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Abstract

This supplementary material provides four additional simulation experiments

to evaluate the finite-sample performance of the proposed inference tools for the

linear double autoregressive (AR) model, and also contains detailed proofs of all

lemmas and theorems in the paper.

1 Additional simulation experiments

As a complement to the simulation studies in the paper, we present four additional

experiments to evaluate the finite-sample performance of the proposed inference tools.

The first experiment aims to compare the performance of the self-weighted quantile

regression estimator rλτn for a specific quantile level τ under different weights twtu. We

consider two choices of twtu: t1{p1 ` |yt´1|qu (denoted by W1) and t1{p1 ` rβint|yt´1|qu

(denoted by W2), where rβint is calculated from (3.4). The data are generated from

yt “ 0.2yt´1 ` εtp1` 0.5|yt´1|q, (S.1)

where tεtu are i.i.d. random variables following the normal, Student’s t3 or Cauchy

distribution with location zero and Ep|εt|
κq “ 1 for κ “ 0.9. The sample size is set to

n “ 200, 500, or 1000, with 1000 replications for each sample size. Table 1 presents the

biases and the empirical standard deviations (ESDs) of rλτn at quantile levels τ “ 0.25
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and 0.35. Clearly, both the biases and the ESDs decrease as the sample size increases.

It can also be seen that the weights W2 slightly outperform W1 when the sample size

n is larger, which confirms our asymptotic result in Section 3.1 that the estimator is

most efficient at wt “ σ´1
t . On the other hand, the weights W2 perform worse than W1

when n “ 200, mainly due to a less accurate rβint for small sample sizes. Moreover, rφτn

has smaller ESDs for τ “ 0.35, which is as expected since there are more data points

around the quantile level closer to the center. On the contrary, rβτn has smaller ESDs

for τ “ 0.25, probably because its asymptotic variance as shown in Theorem 3 is smaller

when bτ is larger in magnitude. Finally, when the distribution of εt is more heavy-tailed,

the performance of rφτn is improved in the sense that both its biases and ESDs decrease.

However, the results for rβτn are mixed: they get better for τ “ 0.35 but worse for

τ “ 0.25, when the tails become heavier. Based on the results, we recommend using

W2 when the sample size n is relatively large, say n ě 500, and W1 when n is relatively

small.

The objective of the second experiment is to examine the performance of the optimal

doubly weighted quantile regression estimator pλoptn in Section 3.2. We preserve all settings

from the first experiment and employ the quantile levels τk “ k{10 with k “ 1, . . . , 9.

The density function of εt is estimated by the kernel density method with the Gaussian

kernel and its rule-of-thumb bandwidth, h “ 0.9n´1{5 mints, pR{1.34u, where s and pR

are the sample standard deviation and interquartile of the residuals respectively; see

Silverman (1986). Table 2 lists the biases, empirical standard deviations (ESDs) and

asymptotic standard deviations (ASDs) of pλoptn . As the sample size increases, most of

the biases, ESDs and ASDs become smaller, and the ESDs get closer to the corresponding

ASDs. Moreover, when the distribution of εt has heavier tails, all these quantities of pφoptn

decrease, whereas those of pβoptn increase. Finally, the results show that for the doubly

weighted quantile regression estimator, the weights W2 slightly outperform W1 in terms

of the biases, the ESDs and the ASDs, and hence we focus on W2 in the following

experiments.

In the third experiment, we examine the sample approximations for the asymptotic

distributions of the residual ACFs pρ` and pr` in Section 4. All settings are preserved from

the first two experiments, and the maximum lag L is set at six. To transform the residuals
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from the fitted models, we consider the function G being the distribution function of the

standard normal, Student’s t3 or standard Cauchy distribution, denoted by GN , GT

and GC respectively. The reference distributions are approximated based on B “ 10000

generated multivariate normal random numbers. Table 3 provides the empirical coverage

rates (ECRs) of pρ` and pr` at lags ` “ 2, 4 and 6, at the 5% significance level. It shows

that all the ECRs are close to their nominal values when n is as small as 200, and the

results for the three transformations are quite similar.

The last experiment aims to evaluate the performance of the two goodness-of-fit tests,

QBP
1 pLq and QBP

2 pLq, proposed in Section 4. The data generating process is

yt “ c1yt´2 ` εtp1` 0.2|yt´1| ` c2|yt´2|q,

where the innovations tεtu are defined as in the first experiment. We fit a linear double

AR model with p “ 1 using the same method as in the second experiment, so that the

case of c1 “ c2 “ 0 corresponds to the size of the tests, the case of c1 ‰ 0 corresponds

to the misspecification in the conditional mean, and the case of c2 ą 0 corresponds to

the misspecification in the conditional scale. We consider three departure levels, 0.1, 0.2

and 0.3, and set the significance level at 5%. The transformations GN , GT and GC are

considered as in the previous experiment.

Tables 4 and 5 report the rejection rates of QBP
1 p6q and QBP

2 p6q, respectively. Firstly,

all sizes are close to the nominal rate even when the sample size n is as small as 200,

and all powers increase as the sample size or the departure level increases. Secondly,

QBP
1 p6q performs well in detecting the misspecification in the conditional mean (i.e.,

c1 ‰ 0 and c2 “ 0) and is especially powerful when the distribution of εt is more

heavy-tailed, but it has little power for that in the scale structure (i.e., c1 “ 0 and

c2 ą 0) regardless of the distribution of εt. On the other hand, QBP
2 p6q performs well in

detecting the misspecification in the conditional scale, especially when the distribution

of εt is light-tailed. Its power for the misspecification in the conditional mean may have

opposite results for different distributions of εt: it is useless when the innovations follow

the normal or Student’s t3 distribution, but is surprisingly powerful when they follow

the Cauchy distribution. These findings seem consistent with the result in the first

two experiments that, as the innovation distribution becomes more heavy-tailed, the

estimation performance for the location-type parameters φ0 tends to improve, whereas
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that for the scale-type parameters β0 tends to worsen. Lastly, comparing the three

transformations GN , GT and GC for the residuals, it can be seen that their results are

fairly similar for QBP
1 p6q, whereas for QBP

2 p6q, the transformation GC outperforms the

other two by a visible margin, probably because the Cauchy distribution function GC

is more spread out, and consequently, the serial dependence in the original sequence is

better kept.

We summarize our findings from the four simulation experiments as follows:

(1) When the distribution of the innovation is more heavy-tailed, the performance of

the proposed inference tools becomes better for φ0 but worse for β0.

(2) For the weights twtu in Section 3.1, we recommend W2 when the sample size is

relatively large, say n ě 500, and W1 when it is relatively small.

(3) The transformation GC for the residuals may be more favorable for constructing

the goodness-of-fit test statistics.

(4) The test statistics QBP
1 pLq and QBP

2 pLq should be used in conjunction to check the

adequacy of fitted linear double AR models.

2 Technical details

2.1 Proof of Theorem 1

Let Yt “ pyt, . . . , yt´p`1q
1 and Y ˚t “ py

˚
t , . . . , y

˚
t´p`1q

1, where tytu and ty˚t u are generated

by models (2.1) and (2.3), respectively. We begin by proving that tYtu and tY ˚t u are

Markov chains with the same transition probability.

Let Bp be the class of Borel sets of Rp and νp be the Lebesgue measure on pRp,Bpq.

Let m : Rp Ñ R be the projection map onto the first coordinate, i.e. mpxq “ x1

for x “ px1, . . . , xpq
1. Then, tYtu is a homogeneous Markov chain on the state space

pRp,Bp, νpq, with transition probability

P px,Aq “

ż

mpAq

1

1` x1aβ
f

ˆ

z ´ x1φ

1` x1aβ

˙

dz, x P Rp and A P Bp,
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where xa “ p|x1|, . . . , |xp|q
1, φ “ pφ1, ..., φpq

1, β “ pβ1, ¨ ¨ ¨ , βpq
1, and fp¨q is the density

function of εt. Note that tY ˚t u can be rewritten in the vector form,

Y ˚t “ AtY
˚
t´1 ` et, (S.2)

where et “ pεt, 0, . . . , 0q
1, and tAtu are i.i.d. random matrices independent of tetu. Thus,

tY ˚t u is also a homogeneous Markov chain on pRp,Bp, νpq. To verify that tYtu and tY ˚t u

have the same transition probability, it is sufficient to show that the conditional char-

acteristic functions Etexppiu1Ytq|Yt´1 “ xu and Etexppiu1Y ˚t q|Y
˚
t´1 “ xu are the same,

where u “ pu1, . . . , upq
1. Since Etexppisεtqu “ expp´σ|s|q, we have

Etexppiu1Ytq|Yt´1 “ xu “ exp

ˆ

i
p
ÿ

j“2

ujxj´1

˙

Etexppiu1ytq|Yt´1 “ xu

“ exp

ˆ

i
p
ÿ

j“2

ujxj´1 ` iu1x
1φ

˙

Erexptiu1p1` x
1
aβqεtus

“ exp

#

i
p
ÿ

j“2

ujxj´1 ` iu1x
1φ´ σ|u1|p1` x

1
aβq

+

.

On the other hand, since ξit and εt are i.i.d., we have

Etexppiu1Y ˚t q|Y
˚
t´1 “ xu “ exp

ˆ

i
p
ÿ

j“2

ujxj´1

˙

Etexppiu1y
˚
t q|Y

˚
t´1 “ xu

“ exp

ˆ

i
p
ÿ

j“2

ujxj´1 ` iu1x
1φ

˙

Etexppiu1

p
ÿ

i“1

βi|xi|ξit ` iu1εtqu

“ exp

#

i
p
ÿ

j“2

ujxj´1 ` iu1x
1φ´ σ|u1|p1` x

1
aβq

+

.

This proves that tYtu and tY ˚t u have the same transition probability.

We can further verify that the p-step transition probability of tYtu is

P p
px,Aq “

ż

A

p
ź

i“1

1

1`X 1
a,i´1β

f

ˆ

zi ´X
1
i´1φ

1`X 1
a,i´1β

˙

dz1 . . . dzp, (S.3)

where Xi “ pzi, . . . , z1, x1, . . . , xp´iq
1 and Xa,i “ p|zi|, . . . , |z1|, |x1|, . . . , |xp´i|q

1. Observe

that, from Assumption 1, the transition density kernel in (S.3) is positive everywhere,

and then tYtu is νp-irreducible.

First suppose γ ă 0. Then, there exists an integer s such that Epln }A1 ¨ ¨ ¨As}q ă 0.

Let rAt “
śs´1

i“0 At´i and define qpuq “ Ep} rAt}
uq. Due to the continuity of the density fp¨q,

it can be shown that qpuq is continuous and differentiable on r0, 1q, and its derivative
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function has the form of 9qpuq “ Ep} rAt}
u ln } rAt}q. For any given κ˚ P p0, 1q, it can

be verified that EtsupuPr0,κ˚sp} rAt}
u ln } rAt}qu ă 8, which, together with the dominated

convergence theorem, implies that limuÑ0 9qpuq “ Epln } rAt}q ă 0. As a result, there exists

a constant 0 ă κ ă κ˚ such that

Ep} rAt}
κ
q ă qp0q “ 1.

We next prove that s-step Markov chain tYtsu satisfies Tweedie’s drift criterion

(Tweedie, 1983, Theorem 4), i.e., there exists a small set G with νppGq ą 0 and a

non-negative continuous function gpxq such that

E
 

gpYtsq|Ypt´1qs “ x
(

ď p1´ εqgpxq, x R G, (S.4)

E
 

gpYtsq|Ypt´1qs “ x
(

ďM, x P G, (S.5)

for some constant 0 ă ε ă 1 and 0 ă M ă 8. By iterating the random coefficient AR

model (S.2) s times, we have that

Y ˚ts “
rAtsY

˚
pt´1qs `

˜

ets `
s´1
ÿ

j“1

j´1
ź

r“0

Ats´rets´j

¸

. (S.6)

Let gpxq “ 1` }x}κ, and it can be verified that

ErgpY ˚tsq|Y
˚
pt´1qs “ xs ď 1` Ep} rAts}

κ
¨ }x}κq ` E

˜
›

›

›

›

›

ets `
s´1
ÿ

j“1

j´1
ź

r“0

Ats´rets´j

›

›

›

›

›

κ¸

“ C ` gpxqEp} rAts}
κ
q,

where C “ 1`Ep}ets`
řs´1
j“1

śj´1
r“0Ats´rets´j}

κq´Ep} rAts}
κq ă 8. Note that Ep} rAts}

κq “

Ep} rAt}
κq ă 1. Then there exists a L ą 0 such that

EtgpY ˚tsq|Y
˚
pt´1qs “ xu ď p1´ εqgpxq, }x} ą L, (S.7)

EtgpY ˚tsq|Y
˚
pt´1qs “ xu ďM ă 8, }x} ď L, (S.8)

where ε “ 0.5´ 0.5Ep} rAt}
κq, and νppGq ą 0 with G “ tx : }x} ď Lu. Note that tYtu and

tY ˚t u have the same transition probability, and then Claims (S.4) and (S.5) are implied

by (S.7) and (S.8).

Moreover, tYtsu is a Feller chain since, for each bounded continuous function g˚p¨q,

Etg˚pYtsq|Ypt´1qs “ xus is continuous with respect to x, and tYtsu is also νp-irreducible.
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This implies that G is a small set. As a result, from Theorem 4(ii) in Tweedie (1983)

and Theorems 1 and 2 in Feigin and Tweedie (1985), tYtsu is geometrically ergodic with

a unique stationary distribution πp¨q, and
ż

}Yts}
κdπ “

ż

Rp

gpxqπpdxq ´ 1 ă 8. (S.9)

By Lemma 3.1 of Tjøstheim (1990), tYtu is geometrically ergodic, and it is the unique

strictly stationary solution to model (2.1). Moreover, it is implied by (S.9) that Ep|yt|
κq ă

8.

Finally we prove the necessity. Suppose that there exists a strictly stationary solution

tytu to model (2.1), and then the Markov chain tYtu has a stationary distribution πp¨q.

Generate Y ˚0 with the distribution of πp¨q and, by iterating the random coefficient AR

model in (S.2), it leads to tY ˚t : t P Nu, which is a strictly stationary solution to model

(S.2) since tYtu and tY ˚t u have the same transition probability. Moreover, it is also

nonanticipative.

By letting s “ p in (S.6), we can obtain a vector random coefficient AR model,

Y ˚tp “
rAtpY

˚
pt´1qp `Btp, (S.10)

where rAt “
śp´1

i“0 At´i, Btp “ etp `
řp´1
j“1

śj´1
r“0Atp´retp´j, and tp rAtp, Btpq : t P Nu

is an independent and identically distributed sequence. For a κ˚ P p0, 1q, it holds that

ln`pxq ď maxtxκ
˚

, Cu for x ą 0 and a positive number C, where ln`pxq “ maxtlnpxq, 0u.

Moreover, tAtu are independent and identically distributed random matrices, and the

κ˚th moment of Cauchy distributions is finite. As a result,

Epln` } rAtp}q ă 8 and Epln` }Btp}q ă 8. (S.11)

In addition, tY ˚tp : t P Nu is a nonanticipative and strictly stationary solution to (S.10).

From (S.3), it holds that

P pY ˚tp P A|Y
˚
pt´1qp “ xq “ P pY ˚p P A|Y

˚
0 “ xq “ P p

px,Aq ą 0

as νppAq ą 0. Let H be any affine invariant subspace of Rp under model (S.10), i.e.

t rAtpx`Btp : x P Hu Ď H with probability one (Bougerol and Picard, 1992). If νppRp ´

Hq ‰ 0, then for any x P H,

P p rAtpx`Btp P Hq “ P pY ˚tp P H|Y
˚
pt´1qp “ xq

“ P pY ˚tp P Rp
|Y ˚pt´1qp “ xq ´ P pY ˚tp P Rp

´H|Y ˚pt´1qp “ xq ă 1.
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As a result, Rp is the unique affine invariant subspace, and hence model (S.10) is ir-

reducible. Applying Theorem 2.5 of Bougerol and Picard (1992), we have that the

corresponding top Lyapounov exponent is strictly negative, i.e

rγ “ inft
1

t
Epln } rAp rA2p ¨ ¨ ¨ rAtp}q, t ě 1u ă 0, (S.12)

which implies that γ ď rγ{p ă 0 since rAp rA2p ¨ ¨ ¨ rAtp “ A1A2 ¨ ¨ ¨Atp. This completes the

proof.

2.2 Proof of Theorem 2

We can define the Markov chain tYtu and its state space as in the proof of Theorem 1.

Note that, for the p-step transition probability, its density kernel is positive everywhere

due to Assumption 1. As a result, tYtu is νp-irreducible.

It can be verified that

Ep|yt`1|
κ
| Yt “ xq ď

p
ÿ

i“1

Ep|φisignpxiq ` βiεt`1|
κ
q|xi|

κ
` Ep|εt`1|

κ
q

ď

p
ÿ

i“1

ai|xi|
κ
` Ep|εt`1|

κ
q,

where x “ px1, . . . , xpq
1 and ai “ maxtEp|φi`βiεt|

κq, Ep|φi´βiεt|
κqu for 1 ď i ď p. Note

that
řp
i“1 ai ă 1, and we can then find positive values tr1, . . . , rp´1u such that

ap ă rp´1 ă 1´
p´1
ÿ

i“1

ai and ai`1 ` ri`1 ă ri ă 1´
i
ÿ

k“1

ak for 1 ď i ď p´ 2. (S.13)

Consider the test function gpxq “ 1` |x1|
κ `

řp´1
i“1 ri|xi`1|

κ, and we have that

EtgpYt`1q|Yt “ xu

ď 1`
p
ÿ

i“1

ai|xi|
κ
`

p´1
ÿ

i“1

ri|xi|
κ
` Ep|εt`1|

κ
q

“ 1` pa1 ` r1q|x1|
κ
`

p´1
ÿ

i“2

ai ` ri
ri´1

ri´1|xi|
κ
`

ap
rp´1

rp´1|xp|
κ
` Ep|εt`1|

κ
q

ď ρgpxq ` 1´ ρ` Ep|εt`1|
κ
q,

where, from (S.13),

ρ “ max

"

a1 ` r1,
a2 ` r2

r1

, ¨ ¨ ¨ ,
ap´1 ` rp´1

rp´2

,
ap
rp´1

*

ă 1.
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Denote ε “ 1 ´ ρ ´ t1 ´ ρ ` Ep|εt`1|
κqu{gpxq, and G “ tx : }x} ď Lu, where L is a

positive constant such that gpxq ą 1`Ep|εt`1|
κq{p1´ ρq as }x} ą L. We can verify that

EtgpYt`1q|Yt “ xu ď p1´ εqgpxq, x R G,

and

EtgpYt`1q|Yt “ xu ďM ă 8, x P G,

i.e. Tweedie’s drift criterion (Tweedie, 1983, Theorem 4) holds. Moreover, tYtu is a

Feller chain since, for each bounded continuous function g˚p¨q, Etg˚pYtq|Yt´1 “ xu is

continuous with respect to x, and then G is a small set. As a result, from Theorem

4(ii) in Tweedie (1983) and Theorems 1 and 2 in Feigin and Tweedie (1985), tYtu is

geometrically ergodic with a unique stationary distribution πp¨q, and

ż

Rp

gpxqπpdxq “ 1`

˜

1`
p´1
ÿ

i“1

ri

¸

Ep|yt|
κ
q ă 8,

which implies that Ep|yt|
κq ă 8. This accomplishes the proof.

2.3 Proofs of Lemma 1 and Theorem 3

Proof of Lemma 1. Denote by θτ the parameter vector corresponding to the true value

θτ0, and define the function Lnpθτ q “
řn
t“p`1wtρτ pyt ´ x

1
tθτ q. Note that, for u ‰ 0,

ρτ pu´ νq ´ ρτ puq “ ´νψτ puq `

ż ν

0

tIpu ď sq ´ Ipu ď 0quds, (S.14)

where ψτ puq “ τ ´ Ipu ă 0q; see Knight (1998). For any fixed u P R2p`1, applying (S.14)

we have

Lnpθτ0 ` n
´1{2uq ´ Lnpθτ0q

“

n
ÿ

t“p`1

wtrρτtpεt ´ bτ qσt ´ n
´1{2x1tuu ´ ρτtpεt ´ bτ qσtus

“ ´
u1
?
n

n
ÿ

t“p`1

ψτ pεt ´ bτ qwtxt `
n
ÿ

t“p`1

ξtpuq, (S.15)

where σt “ 1` Y 1a,t´1β0 and

ξtpuq “ wt

ż n´1{2x1tu

0

 

Ipεt ď σ´1
t s` bτ q ´ Ipεt ď bτ q

(

ds.
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We can further verify that, by Taylor expansion,

n
ÿ

t“p`1

ξtpuq “
n
ÿ

t“p`1

Etξtpuq | Ft´1u `R1npuq

“

n
ÿ

t“p`1

wt

ż n´1{2x1tu

0

tF pσ´1
t s` bτ q ´ F pbτ quds`R1npuq

“
1

2
fpbτ qu

1

˜

1

n

n
ÿ

t“p`1

σ´1
t wtxtx

1
t

¸

u`R2npuq `R1npuq, (S.16)

where R1npuq “
řn
t“p`1rξtpuq ´ Etξtpuq | Ft´1us and

R2npuq “
n
ÿ

t“p`1

wt

ż n´1{2x1tu

0

σ´1
t stfpσ´1

t s˚ ` bτ q ´ fpbτ quds

with s˚ between 0 and s.

By the compactness of the parameter space Λ, we have mintβ1, . . . , βpu ě ω for some

ω ą 0, and then

sup
λPΛ

›

›

›

›

Yt´1

1` Y 1a,t´1β

›

›

›

›

ď sup
λPΛ

řp
i“1 |yt´i|

1` Y 1a,t´1β
ď

řp
i“1 |yt´i|

1` ω
řp
i“1 |yt´i|

ď
1

ω
(S.17)

uniformly for all 1 ď t ď n. It is then implied by Assumptions 2 and 3 that

|R2npuq| ď sup
0ďxďn´1{2C

|fpx` bτ q ´ fpbτ q|
n
ÿ

t“p`1

wt

ż n´1{2|x1tu|

0

σ´1
t sds

“
1

2
sup

0ďxďn´1{2C

|fpx` bτ q ´ fpbτ q|u
1

˜

1

n

n
ÿ

t“p`1

σ´1
t wtxtx

1
t

¸

u

“ opp1q, (S.18)

where C “ p1` 2ω´1q}u} is a constant. For R1npuq, it can be similarly shown that

Erξ2
t puqs ď

1
?
n
E

«

w2
t |x

1
tu|

ż n´1{2|x1tu|

0

tIpεt ď σ´1
t s` bτ q ´ Ipεt ď bτ quds

ff

“
1
?
n
E

«

w2
t |x

1
tu|

ż n´1{2|x1tu|

0

tF pσ´1
t s` bτ q ´ F pbτ quds

ff

ď
}u}3

2n3{2
sup

0ďxďn´1{2C

fpx` bτ qEpσ
´1
t w2

t }xt}
3
q

“ opn´1
q,

for all t, which implies that

EtR2
1npuqu ď

n
ÿ

t“p`1

Etξ2
t puqu “ op1q. (S.19)
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By the central limit theorem and the ergodic theorem, together with (S.15), (S.16), (S.18)

and (S.19), it can be verified that

Lnpθτ0 ` n
´1{2uq ´ Lnpθτ0q Ñ ´u1T `

1

2
fpbτ qu

1Ω0pwqu

in distribution as n Ñ 8, where T is a normal random variable with mean zero and

variance matrix τp1 ´ τqEpw2
t xtx

1
tq. Applying Corollary 2 in Knight (1998), together

with the convexity of Lnpθτ q, we have

?
nprθτn ´ θτ0q Ñ N

ˆ

0,
τp1´ τq

f 2pbτ q
Ω1pwq

˙

in distribution as nÑ 8.

Proof of Theorem 3. By the Delta method (van der Vaart, 1998, Chapter 3), we can

show that

?
nprλτn ´ λ0q “

˜

´b´1
τ β0 ´b´1

τ Ip 0

0 0 Ip

¸

?
nprθτn ´ θτ0q ` opp1q,

which, together with Lemma 1, implies the asymptotic normality result of
?
nprλτn´λ0q.

To prove the minimum of Ω1pwq, as in Xu (2017), we consider the i.i.d. samples

px1, z1q, . . . , pxn, znq from zt “
x1t
σt
γ ` et, where tetu are i.i.d. standard normal and are

independent of txtu, and γ is the unknown parameter to be estimated from the data.

Consider the weighted least-squares estimation of γ:

pγpλq “ argmin
r

n
ÿ

t“1

λt

ˆ

zt ´
x1t
σt
r

˙2

, with weights λt “ σtwt. (S.20)

By the classical least-squares estimation theory and the central limit theorem, we have

?
nrpγpλq ´ γs Ñ Np0,Ω1pwqq

in distribution as n Ñ 8. On the other hand, by letting λt ” 1 or equivalently wt “

σ´1
t in (S.20), the resulting ordinary least-squares estimator has asymptotic covariance

matrix Ω1pσ
´1
t q. Since et has a standard normal distribution, the ordinary least-squares

estimator is exactly the maximum likelihood estimator, which is the most efficient and

has the smallest variance. Thus, we conclude that Ω1pwq ě Ω1pσ
´1
t q. That is, Ω1pwq

is minimized at wt “ σ´1
t . Finally, Ω2pwq ě Ω2pσ

´1
t q follows from the fact that, for

a symmetric positive semidefinite matrix A and a matrix B, the matrix BAB1 is also

positive semidefinite.
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2.4 Proof of Theorem 4

Let

Σ2pτq “ Σ´1
1 pτq

˜

´β0 Ip 0

0 0 Ip

¸

.

From the proofs of Lemma 1 and Theorem 3, we have the Bahadur representation,

?
nprλτn ´ λ0q “ Σ2pτqΩ

´1
0

1
?
n

n
ÿ

t“p`1

ψτ pεt ´ bτ q
xt
σt
` opp1q, (S.21)

where Ω´1
0 “ Ω1 since wt “ σ´1

t . Let

Hpεtq “ Hpεt; Πq “
K
ÿ

k“1

ψτkpεt ´ bτkqπkΣ2pτkq.

As a result, by the central limit theorem, we have

?
nppλn ´ λ0q “

1
?
n

n
ÿ

t“p`1

HpεtqΩ
´1
0

xt
σt
` opp1q Ñ Np0,VpΠqq (S.22)

in distribution as nÑ 8.

Let rλn “ prλ
1
τ1n
, ..., rλ1τKnq

1. Note that bτk ‰ 0 for 1 ď k ď K and, from (S.21), we have

?
nrrλn ´ p1K b I2pqλ0s Ñ Np0,Σ˚´1

1 pΓb Ω2qΣ
˚´1
1 q

in distribution as nÑ 8, where 1K is a Kˆ1 vector of ones, b is the Kronecker product,

and Σ˚1 “ diagtΣ1pτ1q, ...,Σ1pτKqu. Consider a minimum distance estimator

pλ˚n “ argmin
λ

trλn ´ p1K b I2pqλu
1Ξtrλn ´ p1K b I2pqλu,

where Ξ is a 2pK ˆ 2pK matrix. Let Π “ pπ1, ..., πKq “ tp1K b I2pq
1Ξp1K b I2pqu

´1p1K b

I2pq
1Ξ be a 2pˆ 2pK matrix, and it can be verified that

pλ˚n “ Πrλn “
K
ÿ

k“1

πkrλτkn.

The minimum distance estimator will have a minimum variance when the matrix Ξ is

proportional to rΣ˚´1
1 pΓb Ω2qΣ

˚´1
1 s´1 “ Σ˚1pΓ

´1 b Ω´1
2 qΣ

˚
1 , and this corresponds to

Πopt
“ rp1K b I2pq

1Σ˚1pΓ
´1
b Ω´1

2 qΣ
˚
1p1K b I2pqs

´1
p1K b I2pq

1Σ˚1pΓ
´1
b Ω´1

2 qΣ
˚
1 ;

see also Chen et al. (2016). Hence the proof of this theorem is accomplished.
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2.5 Proof of Theorem 5

Note that rβint ´ β0 “ Oppn
´1{2q, rσt “ 1 ` Y 1a,t´1

rβint and wt “ prσt ` c
řpmax

j“1 |yt´j|q
´1.

It is then asymptotically equivalent to use the weights wt “ pσt ` c
řpmax

j“1 |yt´j|q
´1 “

p1`
řpmax

j“1 pc`β0jq|yt´j|q
´1, which satisfy Assumption 2 since c`β0j ą 0 for 1 ď j ď pmax.

For simplicity, we here only provide the proof for the consistency of

BICτ ppq “ 2pn´ pmaxq log rστn ` p2p` 1q logpn´ pmaxq.

In the following, we use θp, θpτ0, rθpτn, σpτ0 and rσpτn to emphasize their dependence on

the order p, and xt refers to the corresponding regressor with a compatible dimension.

Denote rθpτn “ argminθp
řn
t“pmax`1wtρτ pyt ´ x

1
tθ
pq,

σpτ0 “ min
θp

Erwtρτ pyt ´ x
1
tθ
p
qs and rσpτn “

1

n´ pmax

n
ÿ

t“pmax`1

wtρτ pyt ´ x
1
t
rθpτnq.

We can show that σ1
τ0 ą ¨ ¨ ¨ ą σp0τ0 “ ¨ ¨ ¨ “ σpmax

τ0 , and rσpτn “ σpτ0 ` opp1q for all

1 ď p ď pmax.

We first consider the case with p ă p0, where we have

BICτ ppq ´ BICτ pp0q “ 2pn´ pmaxqplog rσpτn ´ log rσp0τnq ` 2pp´ p0q logpn´ pmaxq

“ 2pn´ pmaxqtplog σpτ0 ´ log σp0τ0q ` opp1qu ` opnq, (S.23)

which tends to `8 as nÑ 8.

We next consider the case with p ą p0. From the proof of Lemma 1, we have

n
ÿ

t“pmax`1

”

wtρτ pyt ´ x
1
t
rθpτnq ´ wtρτ pyt ´ x

1
tθ
p
τ0q

ı

“ Opp1q,

which, together with the fact that
řn
t“pmax`1wtρτ pyt´ x

1
tθ
p
τ0q is a constant for all p ě p0,

implies that

rσpτn ´ rσp0τn “ Oppn
´1
q.

As a result, by the Taylor expansion,

| log rσpτn ´ log rσp0τn| ď
1

rσpτn
|rσpτn ´ rσp0τn| “ Oppn

´1
q,

and then

BICτ ppq ´ BICτ pp0q “ 2pn´ pmaxqplog rσpτn ´ log rσp0τnq ` 2pp´ p0q logpn´ pmaxq

“ Opp1q ` 2pp´ p0q logpn´ pmaxq, (S.24)
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which tends to `8 as n Ñ 8. We can accomplish the proof by combining (S.23) and

(S.24).

2.6 Proofs of Lemma 2 and Theorem 6

Proof of Lemma 2. Denote Qnpbq “
řn
t“p`1 ρτ ppεt ´ bq. For any fixed v P R, by (S.14),

we have

Qnpbτ ` n
´1{2vq ´Qnpbτ q

“ ´
v
?
n

n
ÿ

t“p`1

ψτ ppεt ´ bτ q `
n
ÿ

t“p`1

ż n´1{2v

0

tIppεt ´ bτ ď sq ´ Ippεt ´ bτ ď 0quds.

From Theorem 4 and Knight (1998), together with the convexity of Qnpbq, it is sufficient

to show that

1
?
n

n
ÿ

t“p`1

ψτ ppεt ´ bτ q “
1
?
n

n
ÿ

t“p`1

ψτ pεt ´ bτ q ´ d
1
0pτq

?
nppλoptn ´ λ0q ` opp1q, (S.25)

and

n
ÿ

t“p`1

ż n´1{2v

0

tIppεt ´ bτ ď sq ´ Ippεt ´ bτ ď 0quds “
1

2
fpbτ qv

2
` opp1q, (S.26)

where d0pτq “ fpbτ qpbτEpσ
´1
t Y 1a,t´1q, Epσ

´1
t Y 1t´1qq

1. For any u1, u2 P Rp, let u “ pu11, u
1
2q
1,

and denote

σtpu1q “ 1` Y 1a,t´1pβ0 ` n
´1{2u1q and εtpuq “

yt ´ Y
1
t´1pφ0 ` n

´1{2u2q

σtpu1q
,

where despite their dependence on n, it is suppressed in the notations without causing

confusion. Since
?
nppλn ´ λ0q “ Opp1q, to prove (S.25) and (S.26) it is sufficient to

respectively establish that, for any fixed M ą 0,

sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

t“p`1

rψτtεtpuq ´ bτu ´ ψτ pεt ´ bτ qs ` d
1
0pτqu

ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1q, (S.27)

and

sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

ż n´1{2v

0

rItεtpuq ´ bτ ď su ´ Itεtpuq ´ bτ ď 0usds´
1

2
fpbτ qv

2

ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1q. (S.28)

We first prove (S.27). Let btpuq “ bτσ
´1
t σtpu1q ` n´1{2σ´1

t Y 1t´1u2. We have that

btp0q “ bτ and btpuq P Ft´1 for all t. Moreover, it is implied by (S.17) that, for any

u, u˚ P R2p,

|btpu
˚
q´ btpuq| “ n´1{2

ˇ

ˇ

ˇ

ˇ

bτ
Y 1a,t´1pu

˚
1 ´ u1q

σt
`
Y 1t´1pu

˚
2 ´ u2q

σt

ˇ

ˇ

ˇ

ˇ

ď n´1{2C}u˚´u}, (S.29)
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where C is a constant independent of t.

Denote

ζtpuq “ ψτtεtpuq´ bτu´ψτ pεt´ bτ q and Snpuq “
1
?
n

n
ÿ

t“p`1

rζtpuq ´ Etζtpuq | Ft´1us .

It holds that

ζtpuq “ Ipεt ă bτ q ´ Itεt ă btpuqu “ Itbtpuq ă εt ă bτu ´ Itbtpuq ą εt ą bτu,

and then, by the Taylor expansion, (S.29) and Assumption 3,

Etζ2
t puqu “ Et|F tbtpuqu ´ F pbτ q|u ď sup

x
fpxqEt|btpuq ´ bτ |u ď n´1{2C}u},

which implies that

EtS2
npuqu ď

1

n

n
ÿ

t“p`1

Etζ2
t puqu “ op1q. (S.30)

Similarly, for any u, u˚ P R2p and any δ ą 0,

sup
}u˚´u}ďδ

|ζtpu
˚
q ´ ζtpuq|

“ sup
}u˚´u}ďδ

|Itbtpu
˚
q ă εt ă btpuqu ´ Itbtpu

˚
q ą εt ą btpuqu|

ď I

#

|εt ´ btpuq| ď sup
}u˚´u}ďδ

|btpu
˚
q ´ btpuq|

+

.

This, together with (S.29) and Assumption 3, leads to

E sup
}u˚´u}ďδ

|ζtpu
˚
q ´ ζtpuq| ď prt|εt ´ btpuq| ď n´1{2δCu ď 2C sup

x
fpxq ¨ n´1{2δ,

which implies that

E sup
}u˚´u}ďδ

|Snpu
˚
q ´ Snpuq| ď

2
?
n

n
ÿ

t“p`1

E sup
}u˚´u}ďδ

|ζtpu
˚
q ´ ζtpuq| ď δC. (S.31)

Therefore, it follows from (S.30), (S.31) and the finite covering theorem that

sup
}u}ďM

|Snpuq| “ opp1q. (S.32)

Observe that Etζtpuq | Ft´1u “ F pbτ q ´ F tbtpuqu and, by (S.29) and the law of large

numbers, n´1{2
řn
t“p`1tbτ ´ btpuqufpbτ q “ ´d

1
0pτqu ` opp1q. As a result, by the Taylor
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expansion, (S.29) and Assumption 3,

sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

t“p`1

Etζtpuq | Ft´1u ` d
1
0pτqu

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

t“p`1

tfpb˚t q ´ fpbτ qutbτ ´ btpuqu

ˇ

ˇ

ˇ

ˇ

ˇ

` opp1q

ď CM sup
0ďxďn´1{2CM

|fpx` bτ q ´ fpbτ q| ` opp1q “ opp1q,

where b˚t is between btpuq and bτ . This together with (S.32), implies (S.27).

We next prove (S.28). By a method similar to that of (S.16), (S.18) and (S.19), it

can be readily shown that

n
ÿ

t“p`1

ż n´1{2v

0

tIpεt ´ bτ ď sq ´ Ipεt ´ bτ ď 0quds “
1

2
fpbτ qv

2
` opp1q. (S.33)

Denote

ηtpuq “

ż n´1{2v

0

rItεtpuq ´ bτ ď su ´ Itεtpuq ´ bτ ď 0u ´ Ipεt ´ bτ ď sq ` Ipεt ´ bτ ď 0qs ds.

For any u P R2p and s P R, let btpu, sq “ σ´1
t σtpu1qs` btpuq and, by (S.17), we have that

|btpu
˚, sq ´ btpu, sq| “ n´1{2

ˇ

ˇ

ˇ

ˇ

pbτ ` sq
Y 1a,t´1pu

˚
1 ´ u1q

σt
`
Y 1t´1pu

˚
2 ´ u2q

σt

ˇ

ˇ

ˇ

ˇ

ď n´1{2
}u˚ ´ u}Cp1` |s|q (S.34)

uniformly for all 1 ď t ď n. It can be further verified that

ηtpuq “

ż n´1{2v

0

rItεt ď btpu, squ ´ Ipεt ď s` bτ qs ´ rItεt ď btpuqu ´ Ipεt ď bτ qsds,

and for any δ ą 0,

sup
}u˚´u}ďδ

|ηtpu
˚
q ´ ηtpuq|

ď

ż n´1{2|v|

0

I

#

|εt ´ btpu, sq| ď sup
}u˚´u}ďδ

|btpu
˚, sq ´ btpu, sq|

+

ds

`

ż n´1{2|v|

0

I

#

|εt ´ btpuq| ď sup
}u˚´u}ďδ

|btpu
˚
q ´ btpuq|

+

ds.

By a method similar to the proof of (S.32), together with (S.29) and (S.34), we can show

that

sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

rηtpuq ´ Etηtpuq | Ft´1us

ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1q. (S.35)
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Note that btp0, sq “ s` bτ and, by the Taylor expansion, we have

sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

Etηtpuq | Ft´1u

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

ż n´1{2v

0

rfpb˚˚t qtbtpu, sq ´ ps` bτ qu ´ fpb
˚
t qtbtpuq ´ bτusds

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

ż n´1{2v

0

fpb˚t qrtbtpu, sq ´ ps` bτ qu ´ tbtpuq ´ bτusds

ˇ

ˇ

ˇ

ˇ

ˇ

` sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

ż n´1{2v

0

tfpb˚˚t q ´ fpb
˚
t qutbtpu, sq ´ ps` bτ quds

ˇ

ˇ

ˇ

ˇ

ˇ

, (S.36)

where b˚t is between btpuq and bτ , and b˚˚t is between btpu, sq and s`bτ . Since it is implied

by (S.17) that

|tbtpu, sq ´ ps` bτ qu ´ tbtpuq ´ bτu| “ n´1{2
|s|
Y 1a,t´1u1

σt
ď n´1{2

|s|}u}C

uniformly for all 1 ď t ď n, by Assumption 3, we then have that

sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

ż n´1{2v

0

fpb˚t qrtbtpu, sq ´ ps` bτ qu ´ tbtpuq ´ bτusds

ˇ

ˇ

ˇ

ˇ

ˇ

ď
?
nCM sup

x
fpxq

ż n´1{2|v|

0

|s|ds “ opp1q. (S.37)

Moreover, by (S.29) and (S.34), we have

sup
}u}ďM

sup
0ďsďn´1{2|v|

|b˚˚t ´ b˚t | ď n´1{2CM

uniformly for all 1 ď t ď n. Then, it follows from Assumption 3 and (S.34) again that

sup
}u}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“p`1

ż n´1{2v

0

tfpb˚˚t q ´ fpb
˚
t qutbtpu, sq ´ ps` bτ quds

ˇ

ˇ

ˇ

ˇ

ˇ

ď
?
nCM

ż n´1{2|v|

0

p1` |s|qds sup
}u}ďM

sup
0ďsďn´1{2|v|

|fpb˚˚t q ´ fpb
˚
t q|

“ opp1q. (S.38)

Hence, (S.28) follows from (S.33) and (S.35)-(S.38). This completes the derivation of the

Bahadur representation of pbτn, and hence the proof of the lemma.

Proof of Theorem 6. We first show that pµG,m “ µG,m ` opp1q, pσ
2
G,m “ σ2

G,m ` opp1q for
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m “ 1 and 2. By the Taylor expansion, (S.17) and Assumption 4(i) and (ii), we have

|Gppεtq ´Gpεtq| “ |Gtεtppλnqu ´Gtεtpλ0qu|

“

ˇ

ˇ

ˇ

ˇ

ˇ

gtεtpλ
˚
quεtpλ

˚
q
Y 1a,t´1p

pβn ´ β0q

σtpλ˚q
` gtεtpλ

˚
qu
Y 1t´1p

pφn ´ φ0q

σtpλ˚q

ˇ

ˇ

ˇ

ˇ

ˇ

ď C}pλn ´ λ0}

uniformly for all 1 ď t ď n, where λ˚ is between pλn and λ0. As a result, by the law of

large numbers, the boundedness of Gp¨q and the fact that pλn ´ λ0 “ Oppn
´1{2q,

pµG,1 “
1

n

n
ÿ

t“p`1

Gppεtq “
1

n

n
ÿ

t“p`1

Gpεtq `
1

n

n
ÿ

t“p`1

tGppεtq ´Gpεtqu “ µG,1 ` opp1q,

and

pσ2
G,1 “

1

n

n
ÿ

t“p`1

tGppεtq ´ pµG,1u
2
“

1

n

n
ÿ

t“p`1

tGppεtqu
2
´ µ2

G,1 ` opp1q

“
1

n

n
ÿ

t“p`1

tGpεtqu
2
`

1

n

n
ÿ

t“p`1

tGppεtq ´GpεtqutGppεtq `Gpεtqu ´ µ
2
G,1 ` opp1q

“ σ2
G,1 ` opp1q.

Similarly, we can show that pµG,2 “ µG,2 ` opp1q and pσ2
G,2 “ σ2

G,2 ` opp1q.

Let ε˚t “ εt ´ bτ and pε˚t “ pεt ´ pbτn for simplicity. Since |
řn
t“p`1 ψτ ppε

˚
t q| ă 1, by an

elementary calculation, we have

1
?
n

n
ÿ

t“p```1

ψτ ppε
˚
t qtGppεt´`q ´ pµG,1u

“
1
?
n

n
ÿ

t“p```1

ψτ ppε
˚
t qGppεt´`q `Oppn

´1{2
q

“
1
?
n

n
ÿ

t“p```1

ψτ pε
˚
t qGpεt´`q ` An1 ` An2 ` An3 `Oppn

´1{2
q, (S.39)

where

An1 “
1
?
n

n
ÿ

t“p```1

tψτ ppε
˚
t q ´ ψτ pε

˚
t quGpεt´`q,

An2 “
1
?
n

n
ÿ

t“p```1

ψτ pε
˚
t qtGppεt´`q ´Gpεt´`qu,

An3 “
1
?
n

n
ÿ

t“p```1

tψτ ppε
˚
t q ´ ψτ pε

˚
t qutGppεt´`q ´Gpεt´`qu.
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Let d`pτq “ fpbτ qpbτEtGpεt´`qY
1
a,t´1{σtu, EtGpεt´`qY

1
t´1{σtuq

1 for ` ě 1. By a method

similar to the proof of (S.25), we can show that

An1 “ ´fpbτ qµG,1
?
nppbτn ´ bτ q ´ d

1
`pτq

?
nppλn ´ λ0q ` opp1q. (S.40)

Denote σtpλq “ 1` Y 1a,t´1β and εtpλq “ pyt ´ Y
1
t´1φq{σtpλq. Note that

Bεtpλq

Bλ
“

¨

˚

˝

´εtpλq
Ya,t´1

σtpλq

´
Yt´1

σtpλq

˛

‹

‚

and
B2εtpλq

BλBλ1
“

¨

˚

˚

˝

2εtpλq
Ya,t´1Y

1
a,t´1

σ2
t pλq

Ya,t´1Y
1
t´1

σ2
t pλq

Yt´1Y
1
a,t´1

σ2
t pλq

0

˛

‹

‹

‚

.

From (S.17) and Assumption 4, we can verify that

E

ˆ
ˇ

ˇ

ˇ

ˇ

sup
λPΛ

B2Gtεtpλqu

BλBλ1

ˇ

ˇ

ˇ

ˇ

˙

“ E

ˆ
ˇ

ˇ

ˇ

ˇ

sup
λPΛ

„

gtεtpλqu
B2εtpλq

BλBλ1
` 9gtεtpλqu

Bεtpλq

Bλ

Bεtpλq

Bλ1


ˇ

ˇ

ˇ

ˇ

˙

ă 8,

which, together with the Taylor expansion and the fact that
?
nppλn´λ0q “ Opp1q, implies

An2 “ opp1q. (S.41)

Finally we consider An3. For any v P R and u P R2p, let v “ pv, u1q1, and denote

ε˚t pvq “ εtpuq ´ pbτ ` n´1{2vq, where εtpuq is defined as in the proof of Lemma 2. Let

ςtpvq “ rψτtε
˚
t pvqu ´ ψτ pε

˚
t qsrGtεt´`puqu ´Gpεt´`qs. By a method similar to the proof of

(S.27), we can show that, for any M ą 0,

sup
}v}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

t“p```1

rςtpvq ´ Etςtpvq | Ft´1us

ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1q

and

sup
}v}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

t“p```1

Etςtpvq | Ft´1u

ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1q.

As a result,

sup
}v}ďM

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

t“p```1

rψτtε
˚
t pvqu ´ ψτ pε

˚
t qsrGtεt´`puqu ´Gpεt´`qs

ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1q,

which, together with
?
nppbτn ´ bτ q “ Opp1q and

?
nppλn ´ λ0q “ Opp1q, implies that

An3 “ opp1q. (S.42)

By (S.39)-(S.42), (S.22) and Lemma 2, we have

pρ`,τ “
1

?
τ ´ τ 2σG,1

1

n

n
ÿ

t“p```1

„

ψτ pε
˚
t qtGpεt´`q ´ µG,1u ´

rd1`,1pτqHpεtqΩ1
xt
σt



` oppn
´1{2

q,
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where rd`,1pτq “ fpbτ q
`

bτErtGpεt´`q ´ µG,1uY
1
a,t´1{σts, ErtGpεt´`q ´ µG,1uY

1
t´1{σts

˘1
and

Hpεtq “
řK
k“1 ψτkpεt ´ bτkqπ

opt
k Σ2pτkq. Let pρτ “ ppρ1,τ , . . . , pρL,τ q

1. Then we have

pρτ “
1

?
τ ´ τ 2σG,1

1

n

n
ÿ

t“p`L`1

„

ψτ pε
˚
t qpG1 ´ µG,11Lq ´D

1
1pτqHpεtqΩ1

xt
σt



` oppn
´1{2

q,

where G1 “ pGpεt´1q, . . . , Gpεt´Lqq
1 and D1pτq “ prd1,1pτq, . . . , rdL,1pτqq.

Let prτ “ ppr1,τ , . . . , prL,τ q
1, and then by a method similar to the proof for pρτ above,

prτ “
1

?
τ ´ τ 2σG,2

1

n

n
ÿ

t“p`L`1

„

ψτ pε
˚
t qpG2 ´ µG,21Lq ´D

1
2pτqHpεtqΩ1

xt
σt



` oppn
´1{2

q,

where G2 “ pGpε2
t´1q, . . . , Gpε

2
t´Lqq

1 and D2pτq “ prd1,2pτq, . . . , rdL,2pτqq with rd`,2pτq “

fpbτ q
`

bτErtGpε
2
t´`q ´ µG,2uY

1
a,t´1{σts, ErtGpε

2
t´`q ´ µG,2uY

1
t´1{σts

˘1
. Therefore, we com-

plete the proof by the central limit theorem and the Cramér-Wold device.
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Table 1: Biases and ESDs of rλτn with the weights W1 or W2 at τ “ 0.25 or 0.35, when

the innovations follow the normal, Student’s t3 or Cauchy distribution.

τ “ 0.25 τ “ 0.35

W1 W2 W1 W2

n Bias ESD Bias ESD Bias ESD Bias ESD

Normal distribution

β 200 0.1093 0.6472 0.1240 0.7757 -0.0133 10.8221 -0.4226 12.5201

500 0.0247 0.2426 0.0268 0.2487 0.1275 1.3010 0.1446 0.8197

1000 0.0178 0.1660 0.0191 0.1639 0.0586 0.3211 0.0604 0.3289

φ 200 -0.0199 0.1300 -0.0215 0.1307 -0.0176 0.1190 -0.0204 0.1209

500 -0.0076 0.0834 -0.0078 0.0828 -0.0080 0.0781 -0.0085 0.0775

1000 -0.0021 0.0582 -0.0018 0.0577 -0.0003 0.0535 -0.0001 0.0530

Student’s t3 distribution

β 200 0.1396 0.6785 0.1691 0.9003 0.0788 6.6405 0.0056 6.5120

500 0.0342 0.2690 0.0347 0.2827 0.1418 0.7987 0.1415 0.7684

1000 0.0187 0.1691 0.0198 0.1679 0.0613 0.3157 0.0628 0.3156

φ 200 -0.0108 0.1258 -0.0104 0.1271 -0.0095 0.1077 -0.0115 0.1066

500 -0.0063 0.0768 -0.0062 0.0758 -0.0081 0.0660 -0.0084 0.0659

1000 -0.0049 0.0561 -0.0046 0.0551 -0.0036 0.0471 -0.0036 0.0465

Cauchy distribution

β 200 0.1413 0.8636 0.2298 1.6190 0.1010 2.6814 0.2891 2.9141

500 0.0551 0.3855 0.0698 0.3433 0.0874 0.5839 0.1000 0.5827

1000 0.0220 0.2264 0.0264 0.2243 0.0213 0.2854 0.0267 0.2836

φ 200 -0.0078 0.0799 -0.0095 0.0830 -0.0068 0.0556 -0.0071 0.0569

500 -0.0036 0.0460 -0.0034 0.0456 -0.0037 0.0312 -0.0039 0.0314

1000 -0.0022 0.0308 -0.0024 0.0306 -0.0009 0.0215 -0.0011 0.0213
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Table 2: Biases, ESDs and ASDs of the doubly weighted estimator pλoptn with the number

of quantile levels K “ 9 and the weights W1 or W2, when the innovations follow the

normal, Student’s t3 or Cauchy distribution.

W1 W2

n Bias ESD ASD Bias ESD ASD

Normal distribution

β 200 -0.0148 0.1703 0.1352 -0.0203 0.1658 0.1320

500 -0.0035 0.0955 0.0879 -0.0063 0.0938 0.0863

1000 0.0003 0.0632 0.0628 -0.0008 0.0618 0.0619

φ 200 -0.0106 0.1091 0.0896 -0.0106 0.1082 0.0889

500 -0.0055 0.0631 0.0596 -0.0057 0.0630 0.0592

1000 -0.0020 0.0449 0.0429 -0.0021 0.0448 0.0426

Student’s t3 distribution

β 200 0.0230 0.2176 0.1596 0.0204 0.2180 0.1569

500 0.0134 0.1200 0.1025 0.0123 0.1180 0.1010

1000 0.0082 0.0790 0.0728 0.0066 0.0780 0.0716

φ 200 -0.0076 0.1122 0.0863 -0.0082 0.1115 0.0856

500 -0.0032 0.0616 0.0567 -0.0037 0.0607 0.0563

1000 -0.0027 0.0423 0.0406 -0.0030 0.0421 0.0403

Cauchy distribution

β 200 0.1666 0.4452 0.2621 0.1674 0.4794 0.2619

500 0.0777 0.2279 0.1564 0.0803 0.2111 0.1550

1000 0.0326 0.1236 0.1085 0.0337 0.1224 0.1074

φ 200 -0.0072 0.0585 0.0435 -0.0081 0.0575 0.0430

500 -0.0022 0.0272 0.0258 -0.0022 0.0272 0.0255

1000 -0.0005 0.0175 0.0172 -0.0005 0.0173 0.0170
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Table 3: Empirical coverage rates of pρ` and pr` at lags ` “ 2, 4, 6 at the 5% significance

level, when the transformation G is the normal (GN), Student’s t3 (GT ) or Cauchy (GC)

distribution function, and the innovations follow the normal, Student’s t3 or Cauchy

distribution.

GN GT GC

n lag pρ` pr` pρ` pr` pρ` pr`

Normal distribution

200 2 0.949 0.945 0.949 0.948 0.948 0.945

4 0.958 0.953 0.955 0.952 0.953 0.955

6 0.960 0.940 0.957 0.942 0.959 0.947

500 2 0.941 0.941 0.942 0.941 0.942 0.945

4 0.959 0.944 0.960 0.944 0.963 0.940

6 0.951 0.957 0.949 0.959 0.951 0.960

1000 2 0.946 0.951 0.948 0.951 0.947 0.952

4 0.948 0.953 0.950 0.949 0.947 0.958

6 0.957 0.951 0.955 0.951 0.953 0.946

t3 distribution

200 2 0.957 0.942 0.957 0.945 0.963 0.943

4 0.952 0.953 0.956 0.953 0.953 0.955

6 0.939 0.953 0.940 0.949 0.941 0.957

500 2 0.959 0.952 0.955 0.948 0.958 0.948

4 0.957 0.955 0.955 0.962 0.952 0.956

6 0.948 0.946 0.953 0.947 0.952 0.947

1000 2 0.963 0.946 0.963 0.952 0.960 0.954

4 0.947 0.946 0.947 0.944 0.943 0.948

6 0.948 0.944 0.948 0.948 0.946 0.947

Cauchy distribution

200 2 0.960 0.951 0.960 0.951 0.961 0.957

4 0.952 0.949 0.950 0.953 0.947 0.949

6 0.958 0.951 0.956 0.949 0.950 0.947

500 2 0.950 0.960 0.956 0.959 0.958 0.955

4 0.958 0.956 0.955 0.949 0.958 0.962

6 0.944 0.955 0.941 0.953 0.945 0.955

1000 2 0.942 0.941 0.945 0.942 0.948 0.947

4 0.940 0.951 0.942 0.954 0.944 0.957

6 0.948 0.953 0.949 0.954 0.951 0.954
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Table 4: Rejection rates of the test QBP
1 p6q at the 5% significance level, when the trans-

formation G is the normal (GN), Student’s t3 (GT ) or Cauchy (GC) distribution function

and the innovations follow the normal, Student’s t3 or Cauchy distribution.

Normal distribution t3 distribution Cauchy distribution

n c1 c2 GN GT GC GN GT GC GN GT GC

200 0.0 0.0 0.039 0.041 0.041 0.042 0.041 0.042 0.046 0.046 0.047

0.0 0.1 0.042 0.040 0.042 0.049 0.048 0.049 0.056 0.057 0.055

0.0 0.2 0.045 0.048 0.047 0.054 0.049 0.050 0.053 0.060 0.065

0.0 0.3 0.051 0.055 0.054 0.054 0.052 0.054 0.080 0.080 0.084

0.1 0.0 0.079 0.080 0.076 0.107 0.111 0.110 0.523 0.534 0.551

0.2 0.0 0.264 0.267 0.270 0.415 0.425 0.426 0.946 0.950 0.953

0.3 0.0 0.637 0.642 0.639 0.797 0.813 0.822 0.992 0.992 0.993

500 0.0 0.0 0.046 0.047 0.046 0.047 0.044 0.044 0.048 0.048 0.053

0.0 0.1 0.033 0.032 0.035 0.048 0.050 0.050 0.053 0.054 0.049

0.0 0.2 0.052 0.053 0.055 0.049 0.046 0.047 0.056 0.055 0.061

0.0 0.3 0.049 0.051 0.048 0.048 0.050 0.050 0.072 0.076 0.081

0.1 0.0 0.179 0.178 0.178 0.303 0.302 0.303 0.956 0.965 0.972

0.2 0.0 0.714 0.721 0.724 0.879 0.894 0.896 1.000 1.000 1.000

0.3 0.0 0.991 0.991 0.991 0.998 0.998 0.998 1.000 1.000 1.000

1000 0.0 0.0 0.051 0.051 0.052 0.048 0.047 0.050 0.049 0.052 0.051

0.0 0.1 0.048 0.050 0.051 0.051 0.046 0.044 0.046 0.043 0.044

0.0 0.2 0.064 0.062 0.062 0.049 0.046 0.048 0.060 0.061 0.065

0.0 0.3 0.065 0.065 0.064 0.060 0.069 0.066 0.067 0.070 0.070

0.1 0.0 0.380 0.380 0.386 0.567 0.576 0.586 1.000 1.000 1.000

0.2 0.0 0.979 0.979 0.980 0.999 0.999 1.000 1.000 1.000 1.000

0.3 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5: Rejection rates of the test QBP
2 p6q at the 5% significance level, when the

transformation G is the normal (GN), Student’s t3 (GT ) or Cauchy (GC) distribution

function and the innovations follow the normal, Student’s t3 or Cauchy distribution.

Normal distribution t3 distribution Cauchy distribution

n c1 c2 GN GT GC GN GT GC GN GT GC

200 0.0 0.0 0.043 0.046 0.044 0.044 0.045 0.048 0.059 0.057 0.056

0.0 0.1 0.063 0.072 0.073 0.052 0.057 0.061 0.069 0.070 0.085

0.0 0.2 0.102 0.116 0.123 0.110 0.111 0.124 0.100 0.109 0.122

0.0 0.3 0.179 0.202 0.252 0.178 0.197 0.228 0.185 0.194 0.213

0.1 0.0 0.043 0.039 0.044 0.046 0.044 0.039 0.171 0.186 0.210

0.2 0.0 0.045 0.051 0.052 0.046 0.047 0.052 0.430 0.450 0.485

0.3 0.0 0.055 0.057 0.059 0.092 0.094 0.110 0.739 0.761 0.796

500 0.0 0.0 0.050 0.055 0.056 0.040 0.044 0.050 0.047 0.051 0.052

0.0 0.1 0.089 0.097 0.107 0.102 0.109 0.117 0.104 0.109 0.123

0.0 0.2 0.261 0.292 0.313 0.236 0.274 0.308 0.220 0.242 0.283

0.0 0.3 0.660 0.700 0.763 0.506 0.556 0.628 0.397 0.408 0.468

0.1 0.0 0.041 0.038 0.040 0.055 0.055 0.055 0.366 0.381 0.433

0.2 0.0 0.059 0.062 0.062 0.067 0.072 0.088 0.835 0.868 0.905

0.3 0.0 0.066 0.068 0.075 0.140 0.159 0.191 0.987 0.992 0.998

1000 0.0 0.0 0.050 0.049 0.049 0.054 0.053 0.051 0.050 0.048 0.047

0.0 0.1 0.163 0.176 0.194 0.158 0.165 0.181 0.156 0.164 0.191

0.0 0.2 0.600 0.646 0.699 0.530 0.579 0.641 0.444 0.463 0.507

0.0 0.3 0.974 0.987 0.997 0.910 0.940 0.961 0.688 0.712 0.765

0.1 0.0 0.054 0.057 0.061 0.068 0.063 0.064 0.641 0.677 0.735

0.2 0.0 0.080 0.079 0.082 0.100 0.103 0.108 0.991 0.995 1.000

0.3 0.0 0.126 0.139 0.146 0.261 0.282 0.339 1.000 1.000 1.000
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