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Diagnostic Checking for Weibull
Autoregressive Conditional Duration Models

Yao Zheng, Yang Li, Wai Keung Li and Guodong Li

Abstract We derive the asymptotic distribution of residual autocorrelations for the1

Weibull autoregressive conditional duration (ACD) model, and this leads to a port-2

manteau test for the adequacy of the fitted Weibull ACD model. The finite-sample3

performance of this test is evaluated by simulation experiments and a real data exam-4

ple is also reported.5
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1 Introduction10

First proposed by Engle and Russell [3], the autoregressive conditional duration11

(ACD) model has become very popular in the modeling of high-frequency financial12

data. ACD models are applied to describe the duration between trades for a frequently13

traded stock such as IBM and it provides useful information on the intraday market14

activity. Note that the ACD model for durations is analogous to the commonly used15

generalized autoregressive conditional heteroscedastic (GARCH) model [1, 2] for16

stock returns. Driven by the strong similarity between the ACD and GARCH models,17
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2 Y. Zheng et al.

various extensions to the original ACD model of Engle and Russell [3] have been18

suggested. However, despite the great variety of ACD specifications, the question of19

model diagnostic checking has received less attention.20

The approach used by Engle and Russell [3] and widely adopted by subsequent21

authors to assess the adequacy of the estimated ACD model consists of applying the22

Ljung–Box Q-statistic [7] to the residuals from the fitted time series model and to its23

squared sequence. The latter case is commonly known as the McLeod–Li test [8].24

As pointed out by Li and Mak [5] in the context of GARCH models, this approach is25

questionable, because this test statistic does not have the usual asymptotic chi-square26

distribution under the null hypothesis when it is applied to residuals of an estimated27

GARCH model. Following Li and Mak [5], Li and Yu [6] derived a portmanteau test28

for the goodness-of-fit of the fitted ACD model when the errors follow the exponential29

distribution.30

In this paper, we consider a portmanteau test for checking the adequacy of the fitted31

ACD model when the errors have a Weibull distribution. This paper has similarities32

to [6] since the two papers both follow the approach by Li and Mak [5] to construct33

the portmanteau test statistic. Besides the difference in the distribution of the error34

term, the functional form of the ACD model in the present paper is more general35

than that of [6], because the latter only discusses the ACD model with an ARCH-like36

form of the conditional mean duration.37

The remainder of this paper is organized as follows. Section 2 presents the port-38

manteau test for the Weibull ACD model estimated by the maximum likelihood39

method. In Sect. 3, two Monte Carlo simulations are performed to study the finite-40

sample performance of the diagnostic tool and an illustrative example is reported to41

demonstrate its usefulness.42

2 A Portmanteau Test43

2.1 Basic Definitions and the ML Estimation44

Consider the autoregressive conditional duration (ACD) model,45

xi = ψiεi , ψi = ω +
p∑

j=1

α j xi− j +
q∑

j=1

β jψi− j , (1)46

where t0 < t1 < · · · < tn < · · · are arrival times, xi = ti − ti−1 is an interval,ω > 0,47

α j ≥ 0,β j ≥ 0, and the innovations {εt } are identically and independently distributed48

(i.i.d.) nonnegative random variables with mean one [3].49

For ACD model at (1), we assume that the innovation εi has the density of a50

standardized Weibull distribution,51
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Diagnostic Checking for Weibull Autoregressive Conditional. . . 3

fγ (x) = γ cγ xγ−1 exp{−cγ xγ }, x ≥ 0,52

where cγ = [Γ (1 + γ−1)]γ , Γ (·) is the Gamma function, and E(εi ) = 1. The53

Weibull distribution has a decreasing (increasing) hazard function if γ < 1 (γ > 1)54

and reduces to the standard exponential distribution if γ = 1. We denote this model55

by WACD(p, q) in this paper.56

Let α = (α1, . . . , αp)
′, β = (β1, . . . , βq)

′ and θ = (ω,α′,β ′)′. Denote by λ =57

(γ, θ ′)′ the parameter vector of the Weibull ACD model, and its true value λ0 =58

(γ0, θ
′
0)

′ is an interior point of a compact setΛ ⊂ R
p+q+2. The following assumption59

gives some constraints on the parameter space Λ.60

Assumption 1 ω > 0, α j > 0 for 1 ≤ j ≤ p, β j > 0 for 1 ≤ j ≤ q,
∑p

j=1 α j +61 ∑q
j=1 β j < 1, and Polynomials

∑p
j=1 α j x j and 1 − ∑q

j=1 β j x j have no common62

root.63

Given nonnegative observations x1, . . . , xn , the log-likelihood function of the64

Weibull ACD model is65

Ln(λ) =
n∑

i=1

{
log fγ

(
xi

ψi (θ)

)
− logψi (θ)

}
66

=
n∑

i=1

{
−γ log[ψi (θ)] − cγ

[
xi

ψi (θ)

]γ}
+ (γ − 1)

n∑

i=1

log(xi )+ n log(γ · cγ ).67

68

69
Note that the above functions all depend on unobservable values of xi with i ≤ 0, and70

some initial values are hence needed for x0, x−1, . . . , x1−p and ψ0(θ), ψ−1(θ), . . . ,71

ψ1−q(θ). We simply set them to be x̄ = n−1 ∑n
i=1 xi , and denote the corresponding72

functions respectively by ψ̃i (θ) and L̃n(λ). Thus, the MLE can be defined as73

λ̃n = (γ̃n, θ̃
′
n)

′ = argmax
λ∈Λ

L̃n(λ).74

Let75

c1(x, γ ) = −∂ log fγ (x)

∂x
x − 1 = −γ (1 − cγ xγ )76

and77

c2(x, γ ) = ∂ log fγ (x)

∂γ
= −cγ xγ log(x)+ log(x)− c′

γ xγ + γ−1 + c′
γ /cγ ,78

where c′
γ = ∂cγ /∂γ . It can be verified that E[c1(εi , γ0)] = 0 and E[c2(εi , γ0)] =79

0. Denote κ1 = var[c1(εi , γ0)], κ2 = var[c2(εi , γ0)], κ3 = cov[c1(εi , γ0), c2(εi , γ0)]80

and81

Σ =
(

κ2 κ3 E[ψ−1
i (θ0)∂ψi (θ0)/∂θ

′]
κ3 E[ψ−1

i (θ0)∂ψi (θ0)/∂θ] κ1 E{ψ−2
i (θ0)[∂ψi (θ0)/∂θ ][∂ψi (θ0)/∂θ

′]}
)
.82
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4 Y. Zheng et al.

If Assumption 1 holds, then λ̃n converges to λ0 in almost surely sense as n → ∞,83

and
√

n(̃λn − λ0) →d N (0,Σ−1) as n → ∞; see Engle and Russell [3] and Francq84

and Zakoian [4].85

Denote by {̃εi } the residual sequence from the fitted Weibull ACD model,86

where ε̃i = xi/ψ̃i (̃θn). For the quantities in the information matrix Σ , κ1, κ2, κ3,87

E[ψ−1
i (θ0)∂ψi (θ0)/∂θ ], and E[ψ−2

i (θ0)(∂ψi (θ0)/∂θ)(∂ψi (θ0)/∂θ
′)], we can esti-88

mate them respectively by89

κ̃1 = 1

n

n∑

i=1

[c1(̃εi , γ̃n)]2, κ̃2 = 1

n

n∑

i=1

[c2 (̃εi , γ̃n)]2, κ̃3 = 1

n

n∑

i=1

c1(̃εi , γ̃n)c2 (̃εi , γ̃n),90

91

1

n

n∑

i=1

1

ψ̃i (̃θn)

∂ψ̃i (̃θn)

∂θ
and

1

n

n∑

i=1

1

ψ̃2
i (̃θn)

∂ψ̃i (̃θn)

∂θ

∂ψ̃i (̃θn)

∂θ ′ .92

The above estimators are all consistent, and hence a consistent estimator of the93

information matrix Σ . Moreover,94

√
n(̃θn − θ0) →d N (0,Σ−1

1 ) as n → ∞, (2)95

where96

Σ1 = κ1 · E

[
1

ψ2
i (θ0)

∂ψi (θ0)

∂θ

∂ψi (θ0)

∂θ ′

]
− κ2

3

κ2
· E

[
1

ψi (θ0)

∂ψi (θ0)

∂θ

]
E

[
1

ψi (θ0)

∂ψi (θ0)

∂θ ′
]
.97

98

2.2 The Main Result99

This subsection derives asymptotic distributions of the residual autocorrelations from100

the estimated Weibull ACD model, and hence a portmanteau test for checking the101

adequacy of this model. Note that the residuals are nonnegative, and the residual102

autocorrelations here are also the absolute residual autocorrelations.103

Without confusion, we denote ψ̃i (̃θn) and ψi (θ0) respectively by ψ̃i and ψi104

for simplicity. Consider the residual sequence {̃εi } with ε̃i = xi/ψ̃i . Note that105

n−1 ∑n
i=1 ε̃i = 1 + op(1) and then, for a positive integer k, the lag-k residual auto-106

correlation can be defined as107

r̃k =
∑n

i=k+1(̃εi − 1)(̃εi−k − 1)
∑n

i=1(̃εi − 1)2
.108

We next consider the asymptotic distributions of the first K residual autocorrelations,109

R̃ = (̃r1, . . . , r̃K )
′, where K is a predetermined positive integer.110

Denote ψ̃i (̃θn) and ψi (θ0) respectively by ψ̃i and ψi , and let ε̃i = xi/ψ̃i . Let111

C̃ = (C̃1, . . . , C̃K )
′ and C = (C1, . . . ,CK )

′, where112
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Diagnostic Checking for Weibull Autoregressive Conditional. . . 5

C̃k = 1

n

n∑

i=k+1

(̃εi − 1)(̃εi−k − 1) and Ck = 1

n

n∑

i=k+1

(εi − 1)(εi−k − 1).113

By the
√

n-consistency of θ̃n at (2) and the ergodic theorem, it follows that114

n−1 ∑n
i=1(̃εi − 1)2 = σ 2

γ0
+ op(1),where σ 2

γ0
= var(εi ), and thus it suffices to derive115

the asymptotic distribution of C̃ .116

By the Taylor expansion, it holds that117

C̃ = C + H ′(̃θn − θ0)+ op(n
−1/2), (3)118

where H = (H1, . . . , HK ) with Hk = −E[ψ−1
i (εi−k − 1)∂ψi/∂θ ]. Moreover,119

√
n(̃θn − θ0) = AΣ−1 · 1√

n

n∑

i=1

[
c2(εi , γ0),

c1(εi , γ0)

ψi

∂ψi

∂θ ′

]′
+ op(1), (4)120

where the c j (εi , γ0) is as defined in Sect. 2.1, and the matrix A = (0, I) with I121

being the (p + q + 1)-dimensional identity matrix. Note that E[εi c2(εi , γ0)] = 0122

and E[εi c1(εi , γ0)] = 1. By (3), (4), the central limit theorem and the Cramér-Wold123

device, it follows that124

√
n R̃ →d N (0,Ω) as n → ∞,125

where Ω = I − σ−4
γ0

H ′Σ−1
1 H , σ 2

γ0
= var(εi ), H = (H1, . . . , HK ) with Hk =126

−E[ψ−1
i (εi−k − 1)∂ψi/∂θ ], and Σ1 is as defined in Sect. 2.1.127

Let σ̃ 2
γ0

= n−1 ∑n
i=1(̃εi − 1)2, H̃k = −n−1 ∑n

i=1 ψ̃
−1
i (̃εi−k − 1)∂ψ̃i/∂θ and H̃ =128

(H̃1, . . . , H̃K ). Then we have H̃ = H + op(1) and hence a consistent estimator of129

Ω can be constructed, denoted by Ω̃ . Let Ω̃kk be the diagonal elements of Ω̃ , for130

1 ≤ k ≤ K . We therefore can check the significance of r̃k by comparing its absolute131

value with 1.96
√
Ω̃kk/n, where the significance level is 5 %.132

To check the significance of R̃ = (̃r1, . . . , r̃K )
′ jointly, we can construct a port-133

manteau test statistic,134

Q(K ) = n R̃′Ω̃−1 R̃,135

and it will be asymptotically distributed as χ2
K , the chi-square distribution with K136

degrees of freedom.137

3 Numerical Studies138

3.1 Simulation Experiments139

This subsection conducts two Monte Carlo simulation experiments to check the140

finite-sample performance of the proposed portmanteau test in the previous section.141
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6 Y. Zheng et al.

The first experiment evaluates the sample approximation for the asymptotic vari-142

ance of residual autocorrelations Ω , and the data generating process is143

xi = ψiεi , ψi = 0.1 + αxi−1 + βψi−1,144

where εi follows the standardized Weibull distribution with the parameter of γ . We145

consider γ = 0.8 and 1.2, corresponding to a heavy-tailed distribution and a light-146

tailed one, and (α, β)′ = (0.2, 0.6)′ and (0.4, 0.5)′. The sample size is set to n = 200,147

500 or 1000, and there are 1000 replications for each sample size. As shown in Table 1,148

the asymptotic standard deviations (ASDs) of the residual autocorrelations at lags 2,149

4 and 6 are close to their corresponding empirical standard deviations (ESDs) when150

the sample size is as small as n = 500.151

In the second experiment, we check the size and power of the proposed portman-152

teau test Q(K ) using the data generating process,153

xi = ψiεi , ψi = 0.1 + 0.3xi−1 + α2xi−2 + 0.3ψi−1,154

where α2 = 0, 0.15 or 0.3, and εi follows the standardized Weibull distribution with155

γ = 0.8 or 1.2. All the other settings are preserved from the previous experiment.156

We fit the model of orders (1, 1) to the generated data; hence, the case with α2 = 0157

corresponds to the size and those with α2 > 0 to the power. The rejection rates of test158

statistic Q(K ) with K = 6 are given in Table 2. For comparison, the corresponding159

rejection rates of the Ljung–Box statistics for the residual series and its squared160

process are also reported, denoted by Q∗
1(K ) and Q∗

2(K ). The critical value is the161

upper 5th percentile of the χ2
6 distribution for all these tests. As shown in the table,162

Table 1 Empirical standard deviations (ESD) and asymptotic standard deviations (ASD) of residual
autocorrelations at lags 2, 4 and 6

n θ = (0.1, 0.2, 0.6)′ θ = (0.1, 0.4, 0.5)′

2 4 6 2 4 6

γ = 0.8 200 ESD 0.1025 0.1061 0.1065 0.0610 0.0660 0.0635

ASD 0.0605 0.0655 0.0673 0.0625 0.0658 0.0675

500 ESD 0.0402 0.0415 0.0431 0.0389 0.0419 0.0416

ASD 0.0387 0.0411 0.0424 0.0402 0.0418 0.0427

1000 ESD 0.0284 0.0289 0.0301 0.0280 0.0297 0.0305

ASD 0.0277 0.0291 0.0298 0.0285 0.0297 0.0301

γ = 1.2 200 ESD 0.0847 0.0862 0.0889 0.0632 0.0656 0.0658

ASD 0.0604 0.0652 0.0673 0.0629 0.0659 0.0674

500 ESD 0.0386 0.0414 0.0421 0.0395 0.0433 0.0410

ASD 0.0387 0.0409 0.0422 0.0401 0.0418 0.0426

1000 ESD 0.0277 0.0290 0.0296 0.0276 0.0301 0.0292

ASD 0.0276 0.0289 0.0297 0.0284 0.0296 0.0301
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Diagnostic Checking for Weibull Autoregressive Conditional. . . 7

Table 2 Rejection rates of the test statistics Q(K ), Q∗
1(K ) and Q∗

2(K ) with K = 6 and γ = 0.8
or 1.2

n α2 = 0 α2 = 0.15 α2 = 0.3

0.8 1.2 0.8 1.2 0.8 1.2

Q(K ) 200 0.101 0.107 0.110 0.131 0.196 0.305

500 0.085 0.089 0.147 0.172 0.414 0.633

1000 0.080 0.092 0.205 0.314 0.709 0.934

Q∗
1(K ) 200 0.021 0.022 0.041 0.052 0.133 0.207

500 0.013 0.018 0.076 0.082 0.329 0.558

1000 0.016 0.008 0.115 0.203 0.639 0.899

Q∗
2(K ) 200 0.046 0.022 0.059 0.048 0.084 0.139

500 0.051 0.024 0.080 0.072 0.149 0.314

1000 0.052 0.022 0.088 0.135 0.209 0.617

the test Q(K ) is oversized when n = 1000, while the other two tests are largely163

undersized for some γ . Furthermore, we found that increasing the sample size to164

9000 could result in Q(K ) having sizes of 0.058 and 0.053 for γ = 0.8 and 1.2,165

while the sizes of the other two tests do not become closer to the nominal value even166

for very large n. For the power simulations, it can be seen clearly that Q(K ) is the167

most powerful test among the three and Q∗
2(K ) is the least powerful one. Moreover,168

the powers are interestingly observed to have smaller values when the generated data169

are heavy-tailed (γ = 0.8).170

3.2 An Empirical Example171

As an illustrative example, this subsection considers the trade durations of the US172

IBM stock on fifteen consecutive trading days starting from November 1, 1990. The173

data are truncated from a larger data set which consists of the diurnally adjusted174

IBM trade durations data from November 1, 1990, to January 31, 1991, adjusted175

Table 3 Model diagnostic checking results for the adjusted durations for IBM stock traded in first
fifteen trading days of November 1990: p values for Q(K ), Q∗

1(K ) and Q∗
2(K ) with K = 6, 12

and 18, at the 5 % significance level

K q = 1 q = 2 q = 3

Q(K ) Q∗
1(K ) Q∗

2(K ) Q(K ) Q∗
1(K ) Q∗

2(K ) Q(K ) Q∗
1(K ) Q∗

2(K )

6 0.0081 0.0123 0.4827 0.0560 0.0938 0.3778 0.3915 0.5010 0.5172

12 0.0225 0.0233 0.4313 0.1157 0.1372 0.3890 0.4933 0.5427 0.5315

18 0.0012 0.0022 0.0723 0.0116 0.0190 0.0727 0.0815 0.1200 0.1211
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8 Y. Zheng et al.

and analyzed by Tsay [9, Chap. 5]. Focusing on positive durations, we have 12,532176

diurnally adjusted observations.177

We consider the WACD(p, q) models with p = 1 and q = 1, 2 or 3. The major178

interest is on whether the models fit the data adequately. To this end, the p values for179

Q(K ), Q∗
1(K ) and Q∗

2(K ) with K = 6, 12 and 18 at the 5 % significance level are180

reported in Table 3. It can be seen that the WACD(1, 3) model fits the data adequately181

according to all the test statistics. The fitted WACD(1, 1) model is clearly rejected by182

both Q(K ) and Q∗
1(K )with K = 6, 12 and 18. For the fitted WACD(1, 2) model, both183

Q(K ) and Q∗
1(K ) suggest an adequate fit of the data with K = 6 or 12, but not with184

K = 18. While for the data, Q(K ) and Q∗
1(K ) always lead to the same conclusions,185

the fact that the p value for Q(K ) is always smaller than that for Q∗
1(K ) confirms186

that Q(K ) is more powerful than Q∗
1(K ). In contrast, Q∗

2(K ) fails to detect any187

inadequacy of the fitted WACD models.188
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