Diagnostic Checking for Weibull Autoregressive Conditional Duration Models

Yao Zheng, Yang Li, Wai Keung Li and Guodong Li

- ¹ **Abstract** We derive the asymptotic distribution of residual autocorrelations for the
- ² Weibull autoregressive conditional duration (ACD) model, and this leads to a port-
- manteau test for the adequacy of the fitted Weibull ACD model. The finite-sample
- ⁴ performance of this test is evaluated by simulation experiments and a real data exam-
- ⁵ ple is also reported.
- ⁶ **Keywords** Autoregressive conditional duration model · Weibull distribution ·
- ⁷ Model diagnostic checking · Residual autocorrelation
- ⁸ **Mathematics Subject Classification (2010)** Primary 62M10 · 91B84; Secondary 37M10

¹⁰ **1 Introduction**

The Matter We derive the asymptotic distribution of residual autocorrelations for the acceptation of the asymptotic distribution (A[C](#page-7-0)D) model, and this leads to antical
transformation at the acceptational duration (ACD) mod First proposed by Engle and Russell [3], the autoregressive conditional duration (ACD) model has become very popular in the modeling of high-frequency financial data. ACD models are applied to describe the duration between trades for a frequently traded stock such as IBM and it provides useful information on the intraday market activity. Note that the ACD model for durations is analogous to the commonly used generalized autoregressive conditional heteroscedastic (GARCH) model [1, [2](#page-7-2)] for stock returns. Driven by the strong similarity between the ACD and GARCH models,

Y. Li snliyang@connect.hku.hk

W.K. Li hrntlwk@hku.hk

G. Li gdli@hku.hk

© Springer Science+Business Media New York 2016 W.K. Li et al. (eds.), *Advances in Time Series Methods and Applications*, Fields Institute Communications 78, DOI 10.1007/978-1-4939-6568-7_4

Y. Zheng $(\boxtimes) \cdot$ Y. Li \cdot W.K. Li \cdot G. Li Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong zheng.yao@hku.hk

¹⁸ various extensions to the original ACD model of Engle and Russell [\[3](#page-7-0)] have been ¹⁹ suggested. However, despite the great variety of ACD specifications, the question of

²⁰ model diagnostic checking has received less attention.

uthors to assess the adequacy of the estimated ACD model consists of applying-Box Q-stattice [7] to the residuals from the fitted time series model and pape quared sequence. The latter case is commonly known as the McLeod The approach used by Engle and Russell [\[3\]](#page-7-0) and widely adopted by subsequent authors to assess the adequacy of the estimated ACD model consists of applying the Ljung–Box Q-statistic [7] to the residuals from the fitted time series model and to its ²⁴ squared sequence. The latter case is commonly known as the McLeod–Li test [\[8](#page-7-4)]. 25 As pointed out by Li and Mak $[5]$ in the context of GARCH models, this approach is questionable, because this test statistic does not have the usual asymptotic chi-square distribution under the null hypothesis when it is applied to residuals of an estimated ²⁸ GARCH model. Following Li and Mak [5], Li and Yu [6] derived a portmanteau test for the goodness-of-fit of the fitted ACD model when the errors follow the exponential distribution. In this paper, we consider a portmanteau test for checking the adequacy of the fitted ACD model when the errors have a Weibull distribution. This paper has similarities

 to [6] since the two papers both follow the approach by Li and Mak [5] to construct the portmanteau test statistic. Besides the difference in the distribution of the error term, the functional form of the ACD model in the present paper is more general than that of [6], because the latter only discusses the ACD model with an ARCH-like form of the conditional mean duration.

 The remainder of this paper is organized as follows. Section 2 presents the port- manteau test for the Weibull ACD model estimated by the maximum likelihood method. In Sect. 3, two Monte Carlo simulations are performed to study the finite-⁴¹ sample performance of the diagnostic tool and an illustrative example is reported to demonstrate its usefulness.

⁴³ **2 A Portmanteau Test**

⁴⁴ *2.1 Basic Definitions and the ML Estimation*

⁴⁵ Consider the autoregressive conditional duration (ACD) model,

$$
x_i = \psi_i \varepsilon_i, \qquad \psi_i = \omega + \sum_{j=1}^p \alpha_j x_{i-j} + \sum_{j=1}^q \beta_j \psi_{i-j}, \tag{1}
$$

where $t_0 < t_1 < \cdots < t_n < \cdots$ are arrival times, $x_i = t_i - t_{i-1}$ is an interval, $\omega > 0$, $\alpha_i \geq 0, \beta_i \geq 0$, and the innovations $\{\varepsilon_t\}$ are identically and independently distributed ⁴⁹ (*i*.*i*.*d*.) nonnegative random variables with mean one [3].

50 For ACD model at (1), we assume that the innovation ε_i has the density of a ⁵¹ standardized Weibull distribution,

Author ProofAuthor Proof

$$
f_{\gamma}(x) = \gamma c_{\gamma} x^{\gamma - 1} \exp\{-c_{\gamma} x^{\gamma}\}, \quad x \ge 0,
$$

where $c_{\gamma} = [\Gamma(1 + \gamma^{-1})]^{\gamma}$, $\Gamma(\cdot)$ is the Gamma function, and $E(\varepsilon_i) = 1$. The 54 Weibull distribution has a decreasing (increasing) hazard function if $\gamma < 1$ ($\gamma > 1$) 55 and reduces to the standard exponential distribution if $\gamma = 1$. We denote this model 56 by WACD (p, q) in this paper.

Let $\alpha = (\alpha_1, \ldots, \alpha_p)'$, $\beta = (\beta_1, \ldots, \beta_q)'$ and $\theta = (\omega, \alpha', \beta')'$. Denote by $\lambda =$ ⁵⁸ (γ, θ')' the parameter vector of the Weibull ACD model, and its true value $\lambda_0 =$ 69 (γ_0 , θ'_0)' is an interior point of a compact set $\Lambda \subset \mathbb{R}^{p+q+2}$. The following assumption 60 gives some constraints on the parameter space $Λ$.

Assumption 1 $\omega > 0$, $\alpha_j > 0$ for $1 \le j \le p$, $\beta_j > 0$ for $1 \le j \le q$, $\sum_{j=1}^p \alpha_j$ + *q*₂ $\sum_{j=1}^{q} \beta_j$ < 1, and Polynomials $\sum_{j=1}^{p} \alpha_j x^j$ and $1 - \sum_{j=1}^{q} \beta_j x^j$ have no common ⁶³ root.

 64 Given nonnegative observations x_1, \ldots, x_n , the log-likelihood function of the ⁶⁵ Weibull ACD model is

s**35** and reduces to the standard exponential distribution if
$$
\gamma = 1
$$
. We denote this model
\n**36** by WACD (p, q) in this paper.
\n**37** Let $\alpha = (\alpha_1, ..., \alpha_p)'$, $\beta = (\beta_1, ..., \beta_q)'$ and $\theta = (\omega, \alpha', \beta')'$. Denote by $\lambda =$
\n**38** $(\gamma, \theta')'$ the parameter vector of the Weibull ACD model, and its true value $\lambda_0 =$
\n**39** $(\gamma, \theta'_0)'$ is an interior point of a compact set $\Lambda \subset \mathbb{R}^{p+q+2}$. The following assumption
\n**30** gives some constraints on the parameter space Λ .
\n**41 42 53 44 65 67 68 69**

69
70 Note that the above functions all depend on unobservable values of x_i with $i \leq 0$, and 71 some initial values are hence needed for $x_0, x_{-1}, \ldots, x_{1-p}$ and $\psi_0(\theta), \psi_{-1}(\theta), \ldots$ $\psi_{1-q}(\theta)$. We simply set them to be $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$, and denote the corresponding *r*₃ functions respectively by $\psi_i(\theta)$ and $L_n(\lambda)$. Thus, the MLE can be defined as

$$
^{74}
$$

$$
\widetilde{\lambda}_n = (\widetilde{\gamma}_n, \widetilde{\theta}'_n)' = \operatorname*{argmax}_{\lambda \in \Lambda} \widetilde{L}_n(\lambda).
$$

⁷⁵ Let

$$
^{76}
$$

$$
c_1(x,\gamma) = -\frac{\partial \log f_{\gamma}(x)}{\partial x}x - 1 = -\gamma(1 - c_{\gamma}x^{\gamma})
$$

 77 and

$$
c_2(x,\gamma) = \frac{\partial \log f_\gamma(x)}{\partial \gamma} = -c_\gamma x^\gamma \log(x) + \log(x) - c'_\gamma x^\gamma + \gamma^{-1} + c'_\gamma/c_\gamma,
$$

⁷⁹ where $c'_{\nu} = \partial c_{\nu}/\partial \gamma$. It can be verified that $E[c_1(\varepsilon_i, \gamma_0)] = 0$ and $E[c_2(\varepsilon_i, \gamma_0)] =$ 80 0. Denote $\kappa_1 = \text{var}[c_1(\varepsilon_i, \gamma_0)], \kappa_2 = \text{var}[c_2(\varepsilon_i, \gamma_0)], \kappa_3 = \text{cov}[c_1(\varepsilon_i, \gamma_0), c_2(\varepsilon_i, \gamma_0)]$ 81 and

$$
\varepsilon_2 \qquad \Sigma = \begin{pmatrix} \kappa_2 & \kappa_3 E[\psi_i^{-1}(\theta_0)\partial\psi_i(\theta_0)/\partial\theta'] \\ \kappa_3 E[\psi_i^{-1}(\theta_0)\partial\psi_i(\theta_0)/\partial\theta] & \kappa_1 E[\psi_i^{-2}(\theta_0)[\partial\psi_i(\theta_0)/\partial\theta][\partial\psi_i(\theta_0)/\partial\theta'] \end{pmatrix}.
$$

83 If Assumption [1](#page-2-0) holds, then λ_n converges to λ_0 in almost surely sense as $n \to \infty$, as an Assumption 1 holds, then λ_n converges to λ_0 in almost surely sense as $n \to \infty$,
and $\sqrt{n}(\lambda_n - \lambda_0) \to_d N(0, \Sigma^{-1})$ as $n \to \infty$; see Engle and Russell [\[3](#page-7-0)] and Francq $_{85}$ and Zakoian [\[4\]](#page-7-7).

86 Denote by $\{\widetilde{\varepsilon}_i\}$
87 where $\widetilde{\varepsilon}_i = r_i / \widetilde{\psi}_i$ Denote by $\{\widetilde{\epsilon}_i\}$ the residual sequence from the fitted Weibull ACD model, s₇ where $\tilde{\varepsilon}_i = x_i/\psi_i(\theta_n)$. For the quantities in the information matrix Σ , κ_1 , κ_2 , κ_3 , κ_4 , κ_5 , κ_6 , κ_7 , κ_8 , κ_9 , $\kappa_1/\psi_i(\theta_0)/\partial \theta$, $\psi_i(\theta_0)/\partial \psi_i(\theta_0)/\partial \psi_j(\theta_0)/\partial \theta$ $E[\psi_i^{-1}(\theta_0)\partial\psi_i(\theta_0)/\partial\theta]$, and $E[\psi_i^{-2}(\theta_0)(\partial\psi_i(\theta_0)/\partial\theta)(\partial\psi_i(\theta_0)/\partial\theta')]$, we can esti-⁸⁹ mate them respectively by

$$
\tilde{\kappa}_1 = \frac{1}{n} \sum_{i=1}^n [c_1(\widetilde{\varepsilon}_i, \widetilde{\gamma}_n)]^2, \quad \tilde{\kappa}_2 = \frac{1}{n} \sum_{i=1}^n [c_2(\widetilde{\varepsilon}_i, \widetilde{\gamma}_n)]^2, \quad \tilde{\kappa}_3 = \frac{1}{n} \sum_{i=1}^n c_1(\widetilde{\varepsilon}_i, \widetilde{\gamma}_n) c_2(\widetilde{\varepsilon}_i, \widetilde{\gamma}_n),
$$

91

$$
\frac{1}{n}\sum_{i=1}^n\frac{1}{\widetilde{\psi}_i(\widetilde{\boldsymbol{\theta}}_n)}\frac{\partial \widetilde{\psi}_i(\widetilde{\boldsymbol{\theta}}_n)}{\partial \boldsymbol{\theta}} \quad \text{and} \quad \frac{1}{n}\sum_{i=1}^n\frac{1}{\widetilde{\psi}_i^2(\widetilde{\boldsymbol{\theta}}_n)}\frac{\partial \widetilde{\psi}_i(\widetilde{\boldsymbol{\theta}}_n)}{\partial \boldsymbol{\theta}}\frac{\partial \widetilde{\psi}_i(\widetilde{\boldsymbol{\theta}}_n)}{\partial \boldsymbol{\theta}'}.
$$

⁹³ The above estimators are all consistent, and hence a consistent estimator of the 94 information matrix $Σ$. Moreover,

$$
\sqrt{n}(\widetilde{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \to_d N(0, \Sigma_1^{-1}) \quad \text{as } n \to \infty,\tag{2}
$$

96 where

$$
\vartheta \qquad \Sigma_1 = \kappa_1 \cdot E\left[\frac{1}{\psi_i^2(\boldsymbol{\theta}_0)}\frac{\partial \psi_i(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}}\frac{\partial \psi_i(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}'}\right] - \frac{\kappa_3^2}{\kappa_2} \cdot E\left[\frac{1}{\psi_i(\boldsymbol{\theta}_0)}\frac{\partial \psi_i(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}}\right] E\left[\frac{1}{\psi_i(\boldsymbol{\theta}_0)}\frac{\partial \psi_i(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}'}\right].
$$

98

⁹⁹ *2.2 The Main Result*

 This subsection derives asymptotic distributions of the residual autocorrelations from the estimated Weibull ACD model, and hence a portmanteau test for checking the adequacy of this model. Note that the residuals are nonnegative, and the residual autocorrelations here are also the absolute residual autocorrelations.

Phere $\overline{z}_0 = x_i/\overline{\psi}_i(\vec{\theta}_n)$. For the quantities in the information matrix $\sum_{i} x_i$, x_i , $\overline{w}_i(x_i) = \overline{w}_i(x_i) = \$ Without confusion, we denote $\psi_i(\theta_n)$ and $\psi_i(\theta_0)$ respectively by ψ_i and ψ_i for simplicity. Consider the positively expresses $(\tilde{\lambda}_i)$ with $\tilde{\lambda}_i$ and $\tilde{\lambda}_i$ and the positively for simplicity. Consider the residual sequence $\{\tilde{\epsilon}_i\}$ with $\tilde{\epsilon}_i = x_i/\tilde{\psi}_i$. Note that $n^{-1} \sum_{i=1}^{n} \tilde{\epsilon}_i = 1 + o(1)$ and then for a positive integer k, the lag-k residual auto-¹⁰⁶ ^{*n* 1} $\sum_{i=1}^{n} \tilde{\epsilon}_i = 1 + o_p(1)$ and then, for a positive integer *k*, the lag-*k* residual auto-
¹⁰⁷ Correlation can be defined as ¹⁰⁷ correlation can be defined as

$$
108 \\
$$

$$
\widetilde{r}_k = \frac{\sum_{i=k+1}^n (\widetilde{\varepsilon}_i - 1)(\widetilde{\varepsilon}_{i-k} - 1)}{\sum_{i=1}^n (\widetilde{\varepsilon}_i - 1)^2}.
$$

¹⁰⁹ We next consider the asymptotic distributions of the first *K* residual autocorrelations, ¹¹⁰ $\widetilde{R} = (\widetilde{r}_1, \ldots, \widetilde{r}_K)'$, where *K* is a predetermined positive integer.

iii Denote $\widetilde{\psi}_i(\widetilde{\theta}_n)$ and $\psi_i(\theta_0)$ respectively by $\widetilde{\psi}_i$ and ψ_i , and let $\widetilde{\varepsilon}_i = x_i/\widetilde{\psi}_i$. Let $\widetilde{C} = (\widetilde{C}, \widetilde{C}_i)'$ and $C = (C, \widetilde{C}_i)'$ where ¹¹² $\widetilde{C} = (\widetilde{C}_1, \ldots, \widetilde{C}_K)'$ and $C = (C_1, \ldots, C_K)'$, where

Diagnostic Checking for Weibull Autoregressive Conditional... 5

$$
\widetilde{C}_k = \frac{1}{n} \sum_{i=k+1}^n (\widetilde{\varepsilon}_i - 1)(\widetilde{\varepsilon}_{i-k} - 1) \quad \text{and} \quad C_k = \frac{1}{n} \sum_{i=k+1}^n (\varepsilon_i - 1)(\varepsilon_{i-k} - 1).
$$

By the \sqrt{n} -consistency of $\tilde{\theta}_n$ at [\(2\)](#page-3-0) and the ergodic theorem, it follows that $n^{-1} \sum_{n=1}^n (\tilde{\epsilon}_n - 1)^2 = \epsilon^2 + \epsilon_0 (1)$ where $\tau^2 = \text{tr}(\epsilon_0)$ and thus it sufficients derive ¹¹⁵ $n^{-1} \sum_{i=1}^{n} (\tilde{\epsilon}_i - 1)^2 = \sigma_{\gamma}^2 + o_p(1)$, where $\sigma_{\gamma}^2 = \text{var}(\epsilon_i)$, and thus it suffices to derive ¹¹⁶ the asymptotic distribution of *C* .

 117 By the Taylor expansion, it holds that

$$
\widetilde{C} = C + H'(\widetilde{\theta}_n - \theta_0) + o_p(n^{-1/2}),\tag{3}
$$

 u_{19} where $H = (H_1, \ldots, H_K)$ with $H_k = -E[\psi_i^{-1}(\varepsilon_{i-k} - 1)\partial \psi_i / \partial \theta]$. Moreover,

$$
\sqrt{n}(\widetilde{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) = A \Sigma^{-1} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^n \left[c_2(\varepsilon_i, \gamma_0), \frac{c_1(\varepsilon_i, \gamma_0)}{\psi_i} \frac{\partial \psi_i}{\partial \boldsymbol{\theta}'} \right]' + o_p(1), \quad (4)
$$

121 where the $c_i(\varepsilon_i, \gamma_0)$ is as defined in Sect. 2.1, and the matrix $A = (0, I)$ with **I** 122 being the $(p+q+1)$ -dimensional identity matrix. Note that $E[\varepsilon_i c_2(\varepsilon_i, \gamma_0)] = 0$ 123 and $E[\varepsilon_i c_1(\varepsilon_i, \gamma_0)] = 1$. By (3), (4), the central limit theorem and the Cramér-Wold ¹²⁴ device, it follows that

$$
\sqrt{n}\widetilde{R} \to_d N(0,\Omega) \quad \text{as } n \to \infty,
$$

where $\Omega = \mathbf{I} - \sigma_{\gamma_0}^{-4} H' \Sigma_1^{-1} H$, $\sigma_{\gamma_0}^2 = \text{var}(\varepsilon_i)$, $H = (H_1, \dots, H_K)$ with $H_k =$ $\mu_{127} - E[\psi_i^{-1}(\varepsilon_{i-k} - 1)\partial \psi_i/\partial \theta]$, and Σ_1 is as defined in Sect. 2.1.

When \sqrt{n} consistency of θ_n at (2) and the ergodic theorem, it follows
 \sqrt{n} , consistency of θ_n at (2) and the ergodic theorem, it follows

ne asymptotic distribution of \vec{C} .

By the Taylor expansion, it hol Let $\tilde{\sigma}_{\gamma_0}^2 = n^{-1} \sum_{i=1}^n (\tilde{\epsilon}_i - 1)^2$, $\tilde{H}_k = -n^{-1} \sum_{i=1}^n \tilde{\psi}_i$ 128 Let $\widetilde{\sigma}_{\gamma_0}^2 = n^{-1} \sum_{i=1}^n (\widetilde{\epsilon}_i - 1)^2$, $\widetilde{H}_k = -n^{-1} \sum_{i=1}^n \widetilde{\psi}_i^{-1} (\widetilde{\epsilon}_{i-k} - 1) \partial \widetilde{\psi}_i / \partial \theta$ and $\widetilde{H} =$
 $\widetilde{H} = \widetilde{H}_k$. Then we have $\widetilde{H} = H_k$ and have a consistent estimator of H_1, \ldots, H_K). Then we have $H = H + o_p(1)$ and hence a consistent estimator of 130 (*H*₁, ..., *H*_K). Then we have $H = H + \partial_p \chi$ and hence a consistent estimator of Ω can be constructed, denoted by Ω . Let Ω_{kk} be the diagonal elements of Ω , for 131 1 $\leq k \leq K$. We therefore can check the significance of \tilde{r}_k by comparing its absolute value with $1.96\sqrt{\tilde{\Omega}_{kk}}/n$, where the significance level is 5%.

To check the significance of $\widetilde{R} = (\widetilde{r}_1, \ldots, \widetilde{r}_K)'$ jointly, we can construct a port-¹³⁴ manteau test statistic,

$$
Q(K) = n\widetilde{R}'\widetilde{\Omega}^{-1}\widetilde{R},
$$

and it will be asymptotically distributed as χ^2 , the chi-square distribution with *K* ¹³⁷ degrees of freedom.

¹³⁸ **3 Numerical Studies**

¹³⁹ *3.1 Simulation Experiments*

¹⁴⁰ This subsection conducts two Monte Carlo simulation experiments to check the ¹⁴¹ finite-sample performance of the proposed portmanteau test in the previous section. ¹⁴² The first experiment evaluates the sample approximation for the asymptotic vari-143 ance of residual autocorrelations Ω , and the data generating process is

Author ProofAuthor Proof

$$
x_i = \psi_i \varepsilon_i, \qquad \psi_i = 0.1 + \alpha x_{i-1} + \beta \psi_{i-1},
$$

145 where ε_i follows the standardized Weibull distribution with the parameter of γ . We 146 consider $\gamma = 0.8$ and 1.2, corresponding to a heavy-tailed distribution and a lighttailed one, and $(\alpha, \beta)' = (0.2, 0.6)'$ and $(0.4, 0.5)'$. The sample size is set to $n = 200$, ¹⁴⁸ 500 or 1000, and there are 1000 replications for each sample size. As shown in Table [1,](#page-5-0) ¹⁴⁹ the asymptotic standard deviations (ASDs) of the residual autocorrelations at lags 2, ¹⁵⁰ 4 and 6 are close to their corresponding empirical standard deviations (ESDs) when 151 the sample size is as small as $n = 500$.

¹⁵² In the second experiment, we check the size and power of the proposed portman-153 teau test $Q(K)$ using the data generating process,

$$
154 \\
$$

$$
x_i = \psi_i \varepsilon_i, \qquad \psi_i = 0.1 + 0.3x_{i-1} + \alpha_2 x_{i-2} + 0.3\psi_{i-1},
$$

155 where $\alpha_2 = 0, 0.15$ or 0.3, and ε_i follows the standardized Weibull distribution with $v = 0.8$ or 1.2. All the other settings are preserved from the previous experiment. 157 We fit the model of orders (1, 1) to the generated data; hence, the case with $\alpha_2 = 0$ 158 corresponds to the size and those with $\alpha_2 > 0$ to the power. The rejection rates of test 159 statistic $O(K)$ with $K = 6$ are given in Table 2. For comparison, the corresponding ¹⁶⁰ rejection rates of the Ljung–Box statistics for the residual series and its squared ¹⁶¹ process are also reported, denoted by $Q_1^*(K)$ and $Q_2^*(K)$. The critical value is the 162 upper 5th percentile of the χ_6^2 distribution for all these tests. As shown in the table,

Table 1 Empirical standard deviations (ESD) and asymptotic standard deviations (ASD) of residual autocorrelations at lags 2, 4 and 6

the sample size is as small as $n = 500$. teau test $Q(K)$ using the data generating process,				$x_i = \psi_i \varepsilon_i$, $\psi_i = 0.1 + 0.3x_{i-1} + \alpha_2 x_{i-2} + 0.3\psi_{i-1}$,				where ε_i follows the standardized Weibull distribution with the parameter of γ . We consider $\gamma = 0.8$ and 1.2, corresponding to a heavy-tailed distribution and a light- tailed one, and $(\alpha, \beta)' = (0.2, 0.6)'$ and $(0.4, 0.5)'$. The sample size is set to $n = 200$, 500 or 1000, and there are 1000 replications for each sample size. As shown in Table 1, the asymptotic standard deviations (ASDs) of the residual autocorrelations at lags 2, 4 and 6 are close to their corresponding empirical standard deviations (ESDs) when In the second experiment, we check the size and power of the proposed portman-
								$\gamma = 0.8$ or 1.2. All the other settings are preserved from the previous experiment. We fit the model of orders (1, 1) to the generated data; hence, the case with $\alpha_2 = 0$ corresponds to the size and those with $\alpha_2 > 0$ to the power. The rejection rates of test statistic $Q(K)$ with $K = 6$ are given in Table 2. For comparison, the corresponding
rejection rates of the Ljung-Box statistics for the residual series and its squared								process are also reported, denoted by $Q_1^*(K)$ and $Q_2^*(K)$. The critical value is the upper 5th percentile of the χ_6^2 distribution for all these tests. As shown in the table, Table 1 Empirical standard deviations (ESD) and asymptotic standard deviations (ASD) of residual
autocorrelations at lags 2, 4 and 6								
	\boldsymbol{n}			$\theta = (0.1, 0.2, 0.6)'$			$\theta = (0.1, 0.4, 0.5)'$	
			$\overline{2}$	$\overline{4}$	6	2	$\overline{4}$	6
$\nu = 0.8$	200	ESD	0.1025	0.1061	0.1065	0.0610	0.0660	0.0635
		ASD	0.0605	0.0655	0.0673	0.0625	0.0658	0.0675
	500	ESD	0.0402	0.0415	0.0431	0.0389	0.0419	0.0416
		ASD	0.0387	0.0411	0.0424	0.0402	0.0418	0.0427
	1000	ESD	0.0284	0.0289	0.0301	0.0280	0.0297	0.0305
		ASD	0.0277	0.0291	0.0298	0.0285	0.0297	0.0301
$\gamma = 1.2$	200	ESD	0.0847	0.0862	0.0889	0.0632	0.0656	0.0658
		ASD	0.0604	0.0652	0.0673	0.0629	0.0659	0.0674
	500	ESD	0.0386	0.0414	0.0421	0.0395	0.0433	0.0410
	1000	ASD ESD	0.0387 0.0277	0.0409 0.0290	0.0422 0.0296	0.0401 0.0276	0.0418 0.0301	0.0426 0.0292

	$\alpha_2=0$ \boldsymbol{n}			$\alpha_2 = 0.15$		$\alpha_2=0.3$			
			0.8	1.2	0.8	1.2	0.8		1.2
Q(K)	200		0.101	0.107	0.110	0.131		0.196	0.305
	500		0.085	0.089	0.147	0.172		0.414	0.633
	1000		0.080	0.092	0.205	0.314		0.709	0.934
$Q_1^*(K)$	200		0.021	0.022	0.041	0.052		0.133	0.207
	500		0.013	0.018	0.076	0.082		0.329	0.558
	1000		0.016	0.008	0.115	0.203		0.639	0.899
$Q_2^*(K)$	200		0.046	0.022	0.059	0.048		0.084	0.139
	500		0.051	0.024	0.080	0.072		0.149	0.314
	1000		0.052	0.022	0.088	0.135		0.209	0.617
		are heavy-tailed ($\gamma = 0.8$).	for very large <i>n</i> . For the power simulations, it can be seen clearly that $Q(K)$ is the most powerful test among the three and $Q_2^*(K)$ is the least powerful one. Moreover, the powers are interestingly observed to have smaller values when the generated data						
			3.2 An Empirical Example As an illustrative example, this subsection considers the trade durations of the US						
			IBM stock on fifteen consecutive trading days starting from November 1, 1990. The						
			data are truncated from a larger data set which consists of the diurnally adjusted IBM trade durations data from November 1, 1990, to January 31, 1991, adjusted						
		and 18, at the 5% significance level	Table 3 Model diagnostic checking results for the adjusted durations for IBM stock traded in first fifteen trading days of November 1990: p values for $Q(K)$, $Q_1^*(K)$ and $Q_2^*(K)$ with $K = 6, 12$						
K	$q=1$			$q=2$			$q=3$		
	Q(K)	$Q_1^*(K)$	$Q_2^*(K)$	$Q(K)$	$Q_1^*(K)$	$Q_2^*(K)$	Q(K)	$Q_1^*(K)$	$Q_2^*(K)$
6	0.0081	0.0123	0.4827	0.0560	0.0938	0.3778	0.3915	0.5010	0.5172
12	0.0225	0.0233	0.4313	0.1157	0.1372	0.3890	0.4933	0.5427	0.5315
18	0.0012	0.0022	0.0723	0.0116	0.0190	0.0727	0.0815	0.1200	0.1211

Table 2 Rejection rates of the test statistics $Q(K)$, $Q_1^*(K)$ and $Q_2^*(K)$ with $K = 6$ and $\gamma = 0.8$ or 1.2

163 the test $Q(K)$ is oversized when $n = 1000$, while the other two tests are largely 164 undersized for some γ . Furthermore, we found that increasing the sample size to ¹⁶⁵ 9000 could result in $Q(K)$ having sizes of 0.058 and 0.053 for $\gamma = 0.8$ and 1.2, ¹⁶⁶ while the sizes of the other two tests do not become closer to the nominal value even 167 for very large *n*. For the power simulations, it can be seen clearly that $Q(K)$ is the 168 most powerful test among the three and $Q_2^*(K)$ is the least powerful one. Moreover, ¹⁶⁹ the powers are interestingly observed to have smaller values when the generated data 170 are heavy-tailed ($\gamma = 0.8$).

¹⁷¹ *3.2 An Empirical Example*

 As an illustrative example, this subsection considers the trade durations of the US IBM stock on fifteen consecutive trading days starting from November 1, 1990. The data are truncated from a larger data set which consists of the diurnally adjusted IBM trade durations data from November 1, 1990, to January 31, 1991, adjusted

Table 3 Model diagnostic checking results for the adjusted durations for IBM stock traded in first fifteen trading days of November 1990: *p* values for $Q(K)$, $Q_1^*(K)$ and $Q_2^*(K)$ with $K = 6, 12$ and 18, at the 5% significance level

K	$q=1$			$q=2$			$q=3$		
		$Q(K)$ $Q_1^*(K)$	$Q_2^*(K)$			$Q(K)$ $Q_1^*(K)$ $Q_2^*(K)$		$Q(K)$ $Q_1^*(K)$	$O_2^*(K)$
-6	0.0081 0.0123		0.4827	0.0560 0.0938		$\vert 0.3778 \vert$	\vert 0.3915 \vert 0.5010		0.5172
12		0.0225 ± 0.0233	\vert 0.4313	\vert 0.1157 0.1372		0.3890	0.4933 ± 0.5427		0.5315
18		$0.0012 \mid 0.0022$	0.0723	$\vert 0.0116 \vert 0.0190 \vert$		0.0727	0.0815 0.1200		0.1211

 and analyzed by Tsay [\[9,](#page-7-8) Chap. 5]. Focusing on positive durations, we have 12,532 177 diurnally adjusted observations.

 $Q(K)$. $Q_1^*(K)$ and $Q_2^*(K)$ with $K = 6$, 12 and 18 at the 5% significance lever
coording to all the less it tens been that the WACO(1, 3) model is clearly rejected in Table 3. It can be seen that the WACO(1, 3) model i ¹⁷⁸ We consider the WACD(*p*, *q*) models with $p = 1$ and $q = 1, 2$ or 3. The major interest is on whether the models fit the data adequately. To this end, the *p* values for ¹⁸⁰ $Q(K)$, $Q_1^*(K)$ and $Q_2^*(K)$ with $K = 6$, 12 and 18 at the 5% significance level are 181 reported in Table 3. It can be seen that the WACD(1, 3) model fits the data adequately according to all the test statistics. The fitted WACD(1, 1) model is clearly rejected by ¹⁸³ both $Q(K)$ and $Q_1^*(K)$ with $K = 6, 12$ and 18. For the fitted WACD(1, 2) model, both ¹⁸⁴ $Q(K)$ and $Q_1^*(K)$ suggest an adequate fit of the data with $K = 6$ or 12, but not with ¹⁸⁵ $K = 18$. While for the data, $Q(K)$ and $Q_1^*(K)$ always lead to the same conclusions, the fact that the *p* value for $Q(K)$ is always smaller than that for $Q_1^*(K)$ confirms that $Q(K)$ is more powerful than $Q_1^*(K)$. In contrast, $Q_2^*(K)$ fails to detect any inadequacy of the fitted WACD models.

 Acknowledgments We are grateful to the co-editor and two anonymous referees for their valuable comments and constructive suggestions that led to the substantial improvement of this paper.

References

- 1. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. *Journal of Econometrics*, *31*, 307–327.
- 2. Engle, R. F. (1982). Autoregression conditional heteroscedasticity with estimates of the variance of U.K. inflation. *Econometrica*, *50*, 987–1008.
- 3. Engle, R. F., & Russell, J. R. (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. *Econometrica*, *66*, 1127–1162.
- 4. Francq, C., & Zakoian, J. M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. *Bernoulli*, *10*, 605–637.
- 5. Li, W. K., & Mak, T. K. (1994). On the squared residual autocorrelations in non-linear time series with conditoinal heteroskedasticity. *Journal of Time Series Analysis*, *15*, 627–636.
- 6. Li, W. K., & Yu, P. L. H. (2003). On the residual autocorrelation of the autoregressive conditional duration model. *Economic Letters*, *79*, 169–175.
- 7. Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. *Biometrika*, *65*, 297–303.
- 8. McLeod, A. I., & Li, W. K. (1983). Diagnostic checking ARMA time series models using squared residual autocorrelations. *Journal of Time Series Analysis*, *4*, 269–273.
- 9. Tsay, R. S. (2010). *Analysis of financial time series* (3rd ed.). New York: Wiley.