the Jordan decomposition of A∗ be A∗ = SJS−1, where J

has L blocks with sizes 1 ≤ b1, . . . , bL ≤ d, and both J and S are d× d complex ma-
trices. Let bmax = max1≤`≤L b`, and denote the condition number of S by cond(S) =

{λmax(S∗S)/λmin(S∗S)}1/2, where S∗ is the conjugate transpose of S.280

LEMMA S5. For any A∗ ∈ Rd×d, under Assumption 5,

κ . m [log{d cond(S)}+ bmax log n] .

Moreover, if Assumption 6 holds, then κ . m.

LEMMA S6. For any A∗ ∈ Rd×d, under Assumption 5,

log ξ . log{d cond(S)/δ}+ bmax log n.

Moreover, if Assumption 6′ holds and n & m+ log(d/δ), then ξ . 1.



Finite time analysis of linearly restricted vector autoregression 13

LEMMA S7. For any A∗ ∈ Rd×d, under Assumption 5, 285

λmax(Γn) . dbmaxn
2bmax−1{cond(S)}2.

Moreover, if Assumption 6 holds, then λmax(Γn) . 1.

LEMMA S8. For any A∗ ∈ Rd×d, under Assumption 5,

‖ΣX‖2 . dnσ2λmax(Γn),

where ΣX is the symmetric dn× dn matrix with its (t, s)th d× d block being σ2At−s∗ Γs for
1 ≤ s ≤ t ≤ n. Moreover, if Assumption 6′ holds, then ‖ΣX‖2 . σ2.

S3.3. Proofs of Lemmas S5–S8 290

Proof of Lemma S5. Note that

κ = log
[
det {RT(Id ⊗ Γn)R}det{(RTR)−1}

]
≤ log

[
λmmax(Γn) det(RTR) det{(RTR)−1}

]
= m log λmax(Γn).

Thus, the upper bound of κ follows directly from Lemma S7. �

Proof of Lemma S6. First consider the case under Assumption 5. Note that m ≤ dn; see the 295

paragraph below (3) in the main paper. Then

logψ(m, d, δ) . logm+ log log(d/δ) . log(d/δ) + log n.

This, together with Lemmas S8 and S5, leads to the upper bound of log ξ under Assumption 5.
Suppose that Assumption 6′ holds. Then it follows from Lemmas S8 and S5 that

ξ . {ψ(m, d, δ)/n}1/2 + ψ(m, d, δ)/n.

Moreover, if n & m+ log(d/δ), then ψ(m, d, δ)/n . 1, and consequently ξ . 1. The proof of
this lemma is complete. � 300

Proof of Lemma S7. We first prove the conclusion under Assumption 5. By the Jordan normal
form of A∗, we have

Γn = S
n−1∑
s=0

JsS−1(S−1)∗(J∗)sS∗ � {λmin(S∗S)}−1S
n−1∑
s=0

Js(J∗)sS∗.

Hence

λmax(Γn) ≤ {cond(S)}2λmax

{
n−1∑
s=0

Js(J∗)s

}
. (S32)

For ` = 1, . . . , L, denote by J` the `th block of J with size b` and diagonal entries λ`. Note
that the `th block of the block diagonal matrix

∑n−1
s=0 J

s(J∗)s ∈ Rd×d isB` =
∑n−1

s=0 J
s
` (J∗` )s ∈ 305

Rb`×b` . Moreover, the (i, j)th entry of Js` is

(Js` )ij =

{(
s
j−i
)
λ
s−(j−i)
` , if 1 ≤ i ≤ j ≤ min(i+ s, b`)

0, otherwise
,

where
(

0
0

)
= 1. Then the ith diagonal entry of B` is

(B`)ii =

n−1∑
s=0

b∑̀
j=1

(Js` )2
ij =

n−1∑
s=0

min(i+s,b`)∑
j=i

{(
s

j − i

)
|λ`|s−(j−i)

}2

. (S33)
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By Assumption 5, |λ`| ≤ ρ(A∗) ≤ 1 + c/n for c > 0. Thus

|λ`|2{s−(j−i)} ≤
(

1 +
c

n

)2n
.

Note that (1 + c/n)2n monotonically increases to exp(2c) as n→∞, which implies that
|λ`|2{s−(j−i)} is uniformly bounded by a universal constant C2 > 0. Moreover, for j − i ≤310

b` − 1 and s < n,
(
s
j−i
)

in (S33) is uniformly bounded above by nb`−1. As a result, for any
1 ≤ i ≤ b` and 1 ≤ ` ≤ L, we have

(B`)ii ≤ C2b`n
2b`−1.

Notice that the diagonal entries of
∑n−1

s=0 J
s(J∗)s are {(B`)ii}1≤i≤b`,1≤`≤L. Therefore

λmax

{
n−1∑
s=0

Js(J∗)s

}
≤ d max

1≤i≤b`,1≤`≤L
(B`)ii ≤ C2dbmaxn

2bmax−1. (S34)

Combining (S32) and (S34), we obtain the upper bound of λmax(Γn) under Assumption 5 as
stated in this lemma.315

Next we verify the conclusion under Assumption 6. Since ρ(A∗) ≤ ρ̄ < 1, we have Γn �
Γ∞ =

∑∞
s=0A

s
∗(A

T
∗ )
s <∞. Note that ρ(A∗) = lims→∞‖As∗‖

1/s
2 . Thus, for any ε > 0, there

exists a positive integer n0 = n0(ε) such that ‖As∗‖
1/s
2 < ρ(A∗) + ε for all s ≥ n0. Taking ε =

{1− ρ(A∗)}/2, we have ρ(A∗) + ε = (1 + ρ̄)/2 < 1. As a result,

λmax(Γn) ≤ λmax(Γ∞) ≤
∞∑
s=0

‖As∗‖22 ≤
n0−1∑
s=0

‖A∗‖2s2 +

∞∑
s=n0

(
1 + ρ̄

2

)2s

320

≤
n0−1∑
s=0

C2s +

{
1−

(
1 + ρ̄

2

)2
}−1

,

where the last upper bound is a fixed constant. The proof of this lemma is complete. �

Proof of Lemma S8. The result under Assumption 5 is straightforward, since

‖ΣX‖2 = λmax(ΣX) ≤ tr(ΣX) = σ2
n∑
t=1

tr(Γt) ≤ nσ2 tr(Γn) ≤ dnσ2λmax(Γn).

However, showing that ‖ΣX‖2 is bounded by a fixed constant proportional to σ2 under As-
sumption 6′ requires a much more delicate argument. This is largely because ‖ΣX‖2 is affected325

by not only the growing diagonal blocks σ2Γ1, . . . , σ
2Γn but also the growing off-diagonal

blocks; note that for any 1 ≤ t, s ≤ n, the (t, s)th block of ΣX is

E(XtX
T
s ) =

{
σ2Γt(A

T
∗ )
s−t, if t < s

σ2At−s∗ Γs, if t ≥ s
. (S35)

To overcome this difficulty, under Assumption 6′, we consider the following ‘coupled’ stable
VAR(1) process {X̃t} with independent and identically distributed innovations {ηt} such that
E(ηt) = 0 and var(ηt) = σ2Id, but assuming that X̃t starts from t = −∞:330

X̃t+1 = A∗X̃t + ηt, t ∈ Z. (S36)
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Unlike {Xt}t≥0 in the main paper, this process is weakly stationary. Indeed, for any t ∈ Z, it
holds E(X̃t) = 0 and

E(X̃tX̃
T
t+k) =

{
σ2Γ∞(AT

∗ )
k, if k > 0

σ2Ak∗Γ∞, if k ≤ 0
, (S37)

where Γ∞ = limn→∞ Γn =
∑∞

s=0A
s
∗(A

T
∗ )
s <∞. Analogously to ΣX , let Σ̃X be the symmet-

ric dn× dnmatrix with its (t, s)th d× d block beingE(X̃tX̃
T
s ) for 1 ≤ t, s ≤ n. In other words,

Σ̃X is the covariance matrix of the dn× 1 vector vec(X̃T) = (X̃T
1 , . . . , X̃

T
n )T. Note that in 335

contrast to ΣX , the blocks of Σ̃X do not grow in the diagonal direction, in the sense that all
E(X̃tX̃

T
s )’s share the same factor matrix Γ∞. By Basu & Michailidis (2015), for the weakly

stationary VAR(1) process {X̃t} in (S36), it holds

‖Σ̃X‖2 ≤
σ2

µmin(A)
≤ σ2

µ1
, (S38)

where µmin(A) ≥ µ1 > 0 is defined as in Assumption 6′.
In view of (S38) and the triangle inequality 340

‖ΣX‖2 ≤ ‖Σ̃X‖2 + ‖Σ̃X − ΣX‖2, (S39)

it remains to prove that ‖Σ̃X − ΣX‖2 . σ2. To this end, for any 1 ≤ t, s ≤ n, consider the dif-
ference between the (t, s)th blocks of Σ̃X and ΣX :

E(X̃tX̃
T
s )− E(XtX

T
s ) =

{
σ2(Γ∞ − Γt)(A

T
∗ )
s−t, if t < s

σ2At−s∗ (Γ∞ − Γs), if t ≥ s

= σ2At∗Γ∞(AT
∗ )
s. (S40)

Note that under Assumption 6′, ‖Γ∞‖2 ≤
∑∞

t=0‖At∗‖22 ≤ C2
∑∞

t=0 %
2t = C2

1−%2 , where % ∈ 345

(0, 1). This, together with (S40), implies that for any 1 ≤ t, s ≤ n,

‖E(X̃tX̃
T
s )− E(XtX

T
s )‖2 ≤ σ2‖At∗‖2‖Γ∞‖2‖As∗‖2 ≤

C2σ2%t+s

1− %2
.

Consequently, for any u = (uT
1 , . . . , u

T
n)T ∈ Sdn−1 with ut ∈ Rd, we have

uT(Σ̃X − ΣX)u =

n∑
t=1

n∑
s=1

uT
t {E(X̃tX̃

T
s )− E(XtX

T
s )}us

≤
n∑
t=1

n∑
s=1

uT
t {E(X̃tX̃

T
s )− E(XtX

T
s )}us

‖ut‖‖us‖

≤
n∑
t=1

n∑
s=1

‖E(X̃tX̃
T
s )− E(XtX

T
s )‖2 350

≤ C2σ2

1− %2

n∑
t=1

n∑
s=1

%t+s ≤ C2σ2%2

(1− %2)(1− %)2
.

Thus,

‖Σ̃X − ΣX‖2 ≤
C2σ2%2

(1− %2)(1− %)2
. (S41)
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Combining (S38), (S39) and (S41), the proof of this lemma is complete. �

S4. PROOF OF THEOREM 3
We will prove claim (i) of Theorem 3 only, as claims (ii) and (iii) can be proved by a method355

similar to that for (i).
First, by an argument similar to that in Lütkepohl (2005, p. 199), we can show that

R {RT(Id ⊗ Γk)R}−1RT � Id ⊗ Γ−1
k .

In addition, note that

λmin(Γk) ≥
k−1∑
s=0

λmin{As∗(AT
∗ )
s} =

k−1∑
s=0

σsmin(A∗A
T
∗ ) ≥

k−1∑
s=0

σ2s
min(A∗).

As a result,

λmax

[
R {RT(Id ⊗ Γk)R}−1RT

]
≤ λmax(Γ−1

k ) =
1

λmin(Γk)
≤ 1∑k−1

s=0 σ
2s
min(A∗)

. (S42)

Now we prove the rate in (S.1) under condition (A.1). By the existence condition of k in (18),360

we can choose

k =
c0n

m [log{d cond(S)/δ}+ bmax log n]
, (S43)

where c0 > 0 is a universal constant. Then, (A.1) can be written as

σmin(A∗) ≤ 1− c2/k, (S44)

where c2 = c1c0 > 0. Since

1∑k−1
s=0 σ

2s
min(A∗)

=
1− σ2

min(A∗)

1− σ2k
min(A∗)

,

by Theorem 2(i) and (S42), to prove the rate for ‖β̂ − β∗‖ in (S.1), it suffices to show that there
exists a universal constant c3 ∈ (0, 1) such that365

1− σ2k
min(A∗) ≥ c3. (S45)

Moreover, by (S44), we can show that (S45) is satisfied if

−2k log(1− c2/k) ≥ − log(1− c3). (S46)

Note that the function f(k) = −2k log(1− c2/k) monotonically deceases to 2c2 as k →∞.
Thus, by choosing c3 such that − log(1− c3) = 2c2, i.e., c3 = 1− exp(−2c2) ∈ (0, 1), we ac-
complish the proof of (S.1).

Next we prove the rate in (F.1) when the opposite of (A.1) is true, i.e., when370

σmin(A∗) ≥ 1− c1m [log{d cond(S)/δ}+ bmax log n]

n
. (S47)

Again, we choose k in (S43), and then (S47) becomes

σmin(A∗) ≥ 1− c2/k,
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where c2 is defined as in (S44). Thus,
k−1∑
s=0

σ2s
min(A∗) ≥

k−1∑
s=0

(1− c2/k)2s ≥ k(1− c2/k)2k. (S48)

In view of Theorem 2(i), (S42), (S43) and (S48), to prove the rate for ‖β̂ − β∗‖ in (F.1), we
only need to show that there exists a universal constant c4 ∈ (0, 1) such that

(1− c2/k)2k ≥ c4. (S49)

By the choice of k in (S43), we have k > c2. Hence, there exists ε > 0 such that k ≥ c2 + ε. 375

Moreover, notice that the function g(k) = (1− c2/k)2k is monotonically increasing in k. As a
result, by choosing c4 = g(c2 + ε), we complete the proof of (F.1).

S5. PROOFS OF THEOREM 4 AND COROLLARY 1
S5.1. Two Auxiliary Lemmas

The proof of Theorem 4 is based upon Lemmas S9 and S10 below. Denote by KL(Q,P) the 380

Kullback-Leibler divergence between two probability measures P andQ on the same measurable
space.

LEMMA S9. Fix δ ∈ (0, 1/2), ε > 0 and R ∈ RN×m. Suppose thatN is a finite subset of Rm
such that ‖R(θ1 − θ2)‖ ≥ 2ε, ∀θ1 6= θ2 ∈ N . If

inf
θ̂

sup
θ∈N

pr
(n)
θ

{
‖R(θ̂ − θ)‖ ≥ ε

}
≤ δ, (S50)

where the infimum is taken over all estimators of θ which are Fn+1-measurable, then 385

inf
θ0∈N

sup
θ∈N\{θ0}

KL(pr
(n)
θ ,pr

(n)
θ0

) ≥ (1− 2δ) log
|N | − 1

2δ
.

Proof of Lemma S9. For any Fn+1-measurable estimator θ̂, let Eθ = {‖R(θ̂ − θ)‖ < ε} for
θ ∈ N . SinceN is a 2ε-packing ofRm, the events Eθ’s with θ ∈ N are pairwise disjoint inFn+1.
By (S50), there exists a θ̂ such that supθ∈N pr

(n)
θ (Ecθ) ≤ δ < 1/2, i.e., infθ∈N pr

(n)
θ (Eθ) ≥ 1−

δ > 1/2. Applying Birgé’s inequality (Boucheron et al., 2013, Theorem 4.21) and an argument
similar to that for Lemma F.1 in Simchowitz et al. (2018), we can readily prove that for any 390

θ0 ∈ N ,

sup
θ∈N\{θ0}

KL(pr
(n)
θ ,pr

(n)
θ0

) ≥ (1− 2δ) log
(1− δ)(|N | − 1)

δ
≥ (1− 2δ) log

|N | − 1

2δ
.

Taking the infimum over θ0 ∈ N , we accomplish the proof of this lemma. �

LEMMA S10. For the linearly restricted vector autoregressive model, under the conditions of
Theorem 4, for any θ, θ0 ∈ Rm, we have

KL(pr
(n)
θ ,pr

(n)
θ0

) =
1

2
(θ − θ0)TΓR,n(θ)(θ − θ0),

where ΓR,n(θ) =
∑d

i=1R
T
i

∑n
t=1 Γt(θ)Ri = RT{Id ⊗

∑n
t=1 Γt(θ)}R. 395

Proof of Lemma S10. Without loss of generality, we assume that γ = 0, so that β = Rθ.
Let Xi,t be the ith entry of Xt, and denote Zi,t = RT

i Xt. For any θ ∈ Rm, under pr
(n)
θ we
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have Xi,t+1 | Ft ∼ N(θTZi,t, σ
2), where 0 ≤ t ≤ n and F0 = ∅. Hence, the log-likelihood of

(X1, . . . , Xn+1) under pr
(n)
θ is

log
n∏
t=0

d∏
i=1

1

(2π)1/2σ
exp

{
−(Xi,t+1 − θTZi,t)

2

2σ2

}
400

= −(n+ 1)d log((2π)1/2σ)− 1

2σ2

n∑
t=0

d∑
i=1

(Xi,t+1 − θTZi,t)
2.

As a result,

KL(pr
(n)
θ ,pr

(n)
θ0

) = E
pr

(n)
θ

(
log

dpr
(n)
θ

dpr
(n)
θ0

)
=

1

2

n∑
t=0

d∑
i=1

E
pr

(n)
θ

[
{ηi,t + (θ − θ0)TZi,t}2 − η2

i,t

]
=

1

2
(θ − θ0)T

n∑
t=1

d∑
i=1

E
pr

(n)
θ

(Zi,tZ
T
i,t)(θ − θ0)

=
1

2
(θ − θ0)TΓR,n(θ)(θ − θ0),405

where the last equality is because of E
pr

(n)
θ

(Zi,tZ
T
i,t) = RT

i Γt(θ)Ri. The proof is complete. �

S5.2. Proof of Theorem 4
Without loss of generality, we assume that γ = 0, so that β = Rθ. Define the ellipsoid E =

{θ ∈ Rm : ‖Rθ‖ ≤ ρ̄} = {(RTR)−1/2ω : ω ∈ B(0, ρ̄)}, where B(0, r) denotes the Euclidean

ball in Rm with center zero and radius r. Since ρ{A(θ)} ≤ ‖A(θ)‖F =
(∑d

i=1‖Riθ‖2
)1/2

=410

‖Rθ‖, we have E ⊆ Θ(ρ̄).
For any ε ∈ (0, ρ̄/4], let N1 be a maximal 2ε-packing of B(0, 4ε) in Rm, and define N =

{(RTR)−1/2ω : ω ∈ N1}. Then,N is a 2ε-packing ofE in the norm ‖(RTR)1/2(·)‖. As a result,
2ε ≤ ‖R(θ − θ0)‖ ≤ 8ε for all θ 6= θ0 ∈ N . In addition, by a standard volumetric argument, we
have |N | = |N1| ≥ 2m. By Lemma S9, for any δ ∈ (0, 1/2), this theorem holds if415

inf
θ0∈N

sup
θ∈N\{θ0}

KL(pr
(n)
θ , pr

(n)
θ0

) < (1− 2δ) log
|N | − 1

2δ
. (S51)

Since
∑n

t=1 Γt(θ) � nΓn(θ) for any θ ∈ Rm, and

sup
θ∈Θ(ρ̄)

λmax{Γn(θ)} ≤
n−1∑
s=0

λmax[As(θ){AT(θ)}s] ≤
n−1∑
s=0

ρ̄2s = γn(ρ̄),

it follows from Lemma S10 that

max
θ,θ0∈N

KL(pr
(n)
θ , pr

(n)
θ0

) ≤ 1

2
max
θ,θ0∈N

(θ − θ0)TΓR,n(θ)(θ − θ0)

≤ n

2
max
θ,θ0∈N

(θ − θ0)TRT{Id ⊗ Γn(θ)}R(θ − θ0)

≤ n

2
max
θ,θ0∈N

‖R(θ − θ0)‖2 sup
θ∈Θ(ρ̄)

λmax{Γn(θ)}420

≤ 32ε2nγn(ρ̄)
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As a result, a sufficient condition for (S51) is

nγn(ρ̄) <
(1− 2δ)

32ε2
log

2m

4δ
. (S52)

In particular, for any δ ∈ (0, 1/4), we can show that there exists a universal constant c > 0 such
that the right-hand side of (S52) is bounded below by c{m+ log(1/δ)}/ε2, i.e., the conclusion
of this theorem follows. 425

S5.3. Proof of Corollary 1
Under the conditions of Theorem 4, we have

inf
β̂

sup
θ∈Θ(ρ̄)

pr
(n)
θ

[
‖β̂ − β‖ ≥ C

{
m+ log(1/δ)

nγn(ρ̄)

}1/2
]
≥ δ,

where C > 0 is fixed. It then suffices to derive lower bounds of 1/γn(ρ̄) for ρ̄ ∈ (0,∞).
First, suppose that ρ̄ ∈ (0, 1). Then we have γn(ρ̄) =

∑n−1
s=0 ρ̄

2s = (1− ρ̄2n)/(1− ρ̄2) <
min{n, (1− ρ̄2)−1}, and therefore 430

1

γn(ρ̄)
>

{
1− ρ̄2, if ρ̄ ∈ (0, (1− 1/n)1/2)

1/n, if ρ̄ ∈ [(1− 1/n)1/2, 1)
. (S53)

Next, suppose that ρ̄ ∈ [1, 1 + c/n] for a fixed c > 0. Then

γn(ρ̄)

n
=

1

n

n−1∑
s=0

ρ̄2s ≤ 1

n

n−1∑
s=0

(1 + c/n)2s ≤ (1 + c/n)2n.

Since (1 + c/n)2n monotonically increases to exp(2c) as n→∞, there exists a constantC2 > 0
free of n such that γn(ρ̄)/n is uniformly bounded above by C2, i.e.,

1

γn(ρ̄)
≥ 1

C2
n−1 if ρ̄ ∈ [1, 1 + c/n]. (S54)

Moreover, for any ρ̄ ∈ (1,∞), we have

1

γn(ρ̄)
=

ρ̄2 − 1

ρ̄2n − 1
>
ρ̄2 − 1

ρ̄2n
. (S55)

Combining (S53)–(S55), we have 435

{
m

nγn(ρ̄)

}1/2

≥


{

(1− ρ̄2)m/n
}1/2

, if ρ̄ ∈ (0, (1− 1/n)1/2)

m1/2/n, if ρ̄ ∈ [(1− 1/n)1/2, 1 + c/n]

ρ̄−n
{

(ρ̄2 − 1)m/n
}1/2

, if ρ̄ ∈ (1 + c/n,∞)

,

and this completes the proof of Corollary 1.
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