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Motivated by Tucker tensor decomposition, this paper imposes low-rank structures to the

column and row spaces of coefficient matrices in a multivariate infinite-order vector autore-

gression (VAR), which leads to a supervised factor model with two factor modelings being

conducted to responses and predictors simultaneously. Interestingly, the stationarity condi-

tion implies an intrinsic weak group sparsity mechanism of infinite-order VAR, and hence

a rank-constrained group Lasso estimation is considered for high-dimensional linear time

series. Its non-asymptotic properties are discussed by balancing the estimation, approxi-

mation and truncation errors. Moreover, an alternating gradient descent algorithm with

hard-thresholding is designed to search for high-dimensional estimates, and its theoretical

justifications, including statistical and convergence analysis, are also provided. Theoreti-

cal and computational properties of the proposed methodology are verified by simulation

experiments, and the advantages over existing methods are demonstrated by analyzing US

quarterly macroeconomic variables.
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1 Introduction

The high-speed advance in technology has spurred the rapid growth of high-dimensional data,

especially time-dependent data, and examples can be found in many fields such as economics,

finance, biology and neuroscience (Dowell and Pinson, 2016; Nicholson et al., 2020; Peña and

Tsay, 2021). It is urgent to develop suitable models and methods for these larger and more

complex time series data. Consider an N -dimensional time series tytu. If it is a general linear

process (GLP), then it can be written as

yt �
8̧

j�1

Ψjεt�j � εt, (1.1)

where yt P RN , εt P RN is the white noise, and Ψj’s are N � N coefficient matrices (Tsay,

2014). When N is large, a primary workhorse for the modeling and forecasting of GLP is the

vector autoregressive (VAR) model (Basu et al., 2019; Basu and Michailidis, 2015; Zheng and

Cheng, 2021; Wang et al., 2022b) due to its easy implementation. In fact, the GLP has a VAR(8)

representation,

yt �
8̧

j�1

Ajyt�j � εt, (1.2)

where Aj’s are N � N coefficient matrices. Thus, VAR models with a fixed AR order are not

applicable to GLPs in general.

While empirical studies of multivariate time series data often use a small AR order, the potential

increase in forecasting accuracy from a larger order cannot be realized without a viable high-

dimensional estimation method for such processes. To fill this gap, this paper proposes an easy-

to-implement VAR(8)-based method for modeling and forecasting high-dimensional GLPs 1. Our

theoretical analysis encompasses GLPs in the form of (1.1), i.e. the VAR(8) processes (1.2), while

the proposed estimation method is based on a VAR(T0) sieve approximation with a large running

AR order T0. When N is fixed, the asymptotic theory of VAR sieve approximations for VAR(8)

processes has been well established. It is shown that the truncation error can be adequately

1The codes are available on GitHub at: https://github.com/neithen-Lu/Supervised-Factor-Modeling/

tree/main.
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controlled by choosing a running order T0 which grows with the sample size at an appropriate

rate; see Lütkepohl (2005); Li et al. (2014). However, there has been no formal discussion in the

literature on estimating high-dimensional GLPs via VAR sieve approximations. We refer to high

dimensionality as settings where N may grow with the sample size. However, it is worth noting

that the curse of dimensionality in the large N setup is compounded by the large running order

T0, which must also grow with the sample size to achieve a good approximation. Thus, this paper

conducts simultaneous dimension reduction across both N variables and T0 lags, while establishing

the approximation theory of the VAR(T0) sieve for the GLP in the high-dimensional setting.

Another fundamental approach to estimating VAR(8) processes is through the vector autore-

gressive moving average (VARMA) model (Tsay, 2014). Empirical studies have shown that the

VARMA model can provide more accurate forecasts than the VAR model with a fixed AR order

when time series are longer (Chan et al., 2016; Wilms et al., 2023). Compared to the VARMA

model, the VAR sieve approximation involves many more parameters. However, its advantages are

at least threefold. First, compared with the VARMA model, the VAR(8) model is more flexible

in accommodating diverse temporal patterns. It allows for patterns where the non-zero lags are

non-consecutive, including seasonal patterns; see Section 5.2 for simulation studies demonstrating

the superior forecasting performance of the VAR(8) model. Second, the VAR model is computa-

tionally easier to estimate than the VARMA model, enabling it to accommodate various dimension

reduction schemes, including both sparse and low-rank methods. Third, while the VARMA model

requires complicated identification constraints, the VAR sieve approach avoids this issue, as it

seeks to approximate a VAR(8) process which is identifiable. These reasons motivate us to tackle

high-dimensional GLP modeling by combining VAR sieve with dimension reduction methods.

For high-dimensional VAR models, there are two major categories of dimension reduction

methods. The first category is sparsity-inducing methods (e.g., Basu and Michailidis, 2015; Han

et al., 2015; Guo et al., 2016; Zhu et al., 2017), where the sparse nonzero entries of the coefficient

matrices can be interpreted as spillover effects from one variable to another. However, these

methods have disadvantages when the connectivity among variables is dense and when the AR
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order is large. In financial and economic time series, strong cross-sectional dependence is often

observed among variables. In this case, rather than assuming that only some of them influence

one another and that co-movement is sparse, it is more reasonable to assume that most variables

are driven by a small number of common latent factors (Lam and Yao, 2012; Bai and Wang, 2016;

Fan et al., 2022). Moreover, when the running AR order T0 is large, many entries of the coefficient

matrices Aj’s may be very small but significant especially at high lags. As a result, it may be

difficult for sparsity-inducing estimation to capture all of these weak signals on an entrywise basis;

this issue also partially motivated the sparse interpretable VAR(8) model with parametric lags

in Zheng (2024).

On the other hand, the second category, which imposes various low-rank structures on finite-

order VAR models (e.g., Velu and Reinsel, 2013; Carriero et al., 2016; Basu et al., 2019; Wang

et al., 2022a,b; Billio et al., 2023; Samadi and Herath, 2024), is more suitable when strong cross-

sectional dependence is prevalent among the variables. The most classical model in this category

is the reduced-rank VAR model (Velu and Reinsel, 2013; Koop et al., 2019), where the rank of

the coefficient matrices corresponds to the number of common factors in the time series. However,

unlike static factor models (Lam and Yao, 2012; Bai and Wang, 2016), VAR models can be di-

rectly used for forecasting and provide interpretations regarding predictive relationships. Recently,

Wang et al. (2022b) impose low-rank structures based on the Tucker decomposition of the stacked

coefficient tensor of the finite-order VAR model. Our approach can be viewed as an adaptation

of their approach to VAR(8) processes. For VAR(8) processes, we impose different low-rank

structures on the column and row spaces of coefficient matrices Aj’s. This can be interpreted as

projecting responses and predictors into a small number of latent factors, termed response and

predictor factors, respectively. The response factors are used to summarize all predictable com-

ponents of the market, while the predictor factors contain all driving forces; see Section 2.1 for

details. As demonstrated in the empirical example in Section 6, the corresponding factor loadings

provide interpretations of group patterns among response and predictor variables. Thus, we refer

to the proposed model as the supervised factor model to emphasize both its factor interpretations
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Figure 1: Illustration of exponentially decaying true AR coefficient matrices (left panel), esti-

mated coefficient matrices truncated at running order T0 before thresholding (middle panel), and

estimated coefficient matrices after soft- or hard-thresholding (right panel). In the left panel,

for a given threshold γ ¡ 0, Sγ �  
j P t1, . . . , T0u | }A�

j }F ¡ γ
(

denotes the active set, and

Sc
γ � t1, . . . , T0uzSγ. The middle and right panels correspond to Lines 6 and 7 of Algorithm

1, respectively. See Remarks 6 and 10 for details.

and its supervised, forecasting-oriented nature.

As discussed above, our low-rank assumption enables factor extraction for response and pre-

dictor variables. Additionally, it allows us to simultaneously address the curse of dimensionality

arising from the large running order T0 by leveraging the weak sparsity of lags in VAR(8) pro-

cesses. Our method is related to those of Nicholson et al. (2017), where several group-wise exact

sparsity mechanisms are considered for the lag dimension of finite-order VAR models, such as the

hierarchical group Lasso (HLag); see also Wilms et al. (2017). However, their methods are mo-

tivated by user-preferred special group-wise features across the lags. In contrast, our motivation

stems from the interesting fact that the stationarity of the process intrinsically induces a con-

straint on the AR coefficient matrices, i.e. they lie within a generalized ℓ1-ball, t
°8

j�1 }Aj}F ¤ Ru
with radius 0   R   8. This constraint exactly matches the weak group sparsity scenario with

each coefficient matrix being a group of parameters (Raskutti et al., 2011; Wainwright, 2019); see

Figure 1 for an illustration. The main contributions of this paper are summarized below:

� For modeling and forecasting high-dimensional GLPs, this paper introduces the supervised
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factor model, a high-dimensional VAR sieve approximation method that imposes low-rank

constraints on the column and row spaces of the coefficient matrices, along with weak group

sparsity across the lags.

� To estimate the proposed model for high-dimensional GLPs, we first consider the rank-

constrained group Lasso method. Our non-asymptotic analysis of the estimator shows that

the truncation error can be adequately controlled, as long as the running order T0 grows

at least at a logarithmic rate relative to the effective sample size, while the estimation and

approximation errors benefit from the weak group sparsity.

� To enforce the low-rank structures in our algorithmic implementation, we employ an alter-

nating gradient descent approach (Chi et al., 2019), which enjoys low computational cost

and storage complexity. While combining this approach with soft-thresholding for group

Lasso regularization yields an algorithm for the proposed estimator, its performance tends

to be sensitive to the choice of T0. To enhance stability, we further develop an alternat-

ing gradient descent algorithm with hard-thresholding (Wainwright, 2019). We also provide

the non-asymptotic convergence analysis of the statistical and optimization errors of this

alternative algorithm.

In addition, we summarize the main differences between this paper and related literature as

follows. Compared to existing high-dimensional VAR and VARMA models, our approach offers

three main advantages. First, we allow for an infinite AR order, which provides a basis to ex-

plore potential improvements in forecast accuracy, whereas existing VAR models (e.g., Basu and

Michailidis, 2015; Wang et al., 2022a) are typically constrained to small AR orders in a large-N

setup due to the curse of dimensionality. Second, our method combines low-rank structures in the

cross-sectional dimension with group sparsity across the lag dimension. Unlike methods reliant

solely on sparsity (e.g., Zheng, 2024), our low-rank approach is better suited for cases where vari-

ables exhibit co-movement and hence the coefficient matrices may not be entrywise sparse. Third,

the VAR(8) framework circumvents the complicated identification problem of VARMA models
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(e.g., Chan et al., 2016; Wilms et al., 2023), which also eases computation and interpretation.

Methodologically, our low-rank approach is also related to the tensor decomposition method for

coefficient tensors of the matrix AR model introduced in Chen et al. (2021) and the tensor AR

model of Wang et al. (2023). However, we focus on vector-valued time series rather than matrix

or tensor data, and the tensor decomposition in our context pertains only to the AR coefficient

matrices across lags. Moreover, there is a growing interest in matrix and tensor factor models for

high-dimensional time series (e.g., Chen and Fan, 2023; Wang et al., 2019; Chen et al., 2022). The

aim of these models is to understand latent factor structures in matrix- and tensor-valued time

series rather than forecasting. In contrast, our VAR(8) model can be regarded as a supervised

framework which extracts factor structures to achieve optimal forecasting performance. Lastly, it

is worth noting that the use of infinite AR order can be integrated into other econometric methods

such as the factor augmented regression (Stock and Watson, 2002a,b); this serves as one of the

benchmarks in our numerical studies.

The remainder of the paper is organized as follows. Section 2.1 formally introduces the super-

vised factor model, and Section 2.2 develops high-dimensional estimation methods for the model.

The corresponding alternating gradient descent algorithm with soft- or hard-thresholding is pro-

vided in Sections 3.1 and 3.2, respectively, with the latter being the primary focus in our simulation

and empirical studies. Section 4 summarizes the theoretical results, with Section 4.1 focusing on

the non-asymptotic properties of the rank-constrained group Lasso estimator, and Section 4.2

providing convergence analysis for the hard-thresholding-based algorithm. Section 5 conducts

simulation experiments to evaluate the finite-sample estimation and prediction performance of the

proposed methodology, and its usefulness is further demonstrated by a macroeconomic applica-

tion in Section 6. Section 7 gives a short conclusion and discussion, and all technical proofs are

relegated to a separate online supplementary file.

Throughout the paper, tensors are denoted by calligraphic capital letters; see, e.g. A, B,

etc., and a brief introduction to tensor notations and Tucker decomposition is provided in the

supplementary file. For two scalars a and b, we denote a ^ b � minta, bu and a _ b � maxta, bu.
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For vectors a and b, denote by xa, by � °
j ajbj and }a}2 � axa,ay the inner product and

ℓ2-norm, respectively. For a matrix A P Rd1�d2 , let A1, rankpAq, σmaxpAq (or σminpAq), λmaxpAq
(or λminpAq), }A}op � σmaxpAq and }A}F �

b°
i,j A

2
ij be its transpose, rank, largest (or smallest

non-zero) singular value, largest (or smallest) eigenvalue, operator norm and Frobenius norm,

respectively. Moreover, for any d1 ¥ d2, the set of orthonormal matrices is denoted by Od1�d2 :�
tA P Rd1�d2 | A1A � Id2u, where Id2 is a d2� d2 identity matrix. On the other hand, for any two

sequences xn and yn, we denote xn À yn (or xn Á yn) if there exists an absolute constant C ¡ 0

such that xn ¤ Cyn (or xn ¥ Cyn). Write xn � yn if xn À yn and xn Á yn, xn � Opynq if xn À yn,

and xn � opynq if limnÑ8 xn{yn � 0.

2 High-dimensional linear time series modeling

2.1 Supervised factor model for high-dimensional time series

Let M1 � colspacetΨj, j ¥ 1u be the space spanned by the columns of all coefficient matrices

Ψj’s. Similarly we can define the row space as M2 � rowspacetΨj, j ¥ 1u, and their dimensions

are denoted by ri � dimpMiq ¤ N with i � 1 and 2. In addition, the matrix polynomial for the

GLP is defined as Ψpzq � I �°8
j�1Ψjz

j, where z P C, and C is the complex space. Note that r1

and r2 are not equal in general. Moreover, the low-rank constraint is imposed on the column and

row spaces of all Ψj’s, and hence each matrix may have different ranks. In fact, it can be verified

that rankpΨjq ¤ minpr1, r2q for all j ¥ 1.

Assumption 1 (Invertibility condition). The determinant of Ψpzq is not equal to zero for all

|z|   1, and
°8

j�1 }Ψj}op   8.

Proposition 1. If Assumption 1 holds, then the VARp8q form at (1.2) can be uniquely identified

with
°8

j�1 }Aj}op   8. Moreover, M1 and M2 are also the column and row spaces of coefficient

matrices Aj’s, respectively.

From the above proposition, the GLP has an equivalent VARp8q form, whose coefficient ma-
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trices satisfy Aj � Ψj �
°j�1

k�1Ψj�kAk for all j ¥ 1. It can be verified that the determinant of

Apzq is not equal to zero for all |z|   1, where Apzq � I � °8
j�1Ajz

j is the VARp8q matrix

polynomial. Moreover, coefficient matrices of the GLP and its VARp8q representation share the

same column and row spaces.

Consider two matrices U 1 P ON�r1 and U 2 P ON�r2 , which contain the bases of subspaces M1

and M2, respectively. Then, by some tensor algebra, there exist two sequences of r1 � r2 matrices

tHj,Gj, j ¥ 1u such that Ψj � U 1HjU
1
2 and Aj � U 1GjU

1
2 for all j ¥ 1. As a result, under

Assumption 1 and the low-rank constraint, models (1.1) and (1.2) can be rewritten into

yt � U 1

8̧

j�1

HjU
1
2εt�j � εt and yt � U 1

8̧

j�1

GjU
1
2yt�j � εt. (2.1)

Note that U 1 and U 2 are not unique, while the projection matrices of M1 and M2 can be uniquely

defined by P 1 � U 1U
1
1 and P 2 � U 2U

1
2, respectively. Moreover, for i � 1 and 2, let UK

i P
ON�pN�riq such that pU i,U

K
i q is an N � N orthonormal matrix, and then P K

i � UK
i U

K1
i is the

projection matrix of MK
i , i.e. orthogonal complement of subspace Mi.

Note that model (2.1) involves two types of dimension reduction. We first consider the projec-

tion of yt onto subspace M1 and its orthogonal complement, i.e. yt � P 1yt � P K
1 yt, and these

two parts can be verified to have completely different dynamic structures,

P 1yt � U 1

8̧

j�1

HjU
1
2εt�j � P 1εt and P K

1 yt � P K
1 εt,

where all information of yt related to temporally dependent structures is contained in M1, whereas

MK
1 includes only purely idiosyncratic and serially independent components. In fact, model (2.1)

has a form of static factor models,

yt � U 1f t � εt with f t �
8̧

j�1

HjU
1
2εt�j �

8̧

j�1

GjU
1
2yt�j, (2.2)

where f t P Rr1 contains r1 latent factors, and U 1 is the corresponding loading matrix; see Lam

and Yao (2012); Bai and Wang (2016). Consequently, we call f t � U 1
1yt � U 1

1εt or U 1
1yt the

response factor since it summarizes all predictable components in the response, and accordingly

M1 can be referred to as the response factor space.
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On the other hand, for the dimension reduction on predictors, we project yt�j onto M2 and

MK
2 , and it holds that yt�j � P 2yt�j �P K

2 yt�j. Moreover, for N -dimensional random vectors x1,

x2 and zj’s with j ¥ 1, the partial covariance function is usually used to measure the relationship

between x1 and x2 after removing the effects of zj’s, and it has the form of pcovpx1,x2|z1, z2, . . .q �
covpx1�px1,x2�px2q, where, for i � 1 and 2, pxi �

°8
j�1

pBpiq

j zj and p pBpiq

1 , pBpiq

2 , . . .q � argminE}xi�°8
j�1Bjzj}22; see Fan and Yao (2003); Tsay (2014). As a result, if E}yt}22   8, then

pcovpyt,yt�j|P 2yt�1,P 2yt�2, . . .q � pcovpyt,P
K
2 yt�j|P 2yt�1,P 2yt�2, . . .q � 0 for all j ¥ 1,

i.e. the spaceM2 can summarize all information of yt�j that contributes to predicting yt, orU
1
2yt�j

contains all driving forces of the market. Thus, we call U 1
2yt�j the predictor factor for simplicity,

and M2 is referred to as the predictor factor space. Since model (2.1) is a supervised problem in

nature, and we call it the supervised factor model to emphasize the above interpretations from

unsupervised factor modeling perspectives (Lam and Yao, 2012; Bai and Wang, 2016).

Example 1. In the macroeconomic application in Section 5, the estimated ranks for the large

dataset are pr̂1, r̂2q � p1, 1q. Under this specification, the model at (2.1) has the fitted factor

form of pu1
1yt �

°8
j�1 pgj pu1

2yt�j � pu1
1εt, where pu1

1yt and pu1
2yt�j can be viewed as two different

macroeconomic indices. The response factor pu1
1yt captures how the present economy responds to

changes in the market condition, which essentially can be viewed as principal component analysis

on the response variables. On the other hand, the predictor factor pu1
2yt�j summarizes important

past information that is predictive of the present market condition.

Model (2.1) is partially motivated from tensor techniques, and the two types of dimension re-

duction can be imposed naturally from viewpoints of tensor decomposition; see the supplementary

file for more details on tensor notations and decomposition. Specifically, for the VARp8q form
at (1.2), we first rearrange the coefficient matrices into a tensor A8 P RN�N�8 such that its

mode-1 matricization is pA8qp1q � pA1,A2, . . .q, and then its mode-2 matricization assumes the

form of pA8qp2q � pA1
1,A

1
2, . . .q. Note that the column spaces of pA8qp1q and pA8qp2q are M1 and

M2, respectively, and r1 � ranktpA8qp1qu and r2 � ranktpA8qp2qu are the first two Tucker ranks.
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Accordingly, we have the Tucker decomposition (Tucker, 1966; De Lathauwer et al., 2000) below,

A8 � G8 �1 U 1 �2 U 2, (2.3)

where G8 P Rr1�r2�8, U 1 P RN�r1 and U 2 P RN�r2 . In particular, we can choose U 1, U 2 and

Gj’s in (2.1) and let Gj be the j-th frontal slice of G8 for j ¥ 1, i.e. pG8qp1q � pG1,G2, . . .q.
As a result, the VARp8q form at (1.2), together with the low-Tucker-rank constraint at (2.3), is

equivalent to the supervised factor model at (2.1).

Remark 1 (Varying ranks across lags). While rankpΨjq for j ¥ 1 are allowed to vary, we simplify

the problem by focusing on their upper bound as determined by r1 and r2. The upper bound

minpr1, r2q is sharper when Ψj’s have similar ranks. However, it is possible for some rankpΨjq’s
to be much larger than the others. In particular, since the first few lags are often considered

more important, users may prefer to relax the low-rank constraints on them. In such cases, we

may alternatively define r1 and r2 for Ψj with j ¥ q0, where q0 is a pre-determined small order.

Additionally, we may further impose entrywise sparsity on Ψj for 1 ¤ j   q0 for dimension

reduction. We leave such extensions as an interesting direction for future research.

Remark 2 (Connections with static factor models). Based on the static factor model form at (2.2),

if the response factor space M1 is the only focus, then it suffices to conduct unsupervised factor

modeling (Lam and Yao, 2012; Gao and Tsay, 2023). However, our approach to standardizing

U 1 differs from the usual standardization of the loading matrix in factor models. Specifically, U 1

at (2.2) is standardized to be orthonormal, which can lead to the factors f t having a diverging

variance as N Ñ 8. For example, consider a stationary VAR(1) model, yt � Ayt�1 � εt with

A � 0.9 �1Np1, 0, . . . , 0q1, where all elements of the N -dimensional vector 1N are one. Then it can

be verified that varpf tq � OpNq.

Remark 3 (Connections with generalized dynamic factor models in Forni et al. (2000)). In the

special case with r1 � N , we can choose U 1 � IN . Let HpLq � °8
j�1HjL

j P RN�r2 with L being

the lag operator, and ut � U 1
2εt P Rr2 , which can be standardized to have an identity variance

matrix. As a result, the VMAp8q process at (2.1) can be rewritten into yt �HpLqut � εt, i.e. it

11



admits a generalized dynamic factor model in Forni et al. (2000). Note that the proposed model

is for a supervised problem, while the generalized dynamic factor model is fundamentally for an

unsupervised one. Moreover, the idiosyncratic component εt is assumed to be independent of ut

at all leads and lags in Forni et al. (2000, 2005), while this cannot be satisfied for model (2.1).

Remark 4 (Connections with dynamic factor models in Amengual and Watson (2007)). Consider

a special case of model (2.1) with U 1 � U 2, i.e. the response and predictor factors are identical,

and then the VARp8q representation can be rewritten into

f t �
8̧

j�1

Gjf t�j �U 1
1εt with f t � U 1

1yt,

where tU 1
1εtu is the new white noise sequence. As discussed in Wang et al. (2022b), its finite-

order case corresponds to the dynamic factor model in Amengual and Watson (2007) with no

measurement error. This relationship leads to an alternative estimation method. When there are

infinite number of lags, we can first perform factor modeling on tytu and then a low-dimensional

VARp8q model to the summarized factors f t with group lasso penalization on the coefficient

matrices to select the non-zero lags.

Remark 5 (Identification condition). The Tucker decomposition at (2.3) is not unique, since

A8 � G8 �1 U 1 �2 U 2 � pG8 �1 O1 �2 O2q �1 pU 1O
�1
1 q �2 pU 2O

�1
2 q for any invertible ma-

trices Oi P Rri�ri with i � 1 and 2. However, it is worth noting that the theoretical properties

in this paper are directly established for A8, rather than G8 and U i’s. Thus, the identification

issue can be avoided. If estimating the components G8 and U i’s is of interest, then similar to

Wang et al. (2022b), the following assumptions can be made to guarantee the identifiability of

these components. Specifically, we may consider the higher-order singular value decomposition

(HOSVD) of A8, a special Tucker decomposition defined by choosing U i as the tall matrix con-

sisting of the top ri left singular vectors of pA8qpiq and then setting G8 � A8 �1 U
1
1 �2 U

1
2. In

addition, the singular values of Ap1q and Ap2q are assumed to be all distinct, and the first nonzero

element in each column of U i is assumed to be positive.
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2.2 High-dimensional estimation

For an observed time series ty1, . . . ,yT u generated by model (1.2) with the low-rank constraint

(2.3), its true coefficient matrices are denoted by A�
j ’s, and this paper adopts the VAR sieve

approximation method to estimate them, i.e.

yt �
T0̧

j�1

A�
jyt�j � rεt, rεt � εt � rt and ranktpA�

8qpiqu ¤ ri with i � 1 and 2, (2.4)

where T0 is the running order of VAR models, rt �
°8

j�T0�1A
�
jyt�j is the truncated term, and

A�
8 is the true full coefficient tensor.

The coefficient matrices of model (2.4) are Aj’s with 1 ¤ j ¤ T0, and they can be rear-

ranged into a coefficient tensor A P RN�N�T0 such that its mode-1 matricization is Ap1q �
pA1,A2, . . . ,AT0q P RN�NT0 . Let xt � py1t�1,y

1
t�2, . . . ,y

1
t�T0

q1 P RNT0 ,X � pxT ,xT�1, . . . ,xT0�1q P
RNT0�pT�T0q and Y � pyT ,yT�1, . . . ,yT0�1q P RN�pT�T0q. Consider the ordinary least squares es-

timation, and then the loss function has the form of

LpAq � 1

2T1

Ţ

t�T0�1

}yt �
T0̧

j�1

Ajyt�j}2F �
1

2T1

}Y �Ap1qX}2F,

where the effective sample size is T1 � T � T0. Denote by A� P RN�N�T0 the true coefficient

tensor, and it is a truncated tensor obtained by removing all A�
j with j ¡ T0 from the N �N �8

full coefficient tensor A�
8. Define the parameter space

Θpr1, r2q � tA P RN�N�T0 | rankpAp1qq ¤ r1, rankpAp2qq ¤ r2u,

and the low-Tucker-rank constraint at (2.4) implies that A� P Θpr1, r2q.
To obtain theoretical justifications, the truncated term rt is required to approach zero quickly,

which requests A�
j or Ψ�

j to decay at a sufficient rate as j Ñ 8, where Ψ�
j ’s are true coefficient

matrices of the corresponding GLP. While Assumption 1 is sufficient to achieve asymptotic prop-

erties for the low-dimensional (or multivariate) time series, we need a stronger exponential decay

below to establish non-asymptotic properties for the high-dimensional case.

Assumption 2 (Exponential decay). There exists some ρ P p0, 1q such that }Ψ�
j }op � Opρjq and

}A�
j }op � Opρjq as j Ñ 8.
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Assumption 2 is mild since all VAR and VARMA processes are still included. In addition, as

discussed in Remark 6, the exponential decay implies that the true coefficients of model (2.4) will

be within a generalized ℓ1-ball, tA :
°T0

j�1 }Aj}F ¤ Ru. This feature exactly matches the scenario

of weak sparsity (Raskutti et al., 2011; Wainwright, 2019), and hence an automated lag selection

procedure can be inspired. Specifically, if we regard each A�
j as a group of parameters, since

any A�
j with a relatively large j must be close to (if not exactly) a zero matrix, then the target

coefficient tensor A� must be weakly group-sparse. As a result, this paper considers the following

rank-constrained group Lasso estimator of A�,

pA � argmin
APΘpr1,r2q

LpAq � λ}A}; with }A}; �
T0̧

j�1

}Aj}F, (2.5)

where pAp1q � p pA1, pA2, . . . , pAT0q, and λ ¡ 0 is a tuning parameter of penalization. The true full

coefficient tensor A�
8 can be estimated by pA8 P RN�N�8, which appends infinitely many zero

matrices to pA P RN�N�T0 such that p pA8qp1q � p pAp1q,0N�N ,0N�N , . . . q, i.e. pAj � 0 for j ¡ T0.

Note that pA8 satisfies the low-Tucker-rank constraint at (2.4).

The optimization problem at (2.5) will produce a group-sparse estimate, with all coefficient

matrices close or equal to zero being suppressed. The corresponding algorithm is discussed in

Section 3.1. However, the estimated nonzero coefficient matrices are biased. In addition, as shown

in our simulation studies in Section S3.5 of the supplementary file, this algorithm is sensitive to

changes in T and T0. Motivated by these issues, in Section 3.2, we develop an algorithm for

implementing the alternative sparsity-constrained estimation,

pASC � argmin
APΘpr1,r2q,}A}0¤s

LpAq with }A}0 �
T0̧

j�1

Ip}Aj}F ¡ 0q, (2.6)

where }A}0 is the number of active matrices, and the sparsity level s ¡ 0 is a tuning parameter.

Remark 6 (Connection between exponential decay and weak group sparsity of A�
j ’s). By Assump-

tion 2 and the low-rank condition at (2.3), we have }A�
j }F ¤ C

?
r1 ^ r2ρ

j for j ¥ 1, where C is an

absolute constant. As a result, a smaller ρ corresponds to a faster decay rate of A�
j and hence a

greater level of group sparsity of A�; i.e. there is a smaller cutoff Q such that all A�
j ’s with j ¥ Q

are very close to zero matrices. This is illustrated in the left panel of Figure 1.
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3 Algorithms for high-dimensional estimation

3.1 Alternating gradient descent algorithm

The rank-constrained group Lasso estimation at (2.5) involves both the low-rank constraint and

sparsity. Specifically, the loss function LpAq is nonconvex on the low-rank space Θpr1, r2q, while
the Lasso penalty }A}; relies on the convexity for optimization since it is not differentiable.

This makes the parameter estimation difficult. Following Agarwal et al. (2012), we consider an

alternating gradient descent algorithm to search for estimates, and it is based on the second-order

approximation of LpAq; see Remark 7 for more details. Moreover, the thresholding operator in

this subsection can approximate the Lasso penalty at (2.5). As a result, the resulting optimizer is

close to, but different from, the rank-constrained group Lasso estimator pA at (2.5).

We first deal with the low-rank constraint. Note that, for any A P Θpr1, r2q, there exists a

Tucker decomposition A � G �1 U 1 �2 U 2 with G P Rr1�r2�T0 , U 1 P RN�r1 and U 2 P RN�r2 . As

a result, the loss function in Section 2.2 can be rewritten as LpG,U 1,U 2q :� LpG �1 U 1 �2 U 2q,
and we further adjust it by adding two regularization terms,

LGDpG,U 1,U 2q � LpG,U 1,U 2q � a

2
p}U 1

1U 1 � b2Ir1}2F � }U 1
2U 2 � b2Ir2}2Fq,

where a, b ¡ 0 are two tuning parameters. The above method is motivated by Han et al. (2022) for

low-rank tensor estimation, and the regularization terms, }U 1
1U 1 � b2Ir1}2F and }U 1

2U 2 � b2Ir2}2F,
are used to keep U 1 and U 2 from being singular, and meanwhile they can also balance the scaling

of G, U 1 and U 2.

Denote by rG, rU 1 and rU 2 the minimizers of LGDpG,U 1,U 2q, and it then holds that rU 1

i
rU i �

b2Iri , i.e. b�1 rU i are orthonormal, for i � 1 and 2. In fact, if this is not true, then there exist

invertible matrices Oi P Rri�ri such that rU i � Ū iOi and Ū
1
iŪ i � b2Iri , where 1 ¤ i ¤ 2. LetsA � prG �1 O1 �2 O2q �1

sU 1 �2
sU 2. Then Lp sAq � Lp rAq while the regularization terms forsU 1 and sU 2 are reduced to zero. This leads to a contradiction with the definition of minimizers.

Similar regularization methods have been widely applied to non-convex low-rank matrix estimation

problems; see Tu et al. (2016), Wang et al. (2017) and references therein.
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Let us define the gradient of LGD, and its partial derivatives can be calculated as

∇GLGD � ∇GLpAq and ∇Ui
LGD � ∇Ui

LpAq � aU ipU 1
iU i � b2Iriq with i � 1 and 2,

where∇LpAq,∇U1LpAq,∇U2LpAq and∇GLpAq are the first order partial derivatives of LpAq with
respect toA, U 1,U 2 and G, respectively. We next define the soft-thresholding operation. Consider

a coefficient tensor B P Rd1�d2�T0 with Bp1q � pB1,B2, . . . ,BT0q, where for each 1 ¤ j ¤ T0 the

coefficient matrix Bj P Rd1�d2 is the j-th frontal slice. For a tuning parameter λ ¡ 0, define

the soft-thresholding operator as rB � STpB, λq P Rd1�d2�T0 with rBj � p1 � λ{}Bj}Fq�Bj for

1 ¤ j ¤ T0 and rBp1q � p rB1, rB2, . . . , rBT0q, where Bj and rBj are the j-th frontal slices of B andrB, respectively, and the function pxq� � x for x ¡ 0 and zero otherwise. The soft-thresholding

operator STpA, λq can project a non-group-sparse coefficient tensor A into a group-sparse one.

To solve (2.5), we apply the alternating gradient descent algorithm as outlined in Algorithm 1,

except that the sparsity parameter s at Line 1 and HTp rAk�1
, sq at Line 7 are replaced by the tuning

parameter λ and soft-thresholding operator STp rAk�1
, λq, respectively. At the k-th iteration, the

three components, U k�1
1 ,U k�1

2 and rGk�1
, are first updated by gradient descent separately. Then

the resulting estimator rAk�1 � rGk�1 �1 U
k�1
1 �2 U

k�1
2 at Line 6 is converted to a group-sparse

coefficient tensor via the soft-thresholding STp rAk�1
, λq. The above two steps are repeated K

times, after which we can obtain the estimate AK .

Remark 7. Following the method in Agarwal et al. (2012), Algorithm 1 exploits the second-

order approximation of LpAq to derive the alternating gradient descent updates. Specifically,

at the k-th iteration, the gradient descent update for U i in Algorithm 1 results from U k�1
i �

argminU i
LGDpGk,U k

1,U
k
2q�x∇Ui

LGD,U i�U k
i y�p2ηq�1}U i�U k

i }2F, for i � 1, 2. The subsequent

update for rG is derived similarly.

3.2 An algorithm with hard-thresholding

This subsection considers Algorithm 1 with hard-thresholding at Line 7, which solves the optimiza-

tion problem at (2.6). We prefer hard-thresholding over soft-thresholding for three main reasons.

First, the VAR sieve approximation method depends on the running order T0. As it increases, the
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model complexity will increase, while the number of effective samples T1 � T � T0 will decrease.

As a result, the numerically selected tuning parameter λ for the soft-thresholding may vary dra-

matically under different T0, while the hard-thresholding is less sensitive to such type of changes.

Indeed, our simulation studies in Section 5.3 demonstrate that the hard-thresholding algorithm is

not sensitive to the value of T0 when T0 is sufficiently large. Second, the soft-thresholding method

always leads to a biased estimator although it is sparse. In fact, the soft-thresholding method

or Lasso problem is typically preferred for ensuring the convexity of the loss function, while the

loss function at (2.5) is nonconvex due to the low-rankness. It is hence not necessary to insist on

using the Lasso method to induce the group sparsity of Aj’s. Third, it is easier to establish the

convergence analysis of hard-thresholding methods (Tropp and Wright, 2010; Shen and Li, 2017).

We define the hard-thresholding operation as follows. Consider a coefficient tensor B P
Rd1�d2�T0 with Bp1q � pB1,B2, . . . ,BT0q, where for each 1 ¤ j ¤ T0 the coefficient matrix

Bj P Rd1�d2 is the j-th frontal slice. Denote by HTpB, sq P Rd1�d2�T0 the hard-thresholding oper-

ator, which keeps the s largest coefficient matrices in terms of }Bj}F’s and suppresses the rest to

zero. Define a parameter space with both low-rankness and sparsity below,

ΘSPpr1, r2, sq � tA P RN�N�T0 | }A}0 ¤ s, rankpAp1qq ¤ r1, rankpAp2qq ¤ r2u.

Note that, for any 1 ¤ s ¤ T0, Θ
SPpr1, r2, sq � Θpr1, r2q, and the hard-thresholding operator

HTpA, sq is a projection from parameter spaces Θpr1, r2q into ΘSPpr1, r2, sq. For a tensor A �
G �1 U 1 �2 U 2, it can be verified that HTpA, sq � rG �1 U 1 �2 U 2, and rG � HTpG, sq if U 1 and

U 2 are assumed to have orthonormal columns.

To solve (2.6), unlike the method for (2.5), at Line 7 of Algorithm 1, we project rAk�1
into the

group-sparse parameter space ΘSPpr1, r2, sq by HTp rAk�1
, sq � Gk�1�1 U

k�1
1 �2 U

k�1
2 , denoted by

Ak�1. In Algorithm 1, we may alternatively conduct the hard-thresholding on rGk�1
directly, and a

similar performance can be observed. However, it is more convenient to establish the corresponding

convergence analysis for the hard-thresholding on rAk�1
.

Next we discuss the initialization of the algorithm, which applies to either soft- or hard-

thresholding. For the running order T0, theoretically speaking, it affects the truncation error
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Algorithm 1: Alternating gradient descent algorithm with hard-thresholding

1 Input: Running order T0, ranks pr1, r2q, sparsity parameter s, initialization G0,U 0
1,U

0
2,

regularization parameters a, b ¡ 0 and step size η ¡ 0.

2 For k � 0, 1, 2, . . . , K � 1:

3 U k�1
1 Ð U k

1 � η
�
∇U1LpAkq � aU k

1pU k1
1 U

k
1 � b2Ir1q

�
4 U k�1

2 Ð U k
2 � η

�
∇U2LpAkq � aU k

2pU k1
2 U

k
2 � b2Ir2q

�
5 rGk�1 Ð Gk � η∇GLpAkq

6 rAk�1 � rGk�1 �1 U
k�1
1 �2 U

k�1
2

7 Ak�1 � Gk�1 �1 U
k�1
1 �2 U

k�1
2 Ð HTp rAk�1

, sq

8 end for

9 return AK � GK �1 U
K
1 �2 U

K
2

only, while the parameter estimation will not change too much as long as it is sufficient large.

However, in practice, a larger T0 will lead to a smaller effective sample size. As a result, we rec-

ommend setting T0 � t
?
T u as for selecting the maximum lag for sample autocorrelation functions

in the literature (Tsay, 2014), where t�u is the floor function, and further refinement can be easily

made by gradually adjusting the choice of T0 based on the initial result with T0 � t
?
T u. For

example, if the estimated coefficient matrices for lags beyond T0 � k are all zero, then they may

reduce T0 by k, or to be more conservative, by a slightly smaller amount. For the algorithm with

soft-thresholding, the sparsity is induced via tuning parameter λ. A larger T0 will involve more in-

active coefficient matrices, and a larger amount of λ is hence needed to suppress these coefficients.

This makes the algorithm less stable. On the contrary, for the algorithm with hard-thresholding,

the sparsity level is specified directly, and hence the resulting algorithm is more stable.

To select the low ranks r1 and r2 and sparsity level s, since the true model is most likely an

VARp8q process which lies outside the class of finite-order VAR models, we recommend the Akaike
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information criterion (AIC),

AICpr1, r2, sq � log
!
p2T1q�1}Y � rAp1qX}2F

)
� 2rpr1 � r2qN � log T0ss{T1;

see Remark 8 below for more discussions. Lastly, the r1�r2�T0 tensor G
0 can be set to zero, while

U 0
1 and U 0

2 are initialized by some orthonormal matrices of sizes N � r1 and N � r2, respectively.

Moreover, to provide a warm-start initialization in practice, we may skip the hard-thresholding

operation for the first few iterations.

Remark 8. We prefer AIC over BIC for model selection since we assume that the true data

generating process is a VAR(8) process, and consequently, the true model almost always lie

outside of the candidate model set (Shibata, 1980; Goldenshluger and Zeevi, 2001; Bühlmann,

1997; Ing and Wei, 2005). In particular, Shibata (1980) showed that when the true order is infinity

or relatively large compared to the sample size, AIC is efficient in the sense that its prediction

performance is asymptotically equivalent to the best offered by the candidate models, while BIC

is not. For the rank selection, we may alternatively use the ridge-type ratio estimator in Wang

et al. (2022b). However, this method may suffer from information loss due to the use of a fixed

AR order. Moreover, it can be much less efficient since it is unable to leverage the group sparsity.

Remark 9. To guarantee the convergence of Algorithm 1 theoretically, there are requirements on

the choice of regularization parameters, a and b, in LGDpG,U 1,U 2q; see Theorem 4 in the next

section for details. In practice, both soft- and hard-thresholding algorithms are insensitive to a

and b, and we set both to one in all our simulation and empirical studies.

4 Theoretical properties

4.1 Non-asymptotic properties for group Lasso estimation

This subsection derives non-asymptotic properties of the proposed rank-constrained group Lasso

estimator, pA8, at (2.5) in Section 2. Its accuracy is measured in terms of both parameter estima-

tion and prediction as in the literature (Wainwright, 2019),
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eestp pA8q � }A�
8 � pA8}2F �

8̧

j�1

}A�
j � pAj}2F � }A� � pA}2F � etrunc,

epredp pA8q � 1

T1

Ţ

t�T0�1

��� 8̧

j�1

pA�
j � pAjqyt�j

���2
2
� T�1

1 }pA� � pAqp1qX}F � retrunc, (4.1)

where the truncation errors coming from the sieve approximation are given by

etrunc �
8̧

j�T0�1

}A�
j }2F and retrunc � 1

T1

Ţ

t�T0�1

#
2
A T0̧

j�1

pA�
j � pAjqyt�j, rt

E
� }rt}22

+
,

respectively, A�
8 is the true full coefficient tensor, and rt is defined in (2.4). We first handle

the VAR sieve estimator pA, which corresponds to the first terms on the right hand side of both

equations at (4.1), and the key intermediate step is to prove a more general result, which is known

as the oracle inequality in the literature (Negahban et al., 2012).

Assumption 3 (Sub-Gaussian errors). Let εt � Σ1{2
ε ξt, where tξtu is a sequence of i.i.d. random

vectors with zero mean and varpξtq � IN . In addition, the coordinates pξitq1¤i¤N within ξt are

mutually independent and σ2-sub-Gaussian, where σ2 ¡ 0 is an absolute constant.

Assumption 4 (Running orders). There exists an absolute constant C ¡ 0 such that T1ρ
T0{2 ¤ C,

or equivalently, T0 ¥ 2tlogp1{ρqu�1 logpT1{Cq.

Assumption 3 is commonly used in the literature of high-dimensional time series (Zheng and

Cheng, 2021; Wang et al., 2023), and the homoskedasticity here can even be further relaxed to

unconditional heteroskedasticity at the cost of more complex notation. However, it excludes the

commonly used assumptions of heavy tails and conditional heteroskedasticity in low-dimensional

settings. Wong et al. (2020) considered the sub-Weibull assumption to allow a little bit heavier

tails, and the geometric decaying β-mixing condition of the process is required. Adamek et al.

(2023) employed the near-epoch dependence assumption to allow non-Gaussian, serially correlated

and conditional heteroskedastic errors; see also Medeiros and Mendes (2016) and the references

therein. The above proving techniques are both for lasso problems, and it is challenging to adapt

them to our estimation. We leave it for future research. In Assumption 4, the running order
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T0 is required to grow at a rate of T0 Á logpT1q such that the effect of truncated terms rt’s can

be dominated; see the technical proofs for details. In fact, to derive the asymptotic normality

of low-dimensional VAR sieve estimation (Lewis and Reinsel, 1985), it is usually assumed that

T
1{2
1

°8
j�T0�1 }A�

j }op � op1q, which exactly corresponds to T0 Á logpT1q since
°8

j�T0�1 }A�
j }op À ρT0

under Assumption 2.

We next state the oracle inequalities of pA, which will rely on the temporal and cross-sectional

dependence of tytu (Basu and Michailidis, 2015). To this end, we first define

µminpΨ�q � min
|z|�1

λminpΨH

�pzqΨ�pzqq and µmaxpΨ�q � max
|z|�1

λmaxpΨH

�pzqΨ�pzqq,

whereΨ�pzq �
°8

j�0Ψ
�
j z

j for z P C, andΨH

�pzq is its complex conjugate. Note that, from Assump-

tion 2, µmaxpΨ�q ¤ Cp1�ρ2q�1 with C being an absolute constant. Let κRSC � λminpΣεqµminpΨ�q
and κRSS � λmaxpΣεqµmaxpΨ�q, where λminpΣεq and λmaxpΣεq are the minimum and maximum

eigenvalues of Σε, respectively, and κRSC and κRSS are key quantities related to the restricted

strong convexity and smoothness conditions (Raskutti et al., 2011).

Theorem 1 (Group Lasso oracle inequalities). Let S � t1, . . . , T0u be an arbitrary index set with

cardinality |S| � s and denote Sc � t1, . . . , T0uzS. Suppose that κRSC and κRSS are bounded away

from zero and infinity, and Assumptions 1–4 hold. If T1 Á tpr1 ^ r2q � s2uN � s2 log T0, and

λ Áatpr1 ^ r2qN � log T0u{T1, then with probability at least 1� Ce�pr1^r2qN�log T0,

} pA�A�}2F À λ2s� λ}A�
Sc}; � τ 2}A�

Sc}2;looooooooooomooooooooooon
approx error

and

T�1
1 }p pA�A�qp1qX}2F À λ2s� λ}A�

Sc}; � τ 2}A�
Sc}2;looooooooooomooooooooooon

approx error

,

where τ 2 � C
apN � log T0q{T1, and C is an absolute constant given in the proof.

Following the standard arguments for weak sparsity (Raskutti et al., 2011; Wainwright, 2019),

the two upper bounds in the above theorem hold for any subset S with fixed cardinality s, and

each of them consists of two terms: the estimation error, i.e. λ2s, is associated with estimating

a total of s unknown A�
j ’s, and the remaining part of A� that is not estimated, i.e. A�

Sc , gives
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rise to the approximation error. The optimal S can be chosen by trading off the estimation and

approximation errors. Moreover, by Assumptions 2 and 4, it can be shown that the truncation

errors, etrunc and retrunc, are dominated by the estimation error λ2s. Hence, by balancing the three

types of errors and further considering the exponential decay of A�
j as j Ñ 8, we can establish

the following convergence result.

Theorem 2 (GLP). Suppose that κRSC and κRSS are bounded away from zero and infinity, and

Assumptions 1–4 hold. If

T1 Á
�
pr1 ^ r2q �

"
log T1

logp1{ρq
*2

�
N �

"
log T1

logp1{ρq
*2

log T0, (4.2)

and λ �atpr1 ^ r2qN � log T0u{T1, then with probability at least 1� Ce�pr1^r2qN�log T0,

eestp pA8q À tpr1 ^ r2qN � log T0u log T1

T1 logp1{ρq and epredp pA8q À tpr1 ^ r2qN � log T0u log T1

T1 logp1{ρq ,

where C is an absolute constant given in the proof.

The optimal choice of S has cardinality s À logp?N{λq{ logp1{ρq, which, together with the

rate of λ in Theorem 2, implies that s À logpT1q{ logp1{ρq, i.e. the number of active lags decreases

as ρ decreases. This is expected given the relationship between the cutoff and ρ as discussed in

Remark 6. Second, the term log T0 appears in the above theorems, and this is due to the Lasso

regularization on T0 groups of coefficients, A1, . . . ,AT0 . Third, the upper bound on T0, namely

log T0 À T1{plog T1q2, is looser than T0 � opT 1{3q, which is necessary for the low-dimensional VAR

sieve estimation (Lewis and Reinsel, 1985). It is mainly due to the group Lasso penalty, and

this makes it possible to consider a larger T0 in real applications; see Section 5.1 for numerical

evidences. Finally, the above two theorems can be easily adjusted when the two quantities, κRSC

and κRSS, depend on N , T0 and T1, while the assumption that they are bounded away from zero

and infinity can simplify the discussions on the three types of errors, as well as the running order

selection.

Note that Theorem 2 gives error bounds uniformly for all GLPs, while some VAR models may

have finite orders and the coefficient matrices at some lags are even exactly zero; see, e.g., the
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commonly used seasonal VAR models in real applications (Cryer and Chan, 2008). For this case,

truncation errors disappear, and we even do not need to handle approximation errors. Specifically,

consider an VARpT0q model with its coefficient matrices satisfying the low-Tucker-rank assumption

at (2.4), i.e. rt � 0 and rεt � εt, and Assumption 4 is no longer needed.

Corollary 1 (Finite-order VAR process). Consider an VARpT0q process with the VAR matrix

polynomial Apzq � I �°T0

j�1Ajz
j. Suppose that the determinant of Apzq is not equal to zero for

all z P C and |z|   1. If Assumptions 2 and 3 are satisfied, then Theorem 1 still holds.

For a group-sparse VAR process, i.e. A�
Sc � 0, the approximation error becomes zero, and the

error bounds then have a rate of stpr1^ r2qN � log T0u{T1, which is sharper than that in Theorem

2 when s ¤ T0 is fixed or has a much slower rate than logpT1q.

4.2 Theoretical justifications for the algorithm with hard-thresholding

Algorithm 1 in Section 3.2 is used to solve the optimization problem at (2.6), while it is slightly

different due to the alternating mechanism. This subsection provides theoretical justifications,

including both statistical and convergence analysis, for this algorithm with hard-thresholding.

Consider the true coefficient tensor A� with A�
p1q � pA�

1 ,A
�
2 , . . . ,A

�
T0
q P RN�NT0 in Section 2

and the parameter space ΘSPpr1, r2, sq with low-rankness and group-sparsity in Section 3.1. For

a given threshold γ ¡ 0, let the active set Sγ �
 
j P t1, . . . , T0u | }A�

j }F ¡ γ
(
with cardinality

sγ � |Sγ|, and Sc
γ � t1, . . . , T0uzSγ. We then define a random quantity

eγpr1, r2, sq :� sup
MPΘSPpr1,r2,sq, }M}F�1

x∇LpA�
Sγ
q,My,

where s is the running sparsity level from Algorithm 1, and it is fixed in the forthcoming theoretical

studies. This quantity is directly related to statistical errors of the proposed algorithm, and we

first analyze it statistically by providing error bounds as in Section 4.1.

Theorem 3 (Statistical analysis). Suppose that κRSC and κRSS are bounded away from zero and

infinity, and Assumptions 1–4 hold. For any γ Áatpr1 ^ r2qN � log T0u{T1, if T1 Á tpr1 ^ r2q �
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s2uN � s2 log T0, then with probability at least 1� Ce�pr1^r2qN�log T0,

e2γpr1, r2, sq À γ2s� }A�
Sc
γ
}2F � τ 2}A�

Sc
γ
}2;,

where τ 2 � C
apN � log T0q{T1, and C is an absolute constant given in the proof.

The upper bound in the above theorem has a form similar to that in Theorem 1, and it increases

as γ increases. As a result, we can obtain the statistical error bound below,

T�1
1 rpr1 ^ r2qN � log T0srs� logpT1q{ logp1{ρqs (4.3)

by choosing γ �atpr1 ^ r2qN � log T0u{T1, and it can also be verified that sγ À log T1{ logp1{ρq.
We next conduct convergence analysis. To this end, for input Ak at the k-th iteration, denote

its active set by Sk � tj P t1, . . . , T0u | }Ak
j }F � 0u, and let νk � |Sk Y Sk�1|{s � 1. Note that it

corresponds to the case with Sk � Sk�1 if νk � 0 and that with Sk X Sk�1 � H if νk � 1, i.e. νk P
r0, 1s can be used to measure the size of overlap between Sk and Sk�1. Let νmin � min0¤k¤K�1 νk,

and νmax � max0¤k¤K�1 νk. Moreover, denote σL � mintσminrpA�
Sγ
qp1qs, σminrpA�

Sγ
qp2qsu, σU �

maxtσmaxrpA�
Sγ
qp1qs, σmaxrpA�

Sγ
qp2qsu, and κ � σU{σL, where their dependence on γ is suppressed

without confusion.

Theorem 4 (Convergence analysis). Consider Algorithm 1 with step size η � η0pκRSC�κRSSq�1rp1�
σUqp1 � σ

1{2
U qs�1, where η0 ¤ mint150�1, 204σ�1

U u is a positive constant, and denote by e2stat �
e2γpr1, r2, 3sq the statistical error. For a given γ, suppose that b � σ

1{4
U , a � pκ�1

RSC�κ�1
RSSq�1pσ1{2

U �
σUq, }A0 �A�

Sγ
}2F À σ

5{2
L κ�3{2, νmax À η0κ

2
RSCκ

�2
RSSκ

�4, s ¥ ν�1
minsγ, and e2stat À η20κ

4
RSCκ

�4
RSSκ

�8. If

Assumptions 1–4 hold, and T1 Á s2pN � log T0q,

}AK �A�
Sγ
}2F À κ3{2σ

�1{2
L

�
1� η20δ

2
�K }A0 �A�

Sγ
}2F � κ7{2σ

�1{2
L κ�2

RSCη
�2
0 δ�2e2stat (4.4)

holds, with probability at least 1 � Ce�N�log T0, where δ � 1088�1κRSCκ
�1
RSSκ

�2, η0δ   1, and C is

an absolute constant given in the proof.

The two terms at the right hand side of (4.4) correspond to the optimization and statistical

errors, respectively. The statistical error is discussed at Theorem 3 and, since η0δ   1, the
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linear convergence rate can be implied for the optimization error. Second, by triangle inequality,

0.5}AK �A�}2F ¤ }AK �A�
Sγ
}2F � }A�

Sc
γ
}2F, and hence the convergence analysis at Theorem 4 can

be readily extended to include approximation errors. Third, if we further assume that κRSS, κRSC,

σU and σL are bounded away from zero and infinity as in all the other theorems, then the tuning

parameters a, b and η in Algorithm 1 will be at a constant level, i.e. they do not depend on N ,

T0 or T1. Finally, it is required by Theorem 4 that s ¥ sγ and, from (4.3), we then can choose

s � log T1{ logp1{ρq. This hence leads to the following results for GLPs.

Corollary 2 (GLP with hard-thresholding). Suppose that the conditions of Theorems 3 and 4

hold, and we choose s � log T1{ logp1{ρq in Algorithm 1. After the K-th iteration with

K Á logpκ7{2σ
�5{2
L κ�2

RSCδ
�2q

logp1� η20δ
2q ,

and η0 and δ given in Theorem 4, if T1 Á tpr1 ^ r2q � s2uN � s2 log T0, it then holds that

}AK �A�}2F À
rpr1 ^ r2qN � log T0ss

T1

with probability at least 1� Ce�pr1^r2qN�log T0, where C is an absolute constant given in the proof.

The above corollary gives the same bound as that in Theorem 2 since s � log T1{ logp1{ρq.
Moreover, when the quantities of κRSC, κRSS, κ and σL are bounded away from zero and infinity,

the required number of iterations does not depend on N , T0 or T1, and this makes sure that the

proposed algorithm can be applied to large datasets without any difficulty. Finally, as in Section

2.3, for group-sparse VARpT0q processes, i.e. A�
Sc
γ
� 0 for some γ ¡ 0, we can obtain the same

bound as that in Corollary 2, while s may be fixed or have a much slower rate than logpT1q.

Remark 10 (Connection between estimators based on soft- vs. hard-thresholding). The estimators

obtained based on soft- and hard-thresholding methods differ in Line 7 of Algorithm 1, while Line

6 applies to both. This is illustrated in the middle and right panels of Figure 1. Specifically, the

middle panel of Figure 1 depicts the estimated lag-j coefficient matrices before the thresholding

operation, rAK

j ’s, which are obtained by Line 6 of Algorithm 1 at the Kth iteration. The top-

right panel of Figure 1 demonstrates the bias λ for each nonzero } rAK

j }F resulting from the soft-

thresholding. In the bottom-right panel of Figure 1, γ represents a chosen cutoff threshold such
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that all rAK

j ’s with } rAK

j }F ¤ γ will be truncated, and the corresponding active set is denoted

by Sγ. It can be shown that the same active set Sγ can be obtained from rAK

j ’s by either the

hard-thresholding operation with s � sγ :� |Sγ| or the soft-thresholding with some λ � γ.

5 Simulation studies

5.1 Estimation performance of the proposed methodology

This subsection conducts two simulation experiments to evaluate the finite-sample performance of

VAR sieve estimators AK from Algorithm 1 in Section 3.

The first experiment is to evaluate how the three types of errors, i.e. the estimation, approx-

imation and truncation errors, can be balanced numerically when the sparsity level s varies. We

consider two data generating processes below,

(1) VAR process: yt � Φ1yt�1 �Φ4yt�4 �Φ5yt�5 �Φ8yt�8 �Φ9yt�9 � εt with Φj � ρjBjC
1
j

and 0   ρ   1. For any given r1, r2, Bj,Cj are N � rpjq matrices with orthonormal

columns such that rankrpB1,B4,B5,B8,B9qs � r1 and rankrpC1,C4,C5,C8,C9qs � r2

and rpjq ¤ minpr1, r2q for j P t1, 4, 5, 8, 9u.

(2) VARMA process: yt � Φyt�1 � εt � Θεt�1 with Φ � �0.5BJB1, Θ � ρBJB1 and

0   ρ   1, where B is an N�N orthonormal matrix and for any given r, J � diagt1r,0N�ru
with 1r � p1, . . . , 1q1 is an N -dimensional diagonal matrix with rank r.

The VAR process is a group-sparse VAR(9) with nonzero coefficients at five lags. The dimen-

sion of the row and column spaces of tΦj, j ¥ 1u are given by rankrpΦ1,Φ4,Φ5,Φ8,Φ9qs � r1

and rankrpΦ1
1,Φ

1
4,Φ

1
5,Φ

1
8,Φ

1
9qs � r2, respectively. We set rp4q � maxpr1, r2q � minpr1, r2q and

rpjq � minpr1, r2q for j P t1, 5, 8, 9u, and matrices Bj’s and Cj’s are generated randomly; see

the supplementary file for details. At each generation, we ensure that the stationarity of VAR

processes holds. The VARMA process has a weakly group-sparse VAR(8) form at (1.2) with

A�
j � Θj�1pΦ � Θq � p�0.5 � ρqρj�1BJB1 for all j ¥ 1. The row and column spaces of all
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coefficient matrices tA�
j , j ¥ 1u are spanned by first r columns of B, and subsequently, the di-

mension of the row and column spaces of tA�
j , j ¥ 1u are given by rankrtA�

j , j ¥ 1us � r1 and

rankrtA�1
j , j ¥ 1us � r2 with r1 � r2 � r. Since the spectral radius of Φ is 0.5, the VARMA model

is stationary.

We fix the settings at pρ,N, T q � p0.7, 100, 4000q and set pr1, r2q � p4, 2q for the VAR process

and r � 4 for the VARMA process. There are 500 replications for each data generation setting, and

we independently generateBj’s andCj’s for VAR orB for VARMA at each replication. Algorithm

1 is applied to each generated sequence with T0 � t
?
T u � 63 and s varying from 3 to 35, and

we can obtain the output AK until the algorithm converges. The estimation, approximation and

truncation errors refer to }AK�A�
S}2F, }A�

Sc}2F and
°8

j�T0�1 }A�
j }2F, respectively, and the parameter

estimation error is defined as }AK �A�}2F � }AK �A�
S}2F� }A�

Sc}2F, where S contains the indices

of all estimated active coefficient matrices. The truncation error is zero for the VAR process and

2.33� 10�21 for the VARMA process, and hence they can be ignored numerically comparing with

the other two types of errors. Figure 2 gives the estimation and approximation errors, averaged

over 500 replications, and we have three findings below. First, as the sparsity level s increases,

linear growth in the estimation errors can be roughly observed for both the VARMA and VAR

processes. The approximation error decreases quickly for both processes and, when s ¡ 5, it

becomes almost zero for the VAR process since the active set can be correctly selected for most

replications. Second, for the VARMA process, the approximation error is dominating for the cases

with s   10, while the estimation error has much larger values when s ¡ 10. As a result, as s

increases, the parameter estimation error decreases first and then increases when the sparsity level

s ¡ 10. This phenomenon can also be observed for the VAR process, and the parameter estimation

error reaches the minimum at s � 5, which is the true sparsity level. Finally, for large sparsity

levels s, the parameter estimation error exhibits linearity for both processes, which is consistent

with the theoretical findings at Corollary 2.

The second experiment is to further verify the theoretical bound of parameter estimation

errors at Corollary 2, and the two data generating processes in the first experiment are employed

again. For the VAR process, the parameter estimation error is expected to have a rate of β �
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sppr1 ^ r2qN � log T0q{pT � T0q, while for the VARMA process, given that r1 � r2 � r, the rate

degenerates to β � sprN � log T0q{pT � T0q. Moreover, since the linearity with respect to s has

already been confirmed in the first experiment, we fix the sparsity level s � 5 for the VAR process

and s � 10 for the VARMA process in this experiment. Finally, we consider three different rates

for running orders, i.e. T0 � tcTαu with α � 1{4, 1{3 or 1{2, and the true order with T0 � 9 is also

considered for VAR models. The value of c is set to 1.5 for the case with α � 1{2, while c � 3 for

those with α � 1{4 and 1{3 such that the resulting T0 is not too small under the smallest sample

size setting.

In order to verify the linearity of parameter estimation errors with respect to the rate β, rank

r and dimension N , we consider three groups of settings to generate high-dimensional time series.

First, by fixing pN, r1, r2q � p100, 4, 2q for the VAR process and pN, rq � p100, 4q for the VARMA

process, one can vary the sample size T such that the values of β are equally spaced between 0.4

to 1.0. Second, we fix pN, T, r2q � p100, 1200, 4q and let r1 vary in t2, 3, 4, 5u for the VAR process,

and fix pN, T q � p100, 2000q and let r vary in t2, 3, 4, 5u for the VARMA process. Finally, the

dimension N varies among t25, 50, 75, 100u, while pr1, r2, T q is fixed at p4, 2, 1200q for the VAR

process and pr, T q is fixed at p4, 2000q for the VARMA process. All the other settings are the same

as those in the first experiment, and Figure 3 presents the plots of parameter estimation errors,

averaged over 500 replications, against the rate β, rank r1 or r, and dimension N , respectively.

The parameter estimation errors change linearly with respect to β and N for both data generating

processes, and with respect to r for the VARMA process. For the VAR process, the errors grow

linearly with respect to r1 when 2 ¤ r1 ¤ 4 and remain flat when r1 increases to 5. Given that

r2 � 4, this trend verifies that the error rate is dependent on r1 ^ r2. The above findings confirm

the theoretical results at Corollary 2. Moreover, we can observe that the parameter estimation

errors are relatively insensitive to different settings of T0 holding N, r or r1 and T fixed. When T0

is larger, due to the decrease in effective sample size, the parameter estimation errors may become

slightly worse but the difference is not obvious.
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5.2 Comparison of predictive performance

This subsection evaluates the predictive performance of the proposed method against existing

ones. Specifically, we provide a comprehensive set of benchmarking methods below:

(i) Default benchmarks: The common benchmarking models used in economics are the random

walk, univariate AR(1), AR(2), and unregularized VAR(1), VAR(2).

(ii) VAR(p) models: The VAR(p) models comprise Lasso-regularized VAR (Basu and Michailidis,

2015) with ℓ1-penalty on coefficient matrices; the multilinear low-rank (MLR) VAR (Wang

et al., 2022b) which assumes low-rank structure on the coefficient matrices and along the lag

dimension of the stacked coefficient matrices; the sparse higher-order reduced-rank (SHORR)

model which further imposes sparsity on the decomposed loading matrices in the MLRmodel;

and Bayesian VAR (BVAR) with zero-mean natural conjugate prior (Chan et al., 2016) that

shrinks coefficient matrices to zero.

(iii) VARMA-based models: The VARMA models include those with ℓ1- or HLag-penalties on

both the AR and MA coefficient matrices respectively (Wilms et al., 2023). A parametric

VAR(8) model is concurrently introduced in Zheng (2024) which models the temporal lags

using a parametric form derived from a reparametrization of the VARMA model. We refer

to it as the “Approx VARMA” model in the rest of the paper.

(iv) An adaption of factor-augmented regression: As another benchmark, we adapt the factor-

augmented regression (Stock and Watson, 2002a,b) to multivariate time series forecasting.

Their original method aims to forecast a univariate time series based on factors f t P Rr�1

extracted from a multivariate time series xt P RN�1. For example, for forecasting yit, the

model can be written as yit � β1
ipLqf t � γipLqyit � εit, with xt � Λf t � et, where L is the

lag operator, and βipLq �
°p

k�1 βikL
k P Rr�1 and γipLq �

°q
k�1 γikL

k P R are polynomials

in L. In our ad-hoc adaptation, we let xt � yt and q � 1 in the model for each 1 ¤ i ¤ N ,

and simply apply the PCA to yt to extract the common factors. Then univariate time series
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models are fitted to each yit with p lags of the extracted factors and yi,t�1. We refer to it as

“FactorAug Reg” in the rest of the paper.

We assess the predictive performance of these models by generating data from the VAR process.

To better align the data with the proposed model, we introduce small modifications to the VAR

data generating process in the previous subsection. Specifically, when generating matrices Bj’s

and Cj’s, we only keep those with the maximum ℓ1 norm of the row vectors being smaller than

0.55. As a result, the resulting coefficient matrices are purely low-rank but not sparse. We fix

pN, T, r1, r2, ρq � p100, 1200, 4, 2, 0.9q with T0 � t
?
T u. Moreover, we set Φ1 to zero so that the

remaining non-sparse lags are 4, 5, 8 and 9. To evaluate the forecasting performance, we generate

n � 100 realized sequences typkqt , 1 ¤ t ¤ T u of length T with the last observation y
pkq
T reserved for

one-step-ahead forecasting evaluation, for 1 ¤ k ¤ n. The one-step-ahead mean squared forecast

error can be calculated as

MSFElast-step,model i � 1

n

ņ

k�1

}pypkqT,model i � y
pkq
T }22,

where pypkqT,model i � EemppypkqT | ypkqT�1,y
pkq
T�2, . . . ,model iq and Eempp�q denotes the empirical mean

and model i denotes either our proposed model or one of the aforementioned benchmark models.

And the subscript “last-step” is added to distinguish its definition with the one-step-ahead rolling

forecast error to be defined in the empirical studies. To assess the significance of differences in

MSFEs across models, we construct a model confidence set (MCS) and report the corresponding

p-values, following the methodology of Hansen et al. (2011). An existing package by Aka and

Tschernig (2018) is adopted. Specifically, we use the difference in squared ℓ2 forecast errors as

the relative performance variable and the MCS p-values are calculated using the deviation test

statistic, while we also confirm that using range test statistics will lead to similar observations.

The benchmark methods are implemented following details from their respective papers. The

supplementary file provides additional details about this. To ensure comparability with the uni-

variate AR and unregularized VAR benchmarks, we set the AR order to p � 2 for the finite-order

VAR models. The MSFEs and MCS p-values are presented in Table 1. Higher p-values indicate

a lower likelihood of the model being excluded from the set of potential ‘best’ models, suggesting
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a greater probability that the model is among the most accurate. Overall, our proposed method

outperforms all the benchmarks. Sparsity-based methods generally underperform compared to

low-rank or factor-based approaches since the coefficient matrices are low-rank but non-sparse.

The worse performance of finite-order VAR models, compared to our method, suggests that trun-

cating the lags may introduce bias, resulting in inferior performance. Similarly, the poorer results

from the VARMA model may be due to its inability to capture non-consecutive non-zero lags,

leading to a misrepresentation of the temporal structure.

6 Macroeconomic application

In our empirical analysis, we utilize quarterly macroeconomic variables obtained from the FRED-

QD dataset (McCracken and Ng, 2020). These variables span a wide range of categories, including

prices, earnings and productivity, interest rates, money and credit, exchange rates, stock market,

household and non-household balance sheets. These categories are usually considered in the con-

struction of financial condition indices, since they reflect important factors that can affect the

stance of monetary policy and aggregate supply and demand conditions (Bulut, 2016; Hatzius

et al., 2010). The sequences span from the first quarter of 1959 to the fourth quarter of 2019,

covering 244 time points prior to the onset of the COVID-19 pandemic. After excluding variables

with incomplete observations, following the same methods as in McCracken and Ng (2020), we

transform all sequences to stationarity and standardize them to zero mean and unit variance.

Detailed transformations are provided in the supplementary file. We create three datasets of dif-

ferent sizes: “large” with all 112 variables, “medium” with 45 variables from the price category,

and “small” with 11 consumer price index related variables from the price category.

We use Algorithm 1 with hard-thresholding to conduct the VAR sieve estimation and initially

set the running order to T0 � t
?
T u � 15. It roughly needs two minutes to finish one searching

with around 5000 iterations for the large dataset. Based on the initial estimation, if the estimated

coefficient matrices for lags beyond T0 � k are all zero, we then refine T0 by reducing it to T0 �
maxp0, k � 2q. Using the AIC given in Section 3.2, the chosen hyperparameters for the large,
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medium, and small datasets are pr1, r2, s, T0q � p1, 1, 1, 3q, p1, 1, 1, 3q, and p1, 3, 3, 10q, respectively.
For the small dataset, lags 2, 3 and 8 are selected, while the first lag is selected for large and

medium datasets. We first compare the predictive performance of the proposed method with the

benchmark ones listed in Section 5.2, including default benchmarks, and VAR-based, VARMA-

based and factor-based models. We implement each model according to the details provided

in the corresponding papers and codes. For the ℓ1-penalized, MLR, and SHORR VAR models,

the AR order is set to one, as selected by BIC, while it is set to four by default in the BVAR

implementation. A rolling forecast procedure is adopted for evaluating the predictive performance.

Specifically, we first fit the models using the historical data with the ending point iterating from the

fourth quarter of 2001 to the third quarter of 2019, and then one-step-ahead prediction pyt�1,model i

as defined in Section 5.2 is produced at every iteration. We use the one-step-ahead rolling mean

squared forecast error

MSFEmodel i � 1

72

244̧

t�173

}pyt�1,model i � yt�1}22

as our evaluation metric. To assess the significance of differences in MSFEs across all models, we

again calculate MCS p-values (Hansen et al., 2011) as in Section 5.2.

Table 2 compares the forecasting performance including MSFE and MCS p-values of various

models across small, medium, and large datasets. Our proposed model consistently achieves

the lowest MSFEs across all dataset sizes, outperforming the benchmark models. Several key

observations can be drawn from the results: (1) The superior performance of the proposed model

suggest that the response and predictor subspaces for this macroeconomic dataset are both low-

rank and differ from each other. (2) The unregularized VAR and random walk models perform

the worst overall, followed by univariate AR methods. (3) The MLR, SHORR, BVAR with

shrinkage priors, and factor-augmented regression models perform worse than VAR models with

ℓ1 regularization. (4) VARMA-based methods generally outperform standard VAR-based methods.

In addition to the above overall MSFEs, we also plot the cumulative MSFEs in Figure 4 to compare

the trajectory of cumulative forecasting errors. Specifically, we calculate the cumulative MSFE

ratio of each benchmark method again ours. The four strongest competitors are VAR with with
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ℓ1 penalty, VARMA with ℓ1 penalty, VARMA with HLag penalty, and the approximate VARMA

approach as shown in the bottom panel of Figure 4. The results show that, for the small dataset,

our method outperforms all other methods during the periods after 2010. For the medium dataset,

our method consistently outperforms all other methods across the entire period from 2003 to end

of 2019. Finally, for the large dataset, our method surpasses all others from 2010 to end of 2019.

To further compare the estimated loading matrices of the response and predictor factors, we

present the identifiable projection matrices pU i
pU 1

i with pU i’s being orthonormal for i � 1 or 2

since the loading matrices are not uniquely defined. Figures 5 and 6 show the projection matrices

estimated from the large dataset, while those from the medium and small datasets are deferred

to the supplementary file. To improve visualization, we reorder the variables as follows: the

variable with the largest diagonal value is treated as the first variable. The remaining variables

are then ordered according to their values in the first row, from largest to smallest. Next, we select

the variables whose diagonal values are at least 0.01 to form a submatrix, and we provide their

corresponding names with detailed description in Table ?? at the supplementary file to facilitate

interpretation.

As shown by the projection matrix in Figure 5, the predictor factors can be broadly catego-

rized into two groups. The first group predominantly reflects activities related to production,

consumption, and investment (e.g., PCED, PPI FinConsGds Food,GPDI Del), along with mea-

sures of credit risk within the economy (e.g., Total Reserves Repository, Nonborrowed Reserves -

Repository, BAA GS10). In contrast, the second group primarily captures changes in short-term

interest rates (e.g., TM 3M FedFunds, FedFunds) and wealth-related metrics (e.g., Real HHW -

RESA, Real AHE MFG). These two groups exert opposing influences on the response variables,

reflecting distinct economic driving forces derived from historical data.

Meanwhile, the projection matrix for the response factors, depicted in Figure 6, reveals patterns

that differ significantly from those of the predictor factors. Here too, the factors can be grouped

into two categories: the first group primarily captures measures of inflation, interest rates, credit,

liabilities, and wealth. The second group, represented by long-term interest rates and bonds,

responds differently to the predictor variables. This divergence is likely due to the fact that these
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indicators are also influenced by market expectations of future economic growth, introducing a

level of complexity that cannot be fully captured by historical data alone.

7 Conclusion and discussion

This paper proposes a supervised factor model for high-dimensional time series by introducing low-

rank structures to the coefficient matrices of VAR(8) models. With the help of tensor techniques,

the proposed model can be rewritten into a form of two factor models, which allows us to interpret

it from unsupervised factor modeling perspectives. For its application on high-dimensional time

series, by making use of an interesting fact that the stationarity condition implies the weak group

sparsity of coefficient matrices, a rank-constrained group Lasso estimation is considered, and its

non-asymptotic properties are carefully investigated by trading-off the estimation, approximation,

and truncation errors. Moreover, an alternating gradient descent algorithm with hard-thresholding

is suggested to search for the high-dimensional estimate, and its theoretical properties, including

both statistical and convergence analysis, are also provided. Finally, as illustrated by empirical

analysis, the proposed model exceeds the existing methods in terms of forecasting accuracy while

enjoying the nice interpretation of factor models.

The proposed methodology in this paper can be extended along three directions. First, to

obtain a reliable estimator, the sample size is required to be T1 Á tpr1 ^ r2q � s2uN � s2 log T0

in Theorem 1, while the number of variables N may be larger than the sample size T1, say for

time-course gene expression data (Lozano et al., 2009). To handle this case, the group sparsity

can be further imposed to the rows of factor matrices U 1 and U 2, and we then can construct

an alternating gradient descent method with three thresholdings, which is similar to Algorithm

1 in Section 3.1. Second, our current proving techniques heavily depend on the exponential

decay of coefficient matrices, which actually excludes many important time series models such as

the fractionally integrated autoregressive moving average (ARFIMA) model with long memory

(Grange and Joyeux, 1980). It is urgent to look for a new proving technique to remove this

restriction. Finally, it is of interest to make further inference on estimated coefficient matrices
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such as checking the significance of some coefficients (Xia et al., 2022; Cai et al., 2020), and we

will leave it for future research.
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Figure 2: Estimation, approximation and parameter estimation errors, i.e. }AK �A�
S}2F, }A�

Sc}2F
and }AK � A�}2F, at different sparsity levels s for VARMA (left panel) and VAR (right panel)

processes. The range of decreasing parameter estimation errors is shaded.

Figure 3: Plots of parameter estimation errors }AK � A�}2F against the error rate β � rrN �
log T0ss{pT � T0q (left panel), rank r (middle panel) and dimension N (right panel), respectively.

The data generating processes are VARMA (upper panel) and VAR (lower panel) models, and the

running order T0 is proportional to Tα with “fix” referring to T0 � 9.
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Figure 4: Cumulative MSFE ratios of benchmark methods against ours from 2002 to 2020. In the

bottom panel, we plot the cMSFE ratios specifically for the strong benchmark models: VAR (ℓ1),

VARMA (ℓ1), VARMA (HLag) and Approx VARMA.
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Figure 5: Projection matrices of estimated response loading for the large size dataset, and the

selected areas are enlarged at the right panel.

Figure 6: Projection matrices of estimated predictor loading for the large size dataset, and the

selected areas are enlarged at the right panel.
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Table 1: One-step-ahead mean squared forecast errors (MSFElast-step) and model confidence set

(MCS) p-values of our methods and other ones on the simulated datasets. The best result in each

column is highlighted in bold black font.

Models MSFElast-step pMCS

RW 14.00 0.00

AR(1) 10.29 0.23

AR(2) 10.29 0.17

VAR(1) 10.56 0.00

VAR(2) 11.06 0.00

VAR (ℓ1) 10.42 0.03

VAR (MLR) 10.27 0.64

VAR (SHORR) 10.21 0.64

BVAR 11.40 0.00

VARMA (ℓ1) 11.55 0.00

VARMA (HLag) 10.95 0.00

Approx VARMA 10.29 0.23

FactorAug Reg 10.24 0.64

Ours 10.15 1.00
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Table 2: One-step-ahead rolling mean squared forecast errors (MSFE) and model confidence set

(MCS) p-values of our methods and other ones on small-, medium- and large-size macroeconomic

datasets. The best result in each column is highlighted in bold black font.

DatasetszModels Small Medium Large

MSFE pMCS MSFE pMCS MSFE pMCS

RW 4.83 0.00 10.06 0.00 14.20 0.00

AR(1) 3.87 0.00 8.05 0.00 10.68 0.35

AR(2) 3.96 0.00 8.19 0.00 10.90 0.11

VAR(1) 3.97 0.00 9.34 0.00 17.75 0.00

VAR(2) 4.19 0.00 10.49 0.00 70.18 0.00

VAR (ℓ1) 3.02 0.10 6.22 0.50 10.06 0.35

VAR (MLR) 3.55 0.01 7.47 0.01 11.27 0.01

VAR (SHORR) 3.59 0.01 7.54 0.01 10.97 0.02

BVAR 3.51 0.01 8.61 0.00 11.17 0.01

VARMA (ℓ1) 2.98 0.19 6.21 0.62 10.02 0.65

VARMA (HLag) 3.04 0.10 6.27 0.25 10.00 0.84

Approx VARMA 2.93 0.98 6.23 0.43 10.09 0.35

FactorAug Reg 3.88 0.00 8.04 0.00 10.72 0.25

Ours 2.93 1.00 6.16 1.00 9.97 1.00
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