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Abstract

This supplementary material provides four additional simulation experiments
to evaluate the finite-sample performance of the proposed inference tools for the
linear double autoregressive (AR) model, and also contains detailed proofs of all

lemmas and theorems in the paper.

1 Additional simulation experiments

As a complement to the simulation studies in the paper, we present four additional
experiments to evaluate the finite-sample performance of the proposed inference tools.
The first experiment aims to compare the performance of the self-weighted quantile
regression estimator Xm for a specific quantile level 7 under different weights {w;}. We
consider two choices of {w;}: {1/(1 + |y1])} (denoted by Wy) and {1/(1 + 5|y,_y|)}
(denoted by Wa), where F* is calculated from (3.4). The data are generated from

Y = 0.2y,—1 + (1 4+ 0.5]yi—1|), (S.1)

where {g;} are i.i.d. random variables following the normal, Student’s t3 or Cauchy
distribution with location zero and E(|e;|*) = 1 for £ = 0.9. The sample size is set to
n = 200, 500, or 1000, with 1000 replications for each sample size. Table 1 presents the

biases and the empirical standard deviations (ESDs) of A, at quantile levels 7 = 0.25
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and 0.35. Clearly, both the biases and the ESDs decrease as the sample size increases.
It can also be seen that the weights W5 slightly outperform W; when the sample size
n is larger, which confirms our asymptotic result in Section 3.1 that the estimator is
most efficient at w; = o; . On the other hand, the weights W, perform worse than W,
when n = 200, mainly due to a less accurate Ei"t for small sample sizes. Moreover, gﬁ;n
has smaller ESDs for 7 = 0.35, which is as expected since there are more data points
around the quantile level closer to the center. On the contrary, ﬁm has smaller ESDs
for 7 = 0.25, probably because its asymptotic variance as shown in Theorem 3 is smaller
when b, is larger in magnitude. Finally, when the distribution of €, is more heavy-tailed,
the performance of 5m is improved in the sense that both its biases and ESDs decrease.
However, the results for Bm are mixed: they get better for 7 = 0.35 but worse for
7 = 0.25, when the tails become heavier. Based on the results, we recommend using
W5 when the sample size n is relatively large, say n = 500, and W; when n is relatively
small.

The objective of the second experiment is to examine the performance of the optimal
doubly weighted quantile regression estimator X;’Lpt in Section 3.2. We preserve all settings
from the first experiment and employ the quantile levels 7, = k/10 with £ = 1,...,9.
The density function of &, is estimated by the kernel density method with the Gaussian
kernel and its rule-of-thumb bandwidth, A = 0.9n~Y5 min{s, R/1.34}, where s and R
are the sample standard deviation and interquartile of the residuals respectively; see
Silverman (1986). Table 2 lists the biases, empirical standard deviations (ESDs) and
asymptotic standard deviations (ASDs) of X‘T’Lpt. As the sample size increases, most of
the biases, ESDs and ASDs become smaller, and the ESDs get closer to the corresponding
ASDs. Moreover, when the distribution of ¢; has heavier tails, all these quantities of ggflpt
decrease, whereas those of ngt increase. Finally, the results show that for the doubly
weighted quantile regression estimator, the weights W5 slightly outperform Wi in terms
of the biases, the ESDs and the ASDs, and hence we focus on W5 in the following
experiments.

In the third experiment, we examine the sample approximations for the asymptotic
distributions of the residual ACFs p, and 7, in Section 4. All settings are preserved from

the first two experiments, and the maximum lag L is set at six. To transform the residuals



from the fitted models, we consider the function G being the distribution function of the
standard normal, Student’s t3 or standard Cauchy distribution, denoted by Gy, Gr
and G¢ respectively. The reference distributions are approximated based on B = 10000
generated multivariate normal random numbers. Table 3 provides the empirical coverage
rates (ECRs) of py, and 7, at lags ¢ = 2, 4 and 6, at the 5% significance level. It shows
that all the ECRs are close to their nominal values when n is as small as 200, and the
results for the three transformations are quite similar.

The last experiment aims to evaluate the performance of the two goodness-of-fit tests,

QPP (L) and QPP (L), proposed in Section 4. The data generating process is

Y = 1Yo + (1 + 0.2|ye—1| + c2lys—2]),

where the innovations {e;} are defined as in the first experiment. We fit a linear double
AR model with p = 1 using the same method as in the second experiment, so that the
case of ¢; = ¢g = 0 corresponds to the size of the tests, the case of ¢; # 0 corresponds
to the misspecification in the conditional mean, and the case of ¢; > 0 corresponds to
the misspecification in the conditional scale. We consider three departure levels, 0.1, 0.2
and 0.3, and set the significance level at 5%. The transformations Gy, Gr and G¢ are
considered as in the previous experiment.

Tables 4 and 5 report the rejection rates of Q¥ (6) and QPF (6), respectively. Firstly,
all sizes are close to the nominal rate even when the sample size n is as small as 200,
and all powers increase as the sample size or the departure level increases. Secondly,
QPP (6) performs well in detecting the misspecification in the conditional mean (i.e.,
c¢; # 0 and ¢ = 0) and is especially powerful when the distribution of &, is more
heavy-tailed, but it has little power for that in the scale structure (i.e., ¢; = 0 and
co > 0) regardless of the distribution of €;. On the other hand, Q2 (6) performs well in
detecting the misspecification in the conditional scale, especially when the distribution
of ; is light-tailed. Its power for the misspecification in the conditional mean may have
opposite results for different distributions of ;: it is useless when the innovations follow
the normal or Student’s t3 distribution, but is surprisingly powerful when they follow
the Cauchy distribution. These findings seem consistent with the result in the first
two experiments that, as the innovation distribution becomes more heavy-tailed, the

estimation performance for the location-type parameters ¢, tends to improve, whereas



that for the scale-type parameters [y tends to worsen. Lastly, comparing the three
transformations Gy, Gr and G for the residuals, it can be seen that their results are
fairly similar for QP (6), whereas for QF¥(6), the transformation G¢ outperforms the
other two by a visible margin, probably because the Cauchy distribution function G¢
is more spread out, and consequently, the serial dependence in the original sequence is
better kept.

We summarize our findings from the four simulation experiments as follows:

(1) When the distribution of the innovation is more heavy-tailed, the performance of

the proposed inference tools becomes better for ¢y but worse for 5.

(2) For the weights {w:} in Section 3.1, we recommend W, when the sample size is

relatively large, say n > 500, and W; when it is relatively small.

(3) The transformation G¢ for the residuals may be more favorable for constructing

the goodness-of-fit test statistics.

(4) The test statistics QPP (L) and QP (L) should be used in conjunction to check the

adequacy of fitted linear double AR models.

2 Technical details

2.1 Proof of Theorem 1

Let Y; = (e, - Ys—ps1) and V" = (yf, ..., yf 1), where {y:} and {y/} are generated
by models (2.1) and (2.3), respectively. We begin by proving that {Y;} and {Y,;*} are
Markov chains with the same transition probability.

Let B be the class of Borel sets of R? and v, be the Lebesgue measure on (R?, B?).
Let m : R? — R be the projection map onto the first coordinate, i.e. m(x) = x4
for x = (z1,...,2,)". Then, {Y;} is a homogeneous Markov chain on the state space

(RP, BP, v,), with transition probability

1 z—2'¢
P(x, A) = d R? and A € B?
(z,A) fm(A) 1+x’aﬂf (1+$gﬁ> Z, TE an e B?,



where x, = (|z1],...,|2p|), & = (61,...,0p), B = (b1, .0Bp)', and f(-) is the density

function of ;. Note that {Y,*} can be rewritten in the vector form,
VP =AY te, (S.2)

where e; = (¢4,0,...,0), and {A;} are i.i.d. random matrices independent of {e;}. Thus,
{Y;*} is also a homogeneous Markov chain on (R?, B?,1,). To verify that {Y;} and {Y;*}
have the same transition probability, it is sufficient to show that the conditional char-
acteristic functions E{exp(iv'Y;)|Y;—1 = x} and E{exp(iv'Y,*)|Y;*; = x} are the same,
where u = (uq,...,u,)". Since E{exp(ise;)} = exp(—ols|), we have

P
E{exp(iu'Y)|Y;_1 = x} = exp (z Z uj:tj_1>E{exp(iu1yt)|Y}_1 =z}

j=2

= exp (z Z u;Tj1 + iu1$’¢) Elexp{iui (1 + 2} 8)e,}]
i=2

P
= exp {Z Z U1+ iunr'e — olu|(1 + x;b’)} :

j=2

On the other hand, since &;; and ¢; are i.1.d., we have

p
B{exp(i Y)Y, = 2} = exp ( Y ujxj_l)E{exp@uly:)m: ~ 1)

=2
P p
= exp (z Z ;T + iulx’¢) E{exp(iuy Z Bilwi|&ir + turer)}
i=2 i=1
P
= exp ZZ i+ iuna'g — olul| (1 + 2,8) ¢ .
=2

This proves that {Y;} and {Y;*} have the same transition probability.

We can further verify that the p-step transition probability of {Y;} is

b 1 2z — X! ¢
PP(z,A) = LV dzy L dzy, S.3
o) = [ it (P ) o >
where X; = (2zi,..., 21,21, ..., 2p—) and Xa; = (|2, ..., |21], |zl - -, |2p—i])’. Observe

that, from Assumption 1, the transition density kernel in (S.3) is positive everywhere,
and then {Y;} is v,-irreducible.

First suppose v < 0. Then, there exists an integer s such that E(In|A; --- As]) < 0.
Let A, = [1:2s Ass and define g(u) = E(| A||*). Due to the continuity of the density f(-),

it can be shown that ¢(u) is continuous and differentiable on [0,1), and its derivative



function has the form of ¢(u) = E(|A,[*In|A4,]). For any given x* € (0,1), it can
be verified that E{supue[oﬁ*](H;ftH"ln |A,])} < oo, which, together with the dominated
convergence theorem, implies that limy_o ¢(u) = E(In | A,]) < 0. As a result, there exists

a constant 0 < k < x* such that

E(JA]") < q(0) = 1.

We next prove that s-step Markov chain {Yi} satisfies Tweedie’s drift criterion
(Tweedie, 1983, Theorem 4), i.e., there exists a small set G with 1,(G) > 0 and a

non-negative continuous function g(z) such that

E{g(Yi)|[Yimns = 2} < (1 Jgla), 2 ¢G. (5.4)

E {g(YtS)|Y(t_1)S = x} <M, zed, (S.5)

for some constant 0 < ¢ < 1 and 0 < M < oo. By iterating the random coefficient AR

model (S.2) s times, we have that

s—17—1
Yo = AuY(i_y, + <€ts + Z HAts—rets—j> : (S.6)

j=1r=0

where C' = 1+ E([lers+ 3571 [T 2y Ats—rets—; %) — E(| Ass|") < 0. Note that E(|Ay|*) =

Let g(z) = 1 + |z|", and it can be verified that

s—1j—1

€is + Z H Ats rCs— —7

j=1r=0

Bl =a] < 1+ B(| A" ") (

= O+ g(x)E(| A",

E(|A|") < 1. Then there exists a L > 0 such that

Efg(YOIN s =2} < (L—€g(x), |a] > L, (5.7)

E{g(YOIN Gy, =2 <M <o, 2| <L, (5.8)

where € = 0.5—0.5E(| 4,]|%), and vp(G) > 0 with G = {2 : |z| < L}. Note that {Y;} and
{Y;*} have the same transition probability, and then Claims (S.4) and (S.5) are implied
by (S.7) and (S.8).

Moreover, {Y;s} is a Feller chain since, for each bounded continuous function g*(-),

E{g*(Yis)|Y(¢-1)s = }] is continuous with respect to x, and {Y},} is also vj,-irreducible.
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This implies that G is a small set. As a result, from Theorem 4(ii) in Tweedie (1983)
and Theorems 1 and 2 in Feigin and Tweedie (1985), {Y};} is geometrically ergodic with

a unique stationary distribution 7(+), and

J|Yts||”d7r — JRP g(z)m(dz) — 1 < co. (S.9)

By Lemma 3.1 of Tjgstheim (1990), {Y;} is geometrically ergodic, and it is the unique
strictly stationary solution to model (2.1). Moreover, it is implied by (S.9) that E(|y:|") <
0.

Finally we prove the necessity. Suppose that there exists a strictly stationary solution
{y+} to model (2.1), and then the Markov chain {Y;} has a stationary distribution 7(-).
Generate Y;* with the distribution of 7(-) and, by iterating the random coefficient AR
model in (S.2), it leads to {Y;* : t € N}, which is a strictly stationary solution to model
(S.2) since {Y;} and {Y;*} have the same transition probability. Moreover, it is also
nonanticipative.

By letting s = p in (S.6), we can obtain a vector random coefficient AR model,
Yip = ApY(i 1), + By, (5.10)

where A, = [[V2) A, By = ey + X0 [T/ Apreyp—j, and {(Ay, By,) : t € N}
is an independent and identically distributed sequence. For a x* € (0, 1), it holds that
In"(2) < max{z*", C} for > 0 and a positive number C', where In* () = max{In(z), 0}.
Moreover, {A;} are independent and identically distributed random matrices, and the

k*th moment of Cauchy distributions is finite. As a result,
E(ln™" ||f~1tpH) <o and FE(In*|By|) < . (S.11)

In addition, {Y}; : t € N} is a nonanticipative and strictly stationary solution to (S.10).

From (S.3), it holds that
P(Yy, € AlY(i ), =) = P(Y,) € AlY§ = 2) = P’(z,A) > 0

as v,(A) > 0. Let H be any affine invariant subspace of R” under model (S.10), i.e.
{Apx + By - € H} = H with probability one (Bougerol and Picard, 1992). If v,(R? —
H) # 0, then for any x € H,

Py + Bye H) = P(YyeHYi,, =)
= PV e RV, = o) - PV e R — HY(,, =2) < 1.
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As a result, R? is the unique affine invariant subspace, and hence model (S.10) is ir-
reducible. Applying Theorem 2.5 of Bougerol and Picard (1992), we have that the

corresponding top Lyapounov exponent is strictly negative, i.e
1 ~ ~ ~
= inf{zE(ln |ApAgy, -+ Al),t =1} <0, (S.12)

which implies that v < 7/p < 0 since A Azp . -Etp = AyAy - - Ayp. This completes the

proof.

2.2 Proof of Theorem 2

We can define the Markov chain {Y;} and its state space as in the proof of Theorem 1.
Note that, for the p-step transition probability, its density kernel is positive everywhere
due to Assumption 1. As a result, {Y;} is yp-irreducible.

It can be verified that

P

E(lyr|" | Yy = z) < ZE(\(bisign(:ci) + Biern|")|zil® + E(lets]")

i=1

E}m%w+EkHﬂ)

where x = (21, ...,2,) and a; = max{E(|¢p; + fict|*), E(|¢; — Biee|")} for 1 < i < p. Note

that >7 | a; < 1, and we can then find positive values {r,...,r,—_1} such that
p—1 7
ap<rp,1<1—2al- and aiH—i—riH<ri<1—2akfor1<i<p—2. (S.13)
i=1 k=1

Consider the test function g(z) = 1+ |z1]* + 3= 7i|2s11]*, and we have that

E{g(Yer)Y: = «}

p p—1
<14 ) alwil™ + ) rila|™ + E(leal”)

i=1 i=1

p—1
a; +1; a

=1+ (Cbl +T1)|$1|R+Z - 17‘1'_1|.Ti|5+ P Tp_1|$p|H+E(|€t+1|H)
i—2 i—1 p—1

< pg(z) +1—=p+ E(leesa]"),

where, from (S.13),
pzmax{al +7‘1,a2+r2,-~ 7%_1 +7”p_1’ % } <1.
T T'p—2 Tp—1



Denote e =1 —p—{1 — p+ E(ler41]%)}/g(x), and G = {x : |z| < L}, where L is a

positive constant such that g(z) > 1+ E(|e41]7)/(1 — p) as |z > L. We can verify that
ElgVi)lYe =2} < (1 —€)g(z), z¢G,

and
E{gVi)lYe =z} <M <0, zeG,

i.e. Tweedie’s drift criterion (Tweedie, 1983, Theorem 4) holds. Moreover, {Y;} is a
Feller chain since, for each bounded continuous function ¢*(-), E{¢*(Y;)|Y;-1 = =z} is
continuous with respect to x, and then GG is a small set. As a result, from Theorem
4(ii) in Tweedie (1983) and Theorems 1 and 2 in Feigin and Tweedie (1985), {Y;} is
geometrically ergodic with a unique stationary distribution 7 (-), and
p—1
JRpg(x)W(dx) _ 14 (1 ) ri> E(lul") < o,

which implies that F(|y,|*) < co. This accomplishes the proof.

2.3 Proofs of Lemma 1 and Theorem 3

Proof of Lemma 1. Denote by 6, the parameter vector corresponding to the true value

0,0, and define the function L, (6,) = Zf:pﬂ wep-(yr — x30;). Note that, for u # 0,

pr(u—v) —pr(u) = —vip,(u) + LV{[(U < s)— I(u < 0)}ds, (S.14)

where ¥, (u) = 7 —I(u < 0); see Knight (1998). For any fixed u € R**! applying (S.14)
we have
Ln(0-0 + 17 ?u) — Ly,(6-0)

n

= Z wilp-{(er = br)oy — n~Paiu} — po{(er = br)ou}]

=—— Yr(er — by )wizy + &r(u), S.15
\/ﬁt_;l £ Wy t_;l u (S.15)

where oy = 1+ Y/, |5 and
n=12xhu

&i(u) = thO {I(ex <o, 's+b;) —I(g; < b))} ds.



We can further verify that, by Taylor expansion,

n

D) &) = Y E{&(w) | Fral + Ri(w)

t=p+1 t=p+1
n n_l/Qm;u
= wtf (F(o71s + by) — F(bo)}ds + Run(u)
t=p+1 0
— %f(bT)u' (l z": ot_lwtxta:2> u+ Ron(u) + Rin(u), (S.16)
t=p+1
where Ryp(u) = 254 [&(u) — E{&(u) | Fior}] and

n n*1/2:c2u

Ry, (u) = Z wtf o, s{f(o,'s* + b)) — f(by)}ds
0

t=p+1
with s* between 0 and s.
By the compactness of the parameter space A, we have min{f, ..., ,} = w for some

w > 0, and then

Y1 = P_l |yt 1
su < su 2= < = < — S.17
/\e/I\) 1+ Y/t 1BH AE/I\D 1+ Y/t 1/8 1+ QZ?:l |yt—i| W ( )
uniformly for all 1 < ¢ < n. It is then implied by Assumptions 2 and 3 that
2| ul
R (u)] < sup  |f(z +b;) b, )| Z th o; tsds
0<z<n~1/2C t=p+1
1
=5 sup |f(x+b;) — Z o 'wr)
o<z<n—1/2C .,z p+1
~0,(1), (8.18)

where C' = (1 + 2g_1)HuH is a constant. For Ry,(u), it can be similarly shown that
1

1/2|x u|
E[ff(u)] < _nE ]xtulf <o, Ys+b,) —I(g, < bT)}ds]
1 1/2|xtu|
— _nE ]xtu] J F(o, s+ b,) — F(bﬁ}ds]
< ] sup  f(z+ bT)E(Ut_lwaxtHi%)
2%3/2 o<z<n—12C
= o(n™"),

for all ¢, which implies that

n

E{RY, (W} < ), B{&(w)} = o1). (S.19)

t=p+1
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By the central limit theorem and the ergodic theorem, together with (S.15), (S.16), (S.18)
and (S.19), it can be verified that

1
A%wm+n4%0—LA%ﬁH—MT+§ﬂmMQaMu

in distribution as n — oo, where T is a normal random variable with mean zero and
variance matrix 7(1 — 7)FE(wlz,x,). Applying Corollary 2 in Knight (1998), together
with the convexity of L, (6,), we have

Vi~ 0.0 N (0.5 0 w)

in distribution as n — 0. O

Proof of Theorem 3. By the Delta method (van der Vaart, 1998, Chapter 3), we can
show that

~ —bp1! b1, 0 ~
i =) = [P T O o )+ o(1),
0 0o I

which, together with Lemma 1, implies the asymptotic normality result of \/ﬁ(xm —Xo)-
To prove the minimum of Q;(w), as in Xu (2017), we consider the i.i.d. samples
l,1;,/
(21,21), ..., (2, 2,) from z, = “Ly + e;, where {e;} are i.i.d. standard normal and are
Ot

independent of {z;}, and ~ is the unknown parameter to be estimated from the data.

Consider the weighted least-squares estimation of ~:

n / 2
F(A) = argminz A\ (zt — ﬁr) ,  with weights \; = oywy. (S.20)

Tot=1 gt

By the classical least-squares estimation theory and the central limit theorem, we have

Va[F(A) =] = N(0, 2 (w))

in distribution as n — oco. On the other hand, by letting A\; = 1 or equivalently w, =
o, ' in (S.20), the resulting ordinary least-squares estimator has asymptotic covariance
matrix Q;(o; '). Since e; has a standard normal distribution, the ordinary least-squares
estimator is exactly the maximum likelihood estimator, which is the most efficient and
has the smallest variance. Thus, we conclude that Q;(w) = Q(o;'). That is, Q;(w)
is minimized at w, = o;'. Finally, Qa(w) > Q(o; ') follows from the fact that, for
a symmetric positive semidefinite matrix A and a matrix B, the matrix BAB' is also

positive semidefinite. O
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2.4 Proof of Theorem 4

Let

Sa(r) = 51 (7) (‘f 2 f)

From the proofs of Lemma 1 and Theorem 3, we have the Bahadur representation,

Vi1 Gon — Ao) = 22(7)951\% t;ﬂwgt _ bT)i—i +oy(1), (S.21)

where Qy ' = ) since w; = 0; . Let

H(e) = H(ey; 1) = Z e, (60 — by )T 22(T8).

As a result, by the central limit theorem, we have

Vi — Xo) = %ﬁ Z H(at)QgIZ—z + 0,(1) — N(0, V(II)) (S.22)

in distribution as n — 0.

Let Ay = (X, oy A

TIn?

"n)- Note that b, # 0for 1 <k < K and, from (5.21), we have

Vilh, = (L ® L)) — N0, 55 (T @ 2)5; )

in distribution as n — oo, where 1 is a K x 1 vector of ones, ® is the Kronecker product,

and X7 = diag{¥;(71), ..., X1(7x)}. Consider a minimum distance estimator

N = argmin{\, — (1x ® Iop)AYE{A, — (1x @ Isp) A},
A

where Z is a 2pK x 2pK matrix. Let IT = (7, ..., k) = {(1x ® I2))Z(1x ® I2p) } (1 ®

I5,)'E be a 2p x 2pK matrix, and it can be verified that

K
X: = Hxn = Z WkXTkn-
k=1

The minimum distance estimator will have a minimum variance when the matrix = is

proportional to [ 1T ® Q)X 171 = 25T ® Q,1)¥*, and this corresponds to
I = [(1x ® 1) DI @ Q)T (1x ® I2p)] 7 (1x @ L) ST (T @ Q1) 5T
see also Chen et al. (2016). Hence the proof of this theorem is accomplished.
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2.5 Proof of Theorem 5

Note that 3™ — B = 0,(n"Y2), & = 1 + Yo, Bt and wy = (5, + e3P lyes)) !

pmdx

|Ye—j )~ =
(1 +mea"(c+ﬁgj)]yt_j])_1, which satisfy Assumption 2 since ¢+ p; > 0 for 1 < j < pmax-

It is then asymptotically equivalent to use the weights w; = (o, + ¢

For simplicity, we here only provide the proof for the consistency of

BIC,(p) = 2(n — pmax) log rn + (2p + 1) log(n — pmax)-

~

In the following, we use 67, 62, 62 = o%, and 62, to emphasize their dependence on

™)
the order p, and x; refers to the corresponding regressor with a compatible dimension.
Denote 67 = argminy, Dt p i1 Wepr (Y — T,0P),

ol = I%Zi)n Elwip,(y; — 2,07)] and % = P—— Z wipr (yr — 2407,,).
max t= pmdx+1

We can show that oy > -+ > off = .-+ = ofr>™ and 32, = of) + 0,(1) for all
1 < p < Pmax-

We first consider the case with p < pg, where we have

BIC,(p) — BIC,;(po) = 2(n — pmax)(log 72, — log 62%) + 2(p — po) log(n — Pmax)

= 2(n = pmax){(log o7y — log a75) + 0p(1)} + o(n), (S.23)

which tends to +o0 as n — oo.

We next consider the case with p > pg. From the proof of Lemma 1, we have

n

> [wtm(yt — 2,07,) — wipr (Y — xiefo)] = 0,(1),

t=pmax+1

which, together with the fact that 3" wip,(y: — 236%,) is a constant for all p > py,

implies that
5P — 5 = O,(nt).
As a result, by the Taylor expansion,

5P ~Po 5P _ FPo
|loga®, —log | < = |o o

Op(nil)v

™ ‘rn‘ -
and then
BICT (p) - BICT(pO) = 2(” - pmax)(log &fn - log 5.713%) + 2<p - pO) log(n - pmax)

= Op(l) + 2(p - pO) log(n - pmax)a (824)
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which tends to +00 as n — 0. We can accomplish the proof by combining (S.23) and

(S.24).

2.6 Proofs of Lemma 2 and Theorem 6

Proof of Lemma 2. Denote Q,(b) = Z?:pﬂ p-(&, — b). For any fixed v € R, by (S.14),

we have
Qn(bT + n_l/Q’U) - Qn(bT)

2 bE—b)+ Y J [(B — by < 5)— I( — b, < 0)}ds.

t p+1 t=p+1

From Theorem 4 and Knight (1998), together with the convexity of @, (b), it is sufficient

to show that

<l

i (5 —b,) = Z (60— by) — db ()R = Xo) + 0,(1),  (S.25)

and

n —1/2
n v 1
3 f (18—~ be < 5) — TG~ by < 0)}ds = 5 F(b-)0 + (1), (S.26)
t=p+1 70
where do(7) = f(b,) (b, E(0; 'Y, 1), E(o; 'Y, ,))'. For any uy, us € RP, let u = (uf,uj),
and denote

ye = Y1 (g0 + 0" Pu)
o (uy)

)

o) =1+Y,, 1 (Bo+nu;) and e(u) =

where despite their dependence on n, it is suppressed in the notations without causing
confusion. Since \/ﬁ(xn — Xo) = Op(1), to prove (S.25) and (S.26) it is sufficient to

respectively establish that, for any fixed M > 0,

1 N
Hsnugj)\/[ \/_ﬁ t;ﬂ[w‘r{gt(w — b} — s (er = b7)] + dy(T)u| = 0,(1), (S.27)
and
n n—1/2¢y 1
s |3 L [F{ee(u) by < 5} — Ted(u) — b < 0}Jds — 5 f(b)e?| = 0,(1). (5.29)

We first prove (S.27). Let bi(u) = byo;  oy(u1) + n~ Y20, 'Y, juy. We have that
b:(0) = b, and b,(u) € F;_1 for all t. Moreover, it is implied by (S.17) that, for any
u,u* € R?,

YZ,Fl(“T —up) " Y/ (u3 — us) <

O O

by (u*) = by(u)| = n~ Y2 |b, n~Y2C |lu* —ul, (S.29)
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where C' is a constant independent of t.

Denote
1 n
Ce(u) = Pr{e(u) = b} —br(ee —br) and S, (u) = 7 > [Gw) = B{G(u) | For}].

It holds that

G(u) =1I(g; < by) — I{e; < b(u)} = I{b(u) < ey < b} — I[{b(u) >e; > b},
and then, by the Taylor expansion, (S.29) and Assumption 3,

E{G ()} = E{|F{b(u)} — F(b-)]} < sup f(z) E[bu(u) = b [} < n= Y20 ul,

which implies that

B{SIw} <+ Y BIGw) = o)) (5.30)

Similarly, for any u,u* € R* and any § > 0,

sup |G (u”) — Ge(u)|

Juk —ul<5
= H Sulﬂ 5|I{bt(u*) < &g < bt(u)} — I{bt(u*) > & > bt(u)}|
u¥—u|<
</ {|et —b(u)| < H Suﬂ ) by (u*) — bt(u)|} :
u¥ —ul <

This, together with (S.29) and Assumption 3, leads to

E sup |G(u*) = G(u)| < priler — bi(u)| < n”28CY < 2Csup f(x) -0,

lu* —u|<é

which implies that

E sup [S,(u*) = Su(u)] < 2 Zn: E sup |((u*) = G(u)| < oC. (S.31)

u* —u| <6 Vn t=pt1 u*—ul<o

Therefore, it follows from (S.30), (S.31) and the finite covering theorem that

sup |Sy(u)| = op(1). (S.32)

[u]<M
Observe that E{(;(u) | Fi—1} = F(b;) — F{b:(u)} and, by (S.29) and the law of large
numbers, V230 {br — be(u)}f(br) = —dj(T)u + 0p(1). As a result, by the Taylor

15



expansion, (S.29) and Assumption 3,

== 2 G| For) + il

sup
Jul<M

%ﬁ S = F(b)Hbs — bi(w))

<M sup [f(z +br) = fbr)| + 0p(1) = 0,(1),

o<z<n—12CM

+ 0p(1)

= sup
lul<M

where b} is between b;(u) and b,. This together with (S.32), implies (S.27).
We next prove (S5.28). By a method similar to that of (S.16), (S.18) and (S.19), it

can be readily shown that

n —1/2

n v 1

3 J (I(z = by < 5) — I(, — by < 0)}s = = f(br)” + 0, (1). (S.33)
t=p+1 0 2

Denote

~1/2,

() = Jon [[{e(u) = by < s} — T{ei(u) — by < 0} — I(e1 — by < ) + I(4 — by < 0)] ds.

For any u € R% and s € R, let b;(u, s) = 0} *oy(u1)s + by(u) and, by (S.17), we have that
* J—

(u} —up) N Yy (uj — us)

O J¢

Y/
by (u*, s) — by(u, s)| = n= 2| (b + 5) =2
< n V2wt —ul|C(1 + |s]) (S.34)

uniformly for all 1 <t < n. It can be further verified that

—1/2,

n(u) = Ln [I{e; < b(u,s)} — I(ey < s+ )] — [I{es < b(u)} — I(gy < by)]ds,

and for any 6 > 0,

sup  [ne(u”) — m(u)|

Ju* —uf <5

n—1/2

[v]
< J I{|€t_bt(u7 S)| < sSup |bt(u*as) _bt(ua S)|}d$
0

Ju* —ul <5

n=1/2}y|
+J [{|5t—bt(u)\ < sup  |b(u¥) —bt(u)\}ds.

0 lu* —ul<é
By a method similar to the proof of (S.32), together with (S.29) and (S.34), we can show
that

n

>, [m(w) = E{m(u) | E—l}]‘ = 0p(1). (S.35)

t=p+1

sup
luf<p
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Note that b,(0,s) = s + b, and, by the Taylor expansion, we have

n

S E{m(u) | Fir)

t=p+1

sup
lul<M

n n—1/2y

= sup | Y] f [f(07){bu(u, 8) = (s + o)} = F(07){be(u) — br}]ds

Jul<M |, 5531 Jo

< sup | ) f FO){r(u, 8) = (s + b7)} — {bi(u) — b-}]ds

lul< |, 551 Jo
—1/2,,

[ 08 - ) — G5+ b

t=p+1 0

+ sup ) (8-36)

lull<p

where b} is between b;(u) and b,, and b}* is between b;(u, s) and s+b,. Since it is implied

by (S.17) that
_ YZ 1 _
{be(u, s) = (s + br)} — {be(u) = b} = n 1/Q\SI% < n2s[|ulC

uniformly for all 1 < ¢ < n, by Assumption 3, we then have that

—1/2,

ST 0D~ s+ b))~ () - b}l

t=p+1+0

sup
lu|<M

n—1/2|1}‘

< VACM sup f(;c)f slds — op(1). (S.37)

0
Moreover, by (S.29) and (S.34), we have
sup sup b —bF| < nVPOM
[ul<M 0<s<n=1/2v)|
uniformly for all 1 < ¢ < n. Then, it follows from Assumption 3 and (S.34) again that

—1/2,,

D[ 0 — ) — (54 b

t=p+1 70

sup
lu<M

—1/2|v‘

< VnCM j (1+|shds sup  sup  |F(0F) = F(87)
0 [u| <M 0<s<n—1/2|v|

= 0,(1). (S.38)

Hence, (S.28) follows from (S.33) and (S.35)-(S.38). This completes the derivation of the

Bahadur representation of gm, and hence the proof of the lemma. O

Proof of Theorem 6. We first show that figm = pam + 0p(1), 0, = 0& ., + 0p(1) for
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m = 1 and 2. By the Taylor expansion, (S5.17) and Assumption 4(i) and (ii), we have

G(&) = Gle)| = |G{ai(An)} = Gai(Mo)}

 lotert3 ) ) g ey Tl )

< O — ol

uniformly for all 1 < ¢ < n, where \* is between Xn and \g. As a result, by the law of

large numbers, the boundedness of G(-) and the fact that A, — Ay = O, (n~Y2),

for =~ Y GEI= 1 Y e+t 3 (GE) — G} = e + 0,1,

t=p+1 t=p+1 t p+1

and

B = Y AGE) ~Ren) = = 2 (CEIN — iy + 0p(1)

:% N (Gl }2+— Z (G(&) - GE)HGE) + Glen)} — 21 + 0p(1)
=01+ 0p(1)

Similarly, we can show that figo = pa2 + 0p(1) and 6¢ 5 = 0g 5 + 0,(1).
Let €f =& — b, and & = &, — b, for simplicity. Since | 2y U (EF)] < 1, by an

elementary calculation, we have

e (ENG(Ere) = B}

M=

T
S
+
~
+
—

-(ENG(Ee) + Op(n1?)

[
S-Sl gl
M=
<

t=p+L+1
= D1 Ur(e)GlEm) + Ant + Apa + A + Op(n7'1), (S.39)
t=p+0+1
where
Apy = D1 {-E) = ()} Gler),

T
bS]

+
~
+
—

Ur(E NG Ere) = Gler0)},

-
I
]
F
~
-+
—

{1 (&) = ¥r(EIHG(E0) = Gler-)}-

1=

| |
<= 2= 2l
[]=

T
=

+
~
+
Ju
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Let do(7) = f(br)(b-E{G(s—0)Y,, 1/0:}, E{G(e4—0)Y/ ,/0:})" for £ = 1. By a method

similar to the proof of (S.25), we can show that

At = = F(b) e ay/n(ben = br) = di(T)v/n (O = Ao) + 0,(1). (S.40)

Denote oy(A) = 1+ Y, ;8 and &/(A) = (y; — Y/ ,¢)/0:()). Note that

Ya,t—l Ya,t—lyal,tq }/a,t—ly;gl_l
O e a0 _ [PV TEnT Tam
= an = ,
o\ Y ONON YiaY, 0
a¢(A) o2(\)

From (S.17) and Assumption 4, we can verify that
2
E ( sup MD _ (

AeA a)\a)\/
which, together with the Taylor expansion and the fact that \/ﬁ(xn—)\o) = 0,(1), implies

o lg{gt (A)}aai;(;) +g{5t<A)}agat(AA> aet(m”) < o0,

AEA oN

Anz = 0,(1). (S.41)

Finally we consider A,3. For any v € R and v € R?, let v = (v,4)’, and denote
ef(v) = e(u) — (br + n~Y%v), where g,(u) is defined as in the proof of Lemma 2. Let
G(v) = [ A{ef(v)} — - (eF)][G{et—e(u)} — G(4—¢)]. By a method similar to the proof of
(S.27), we can show that, for any M > 0,

sup %ﬁ 3 [g(v)—E{g(v)m_ln‘:op(l)

[vll<M t=p+L0+1
and
1 n
— E{g Fio1}| = 0p(1).
S \/ﬁt_];fm {st(v) | Fir}| = 0p(1)
As a result,
1 n
= T: _T:Gt— _Gt— :p17
Hj&% \/ﬁt:]§+1[w {ef ()} — Vo (eN)][Gler—e(u)} — Gei—r)]| = 0p(1)

which, together with \/ﬁ(gm —b;) = Oy(1) and \/ﬁ(xn — Xo) = O,(1), implies that
Az = 0p(1). (S.42)

By (S.39)-(S.42), (S.22) and Lemma 2, we have

1 1 <

~ ® 7 Lt -1/2
S (NG (Ers) — i) — A (P H () 2 ,
e =, | VEOHCE) ) ~ Ty @ | o)
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where dg1(7) = f(b) (b-E[{G(er-10) — pan}Vio1/0e), E{G(er—0) — paa }Yi- 1 /o1])" and
H(e) = S8 s (e — by )T 8o (73). Let pr = (Prrs -+, prr)- Then we have

~ 1 1 < N Ty —1/2
P B |GG~ el - DUDHEIE |+ o, 07)
VT — 7'20'6*,1 n t_p;+1 [ K ! ! Ot i
where Gy = (G(&11), ..., Gler1)) and Dy(7) = (d11(7), ..., dp. (7).
Let 7y = (*1+,...,7L,), and then by a method similar to the proof for p. above,

1 1 Z":
VT = T?0Ga N t=p+L+1
where Gy = (G(e2,),...,G(2 ,)) and Dy(7) = (dia(7),...,dpo(7)) with dps(r) =
f(br) (-EH{G(e ) = paa}Yisa/onl, E{G(E ) — pa2}Y/ 1 /ou])". Therefore, we com-

plete the proof by the central limit theorem and the Cramér-Wold device. O

~

r, =

026G~ paata) — DA + o)
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Table 1: Biases and ESDs of Xm with the weights W7 or Wy at 7 = 0.25 or 0.35, when

the innovations follow the normal, Student’s t3 or Cauchy distribution.

T =0.25 7 =0.35
4%} Wo Wi Wy
n  DBias ESD Bias ESD Bias ESD Bias ESD
Normal distribution

£ 200 0.1093 0.6472 0.1240 0.7757 -0.0133  10.8221 -0.4226 12.5201
500  0.0247 0.2426 0.0268 0.2487 0.1275  1.3010 0.1446  0.8197
1000  0.0178 0.1660 0.0191 0.1639 0.0586  0.3211 0.0604  0.3289

¢ 200 -0.0199 0.1300 -0.0215  0.1307 -0.0176  0.1190 -0.0204  0.1209
500 -0.0076 0.0834 -0.0078  0.0828 -0.0080  0.0781 -0.0085  0.0775
1000 -0.0021 0.0582 -0.0018  0.0577 -0.0003  0.0535 -0.0001  0.0530

Student’s t5 distribution

g 200 0.1396 0.6785 0.1691  0.9003 0.0788  6.6405 0.0056  6.5120
500  0.0342 0.2690 0.0347 0.2827 0.1418  0.7987 0.1415  0.7684
1000 0.0187 0.1691 0.0198 0.1679 0.0613  0.3157 0.0628  0.3156

¢ 200 -0.0108 0.1258 -0.0104 0.1271 -0.0095  0.1077 -0.0115  0.1066
500 -0.0063 0.0768 -0.0062 0.0758 -0.0081  0.0660 -0.0084  0.0659
1000 -0.0049 0.0561 -0.0046 0.0551 -0.0036  0.0471 -0.0036  0.0465

Cauchy distribution

£ 200 0.1413 0.8636 0.2298 1.6190 0.1010 2.6814 0.2891  2.9141
500  0.0551 0.3855 0.0698 0.3433 0.0874  0.5839 0.1000  0.5827
1000  0.0220 0.2264 0.0264 0.2243 0.0213  0.2854 0.0267  0.2836

¢ 200 -0.0078 0.0799 -0.0095 0.0830 -0.0068  0.0556 -0.0071  0.0569
500 -0.0036 0.0460 -0.0034  0.0456 -0.0037  0.0312 -0.0039  0.0314
1000 -0.0022 0.0308 -0.0024  0.0306 -0.0009  0.0215 -0.0011  0.0213
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Table 2: Biases, ESDs and ASDs of the doubly weighted estimator X;’lpt with the number
of quantile levels K = 9 and the weights W; or W, when the innovations follow the

normal, Student’s t3 or Cauchy distribution.

Wy Wy
n  Bias ESD  ASD Bias ESD  ASD
Normal distribution
g 200 -0.0148 0.1703 0.1352 -0.0203 0.1658 0.1320
500 -0.0035 0.0955 0.0879 -0.0063 0.0938 0.0863
1000  0.0003 0.0632 0.0628 -0.0008 0.0618 0.0619
¢ 200 -0.0106 0.1091 0.0896 -0.0106 0.1082 0.0889
500 -0.0055 0.0631 0.0596 -0.0057 0.0630 0.0592
1000 -0.0020 0.0449 0.0429 -0.0021 0.0448 0.0426
Student’s ¢3 distribution
g 200 0.0230 0.2176 0.1596 0.0204 0.2180 0.1569
500 0.0134 0.1200 0.1025 0.0123 0.1180 0.1010
1000 0.0082 0.0790 0.0728 0.0066 0.0780 0.0716
¢ 200 -0.0076 0.1122 0.0863 -0.0082 0.1115 0.0856
500 -0.0032 0.0616 0.0567 -0.0037 0.0607 0.0563
1000 -0.0027 0.0423 0.0406 -0.0030 0.0421 0.0403
Cauchy distribution
G 200 0.1666 0.4452 0.2621 0.1674 0.4794 0.2619
500 0.0777 0.2279 0.1564 0.0803 0.2111 0.1550
1000  0.0326 0.1236 0.1085 0.0337 0.1224 0.1074
¢ 200 -0.0072 0.0585 0.0435 -0.0081 0.0575 0.0430
500 -0.0022 0.0272 0.0258 -0.0022 0.0272  0.0255
1000 -0.0005 0.0175 0.0172 -0.0005 0.0173 0.0170
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Table 3: Empirical coverage rates of p, and 7y at lags £ = 2,4, 6 at the 5% significance
level, when the transformation G is the normal (Gy), Student’s t3 (Gr) or Cauchy (G¢)

distribution function, and the innovations follow the normal, Student’s t3 or Cauchy

distribution.
Gn Gr Ge
n lag Pr T Pe T Pe T
Normal distribution
200 2 0.949 0.945 0.949 0.948 0.948 0.945
4 0.958 0.953 0.955 0.952 0.953 0.955
6 0.960 0.940 0.957 0.942 0.959 0.947
500 2 0.941 0.941 0.942 0.941 0.942 0.945
4 0959 0.944 0.960 0.944 0.963 0.940
6 0.951 0.957 0.949 0.959 0.951 0.960
1000 2 0.946 0.951 0.948 0.951 0.947 0.952
4 0948 0.953 0.950 0.949 0.947 0.958
6 0.957 0.951 0.955 0.951 0.953 0.946
t3 distribution
200 2 0.957 0.942 0.957 0.945 0.963 0.943
4 0952 0.953 0.956 0.953 0.953 0.955
6 0.939 0.953 0.940 0.949 0.941 0.957
500 2 0.959 0.952 0.955 0.948 0.958 0.948
4 0.957 0.955 0.955 0.962 0.952  0.956
6 0.948 0.946 0.953 0.947 0.952 0.947
1000 2 0.963 0.946 0.963 0.952 0.960 0.954
4 0947 0.946 0.947 0.944 0.943 0.948
6 0.948 0.944 0.948 0.948 0.946 0.947
Cauchy distribution
200 2 0.960 0.951 0.960 0.951 0.961 0.957
4 0.952 0.949 0.950 0.953 0.947 0.949
6 0.958 0.951 0.956 0.949 0.950 0.947
500 2 0.950 0.960 0.956 0.959 0.958 0.955
4 0.958 0.956 0.955 0.949 0.958 0.962
6 0.944 0.955 0.941 0.953 0.945 0.955
1000 2 0.942 0.941 0.945 0.942 0.948 0.947
4 0940 0.951 0.942 0.954 0.944 0.957
6 0.948 0.953 0.949 0.954 0.951 0.954
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Table 4: Rejection rates of the test QPP (6) at the 5% significance level, when the trans-

formation G is the normal (Gy), Student’s t3 (Gr) or Cauchy (G¢) distribution function

and the innovations follow the normal, Student’s t3 or Cauchy distribution.

Normal distribution

t3 distribution

Cauchy distribution

n 1 C Gn Gr Ge Gn Gr Ge Gn Gr Ge
200 0.0 0.0 0.039 0.041 0.041 0.042 0.041 0.042 0.046 0.046 0.047
0.0 0.1 0.042 0.040 0.042 0.049 0.048 0.049 0.056 0.057 0.055
0.0 0.2 0.045 0.048 0.047 0.054 0.049 0.050 0.053 0.060 0.065
0.0 0.3 0.051 0.055 0.054 0.054 0.052 0.054 0.080 0.080 0.084
0.1 0.0 0.079 0.080 0.076 0.107 0.111 0.110 0.523 0.534 0.551
0.2 0.0 0.264 0.267 0.270 0.415 0.425 0.426 0.946 0.950 0.953
0.3 0.0 0.637 0.642 0.639 0.797 0.813 0.822 0.992 0.992 0.993
500 0.0 0.0 0.046 0.047 0.046 0.047 0.044 0.044 0.048 0.048 0.053
0.0 0.1 0.033 0.032 0.035 0.048 0.050 0.050 0.053 0.054 0.049
0.0 0.2 0.052 0.053 0.055 0.049 0.046 0.047 0.056 0.055 0.061
0.0 0.3 0.049 0.051 0.048 0.048 0.050 0.050 0.072 0.076 0.081
0.1 0.0 0.179 0.178 0.178 0.303 0.302 0.303 0.956 0.965 0.972
0.2 0.0 0.714 0.721 0.724 0.879 0.894 0.896 1.000 1.000 1.000
0.3 0.0 0991 0.991 0.991 0.998 0.998 0.998 1.000 1.000 1.000
1000 0.0 0.0 0.051 0.051 0.052 0.048 0.047 0.050 0.049 0.052 0.051
0.0 0.1 0.048 0.050 0.051 0.051 0.046 0.044 0.046 0.043 0.044
0.0 0.2 0.064 0.062 0.062 0.049 0.046 0.048 0.060 0.061 0.065
0.0 0.3 0.065 0.065 0.064 0.060 0.069 0.066 0.067 0.070 0.070
0.1 0.0 0.380 0.380 0.386 0.567 0.576 0.586 1.000 1.000 1.000
0.2 0.0 0979 0979 0.980 0.999 0.999 1.000 1.000 1.000 1.000
0.3 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5:

Rejection rates of the test QFF(6) at the 5% significance level, when the

transformation G is the normal (Gy), Student’s t3 (Gr) or Cauchy (G¢) distribution

function and the innovations follow the normal, Student’s t3 or Cauchy distribution.

Normal distribution

t3 distribution

Cauchy distribution

n 1 C Gn Gr Ge Gn Gr Ge Gn Gr Ge
200 0.0 0.0 0.043 0.046 0.044 0.044 0.045 0.048 0.059 0.057 0.056
0.0 0.1 0.063 0.072 0.073 0.052 0.057 0.061 0.069 0.070 0.085
0.0 0.2 0.102 0.116 0.123 0.110 0.111 0.124 0.100 0.109 0.122
0.0 0.3 0.179 0.202 0.252 0.178 0.197 0.228 0.185 0.194 0.213
0.1 0.0 0.043 0.039 0.044 0.046 0.044 0.039 0.171 0.186 0.210
0.2 0.0 0.045 0.051 0.052 0.046 0.047 0.052 0.430 0.450 0.485
0.3 0.0 0.055 0.057 0.059 0.092 0.094 0.110 0.739 0.761 0.796
500 0.0 0.0 0.050 0.055 0.056 0.040 0.044 0.050 0.047 0.051 0.052
0.0 0.1 0.089 0.097 0.107 0.102 0.109 0.117 0.104 0.109 0.123
0.0 0.2 0.261 0.292 0.313 0.236 0.274 0.308 0.220 0.242 0.283
0.0 0.3 0.660 0.700 0.763 0.506 0.556 0.628 0.397 0.408 0.468
0.1 0.0 0.041 0.038 0.040 0.055 0.055 0.055 0.366 0.381 0.433
0.2 0.0 0.059 0.062 0.062 0.067 0.072 0.088 0.835 0.868 0.905
0.3 0.0 0.066 0.068 0.075 0.140 0.159 0.191 0.987 0.992 0.998
1000 0.0 0.0 0.050 0.049 0.049 0.054 0.053 0.051 0.050 0.048 0.047
0.0 0.1 0.163 0.176 0.194 0.158 0.165 0.181 0.156 0.164 0.191
0.0 0.2 0.600 0.646 0.699 0.530 0.579 0.641 0.444 0.463 0.507
0.0 0.3 0974 0.987 0.997 0.910 0.940 0.961 0.688 0.712 0.765
0.1 0.0 0.054 0.057 0.061 0.068 0.063 0.064 0.641 0.677 0.735
0.2 0.0 0.080 0.079 0.082 0.100 0.103 0.108 0.991 0.995 1.000
0.3 0.0 0.126 0.139 0.146 0.261 0.282 0.339 1.000 1.000 1.000
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