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Abstract

This supplementary material provides detailed technical proofs for the theoretical results

in the paper in the first four sections. Section 5 includes an additional simulation study,

along with complementary details about our simulation setup. Section 6 offers further in-

formation on the macroeconomic dataset, while Section 7 presents an empirical study on

realized volatility.

S1 Notations and preliminaries

S1.1 Brief introduction to tensor notations and decomposition

This subsection gives a brief introduction to tensor notations and Tucker decomposition, and a

detailed review on tensor notations and operations can be referred to in Kolda and Bader (2009).

Tensors, also known as multidimensional arrays, are higher-order extensions of matrices, and a

multidimensional array A P Rd1�����dK is called a K-th-order tensor, where the order of a tensor

is known as the dimension, way or mode. This paper concentrates on third-order tensors.
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For a tensor A P Rd1�d2�d3 , its element is denoted by Aijk for 1 ¤ i ¤ d1, 1 ¤ j ¤ d2 and

1 ¤ k ¤ d3, and the Frobenius norm is defined as }A}F �
b°

i,j,k A
2
ijk. We define its mode-1

multiplication with a matrix B P Rd1�p1 as A �1 B P Rp1�d2�d3 with elements of pA �1 Bqℓjk �°d1
i�1AijkBℓi. The mode-2 and -3 multiplications, �2 and �3, can be defined similarly.

Matricization or unfolding is an operation to reshape a tensor into matrices of different sizes,

and it can help to link the concepts and properties of matrices to those of tensors. The mode-1

matricization of A is defined as Ap1q P Rd1�d2d3 , whose ti, pk � 1qd3 � ju-th entry is Aijk for all

possible i’s, j’s and k’s, i.e. Ap1q contains all mode-1 fibers tpAr:,j,ksq P Rd1 : 1 ¤ j ¤ d2, 1 ¤ k ¤
d3u. We can similarly define the mode-2 and -3 matricizations ofA, denoted byAp2q P Rd2�d1d3 and

Ap3q P Rd3�d1d2 , respectively. When the tensor A has a form of Ap1q � pA1, . . . ,Ad3q with Aj P
Rd1�d2 for all 1 ¤ j ¤ d3, it holds that Ap2q � pA1

1, . . . ,A
1
d3
q and Ap3q � pvecpA1q, . . . , vecpAd3qq1.

The multilinear ranks of a tensor A P Rd1�d2�d3 is defined as pr1, r2, r3q, where

r1 � rankpAp1qq, r2 � rankpAp2qq and r3 � rankpAp3qq.

Accordingly, there exists a Tucker decomposition (Tucker, 1966),

A � G�1 U 1 �2 U 2 �3 U 3,

where G P Rr1�r2�r3 is the core tensor, U j P Rdj�rj with 1 ¤ j ¤ 3 are factor matrices. Note

that the Tucker decomposition is not unique, since A � G �1 U 1 �2 U 2 �3 U 3 � pG �1 O1 �2

O2 �3 O3q �1 pU 1O
�1
1 q �2 pU 2O

�1
2 q �3 pU 3O

�1
3 q for any invertible matrices Oi P Rri�ri with

1 ¤ i ¤ 3. We can consider the higher order singular value decomposition (HOSVD) of A, a

special Tucker decomposition uniquely defined by choosing U i as the tall matrix consisting of the

top ri left singular vectors of Apiq and then setting G � A �1 U
J
1 �2 � � � �d U

J
d . Note that U i’s

are orthonormal, i.e. UJ
i U i � Iri with 1 ¤ i ¤ d.

The three ranks, r1, r2 and r3, are not equal in general. In particular, when r3 � d3, the

multilinear ranks of A are denoted by pr1, r2q instead, omitting the rank of mode-3 matricization.

The multilinear ranks are also known as Tucker ranks, as they are closely related to the Tucker

decomposition. There are many other tensor decomposition methods, such as CP decomposition
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(Kolda and Bader, 2009), and the ranks of a tensor can be defined in many different ways.

S1.2 More notations and preliminaries used in technical proofs

This subsection gives more notations and preliminaries. Let Sd�1 � tX P Rd | }X}2 � 1u be the

unit sphere of Rd in Euclidean norm. For n ¥ 2, let Sd1�����dn�1 � tX P Rd1�����dn | }X}F � 1u be
the unit sphere of Rd1�����dn in Frobenius norm. Moreover, for any positive integer r ¤ N , denote

the set of unit matrices with rank at most r by

ΘFprq � tM P RN�N | }M}F � 1, rankpM q ¤ ru.

Consider a tensor A P RN�N�T0 such that Ap1q � pA1,A2, . . . ,AT0q, i.e. Aj is the j-th frontal

slice of A. For any index set S � t1, . . . , T0u with cardinality |S| � s, denote by AS P RN�N�T0

such that its j-th frontal slice is Aj if j P S, and a zero matrix if j R S. Let }A}; �
°T0

j�1 }Aj}F,
and it holds that

}A}; � }AS}; � }ASc};, (S1)

where Sc � t1, . . . , T0uzS. Moreover, it can be verified that

}AS}; �
¸
iPS

}Ai}F ¤
d
|S|

¸
iPS

}Ai}2F ¤
?
s}A}F. (S2)

Recall that Y � pyT ,yT�1, . . . ,yT0�1q P RN�T1 and X � pxT ,xT�1, . . . ,xT0�1q P RNT0�T1 ,

where xt � py1t�1,y
1
t�2, . . . ,y

1
t�T0

q1, for T0 � 1 ¤ t ¤ T . We further denote

rt �
8̧

j�T0�1

A�
jyt�j, R � prT , rT�1, . . . , rT0�1q P RN�T1

and

rεt � rt � εt, rE � R� E � prεT ,rεT�1, . . . ,rεT0�1q P RN�T1

where E � pεT , εT�1, . . . , εT0�1q. In addition, we partition X into T0 blocks such that X �
pX 1

1, . . . ,X
1
T0
q1, where the j-th block is the N � T1 matrix

Xj � pyT�j,yT�1�j, . . . ,yT0�1�jq P RN�T1 , j � 1, . . . , T0. (S3)
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Let

ΣT0 � E
�
XX 1

T1



� Epxtx

1
tq �

�������
Γp0q Γ1p1q � � � Γ1pT0 � 1q
Γp1q Γp0q � � � Γ1pT0 � 2q
...

...
. . .

...

ΓpT0 � 1q ΓpT0 � 2q � � � Γp0q

������� , (S4)

whose pi, jq-th block is

Γpi� jq � E
�
X iX

1
j

T1



� Epyt�iy

1
t�jq P RN�N , 1 ¤ i ¤ j ¤ T0.

S2 Proof of Proposition 1

For a certain general linear process, yt � εt�
°8

j�1Ψjεt�j, with fixed r1, r2 and N , it is implied by

Assumption 1 that
°8

j�0 }Ψj}F   8 and, by directly following (2.2) in Lewis and Reinsel (1985)

and its discussion, its VAR(8) representation can be uniquely identified below,

yt �
8̧

j�1

Ajyt�j � εt, with Aj � Ψj �
j�1̧

k�1

Ψj�kAk, @j ¥ 1. (S1)

Moreover, it can be easily verified that
°8

j�1 }Aj}op   8.

Let M1 � colspacetΨj, j ¥ 1u and M2 � rowspacetΨj, j ¥ 1u be the column and row spaces

of coefficient matrices Ψj’s, respectively. We first show by induction that for all j ¥ 1,

colspacepAjq � M1 and rowspacepAjq � M2. (S2)

Since A1 � Φ1, (S2) holds trivially for j � 1. Suppose that (S2) holds for all j ¤ k, then, by

the fact that Aj � Ψj �
°j�1

k�1Ψj�kAk, (S2) also holds for j � k � 1. And hence the induction is

completed.

In addition, it can also be verified with Ψj � Aj �
°j�1

k�1AkΨj�k for all j ¥ 1. By a method

similar to (S2), we can show that

M1 � colspacetAj, j ¥ 1u and M2 � rowspacetAj, j ¥ 1u.

This hence accomplishes the proof.
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S3 Proofs of theoretical results in Section 4.1

We first give the proofs of Theorems 1 and 2, and Corollary 1 in Sections B.1-B.4, respectively.

Section B.5 gives four lemmas used in the proof of Theorem 1, and two auxiliary lemmas are

provided in Section B.6.

S3.1 Proof of Theorem 1

Let p∆ � pA�A�. Since pA,A� P Θpr1, r2q, we can show that p∆ P Θp2r1, 2r2q � tA P RN�N�T0 |
rankpApiqq ¤ 2ri, i � 1, 2u. By the optimality of pA, we have

1

2T1

}Y � pAp1qX}2F � λ} pA}; ¤ 1

2T1

}Y �A�
p1qX}2F � λ}A�};. (S1)

Define the event

E1 �
#

sup
∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

rEX 1y ¤ λ{2
+
,

where

Θ;pr1, r2q � tA P RN�N�T0 | rankpApiqq ¤ ri, i � 1, 2, }A}; � 1u. (S2)

It is then implied by (S1) that, on the event E1,

1

T1

} p∆p1qX}2F ¤ 2x p∆p1q,
1

T1

rEX 1y � 2λ
�
}A�}; � } pA};

	
¤ 2} p∆}; sup

∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

rEX 1y � 2λ
�
}A�}; � } pA};

	
¤ λ

!
} p∆}; � 2

�
}A�}; � } pA};

	)
¤ λ

�
4}A�

Sc}; � 3} p∆S}; � } p∆Sc};
	
, (S3)

where the last inequality follows from (S1) and the triangle inequality. Moreover, since the left

hand side of (S3) is non-negative, we have p∆ P CpSq XΘp2r1, 2r2q, where the restricted set CpSq
is defined as

CpSq �  
∆ P RN�N�T0 | }∆Sc}; ¤ 3}∆S}; � 4}A�

Sc};
(
.

For any ∆ P CpSq, by the triangle inequality and (S2), we have

}∆}2; ¤ p4}∆S}; � 4}A�
Sc};q2 ¤ 32s}∆}2F � 32}A�

Sc}2;. (S4)
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On the other hand, let E2 be the event that the following restricted eigenvalue (RE) condition

holds:

1

T1

}∆p1qX}2F ¥ κRSC}∆}2F � τ 2}∆}2; for all ∆ P RN�N�T0 ,

where τ 2 � C
apN � log T0q{T1. Note that, from (S2) and (S3), T1

�1} p∆p1qX}2F ¤ 4λ}A�
Sc}; �

3λ
?
s} p∆}F. As a result, from (S4) and on the event E1 X E2,

4λ}A�
Sc}; � 3λ

?
s} p∆}F ¥

�
κRSC � 32τ 2s

� } p∆}2F � 32τ 2}A�
Sc}2; ¥

κRSC

2
} p∆}2F � 32τ 2}A�

Sc}2;, (S5)

if s ¤ κRSC{p64τ 2q, i.e., as long as

T1 Á s2pN � log T0q. (S6)

In view of (S5), by solving the quadratic function in } p∆}F we can show that, on the event E1XE2,

if (S6) holds, then

} p∆}2F À κ�1
RSCpλ2s� λ}A�

Sc}; � τ 2}A�
Sc}2;q. (S7)

Since

sup
∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

rEX 1y ¤ sup
∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

EX 1y � sup
∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

RX 1y,

by Lemmas B.1 and B.2, if λ Áatpr1 ^ r2qN � log T0u{T1, we then have

PpEc
1q ¤ P

#
sup

∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

rEX 1y ¥ C

d
pr1 ^ r2qN � log T0

T1

+
¤ Ce�pr1^r2qN�log T0 . (S8)

In addition, by Lemma B.3,

PpEc
2q ¤ Ce�N�log T0 . (S9)

Combining (S7)–(S9), we prove the upper bound for } p∆}F.
Lastly, by (S2) and (S3), we have

1

T1

} p∆p1qX}2F ¤ λ
�
4}A�

Sc}; � 3
?
s} p∆}F

	
À λ}A�

Sc}; � λ2s� } p∆}2F,

since 2λ
?
s} p∆}F ¤ λ2s� } p∆}2F. Combining this with (S7)–(S9) and the condition in (S6), we can

similarly prove the upper bound for T1
�1} p∆p1qX}2F.
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S3.2 Proof of Theorem 2

By Assumptions 2 & 4 and the low-rank conditions at (2.1),

etrunc �
8̧

j�T0�1

}A�
j }2F ¤

pr1 ^ r2qρ2T0

1� ρ
À r1 ^ r2

T 4
1

, (S10)

which is clearly dominated by } p∆}2F in (S7) under the condition on λ. Therefore, combining (S7)

and (S10), we have that, with probability at least 1� Ce�pr1^r2qN�log T0 ,

eestp pA8q � } pA8 �A�
8}2F � } p∆}2F � etrunc À κ�1

RSCpλ2s� λ}A�
Sc}; � τ 2}A�

Sc}2;q. (S11)

Moreover, by (S2) and (S3), we have with probability at least 1� Ce�pr1^r2qN�log T0 ,

epredp pA8q � 1

T1

Ţ

t�T0�1

} p∆p1qxt � rt}22

� 1

T1

} p∆p1qX}2F �
2

T1

x p∆p1qX,Ry � 1

T1

}R}2F

¤ 1

T1

} p∆p1qX}2F � 2} p∆}F sup
∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

RX 1y � 1

T1

}R}2F

À κ�1
RSCpλ2s� λ}A�

Sc}; � τ 2}A�
Sc}2;q,

(S12)

where the last inequality uses Theorem 1, Lemmas B.2 and B.4.

Next, we characterize the optimal bounds for eestp pA8q in (S11) and epredp pA8q in (S12). Con-

sider a family of subsets indexed by a threshold γ ¡ 0: Sγ �
 
j P t1, . . . , T0u | }A�

j }F ¡ γ
(
, and

let Sc
γ � t1, . . . , T0uzSγ. Note that under Assumption 2 and the low-rank conditions at (2.4),

}A�
j }F ¤ C

?
r1 ^ r2ρ

j for j ¥ 1. Let Qγ be the smallest integer such that C
?
r1 ^ r2ρ

j ¤ γ for all

j ¥ Qγ. Then,

Qγ �
R
logpC?r1 ^ r2{γq

logp1{ρq
V
, (S13)

where r�s is the ceiling function. Moreover, since C
?
r1 ^ r2ρ

Qγ ¤ γ, we have

}A�
Sc
γ
}; �

¸
jPSc

γXt1,...,Qγu

}A�
j }F �

T0̧

j�Qγ�1

}A�
j }F ¤ γQγ �

8̧

j�Qγ�1

C
?
r1 ^ r2ρ

j À γQγ, (S14)

as long as Qγ ¥ c for some absolute constant c ¡ 0. Since }A�
j }F ¡ γ ¥ C

?
NρQγ for any j P Sγ,

we have Sγ � t1, . . . , Qγu, and hence |Sγ| ¤ Qγ. Then, the upper bounds of λ2|Sγ| and λ}A�
Sc
γ
};,
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i.e., λ2Qγ and λγQγ, are balanced when γ � λ. With this choice of γ and the rate of λ specified

in the theorem, by (S13), we can show that

Qγ À log T1

logp1{ρq

and τ 2Qγ ¤ C. Thus, τ 2}A�
Sc
γ
}2; is dominated by λ}A�

Sc
γ
};. From (S11), eestp pA8q À λ2Qγ. In

addition, substituting the upper bound of |Sγ|, i.e., log T1{ logp1{ρq, into the sample size condition

in Theorem 1, we have (4.2). As a result, the upper bound for eestp pA8q in this theorem holds.

Finally, the result for epredp pA8q can be proved by a similar method.

S3.3 Proof of Corollary 1

This proof largely follows from the proof of Theorem 1 in Section S3.1. For the finite-order AR

model with a fixed order T0, A
�
j � 0 for all j ¥ T0�1 leading to R � 0 and rE � E. Subsequently,

the event E1 becomes

E1 �
#

sup
∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

EX 1y ¤ λ{2
+
,

and its probability can be established directly from Lemma B.1. Meanwhile, the other intermediate

steps are the same as in the proof of Theorem 1 in Section S3.1.

S3.4 Four lemmas used in the proof of Theorem 1

We first state the four lemmas and then give their technical proofs.

Lemma B.1. Suppose that Assumptions 1 – 3 hold. If T1 Á pr1 ^ r2qN � log T0, then

P

#
sup

∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

EX 1y ¥ C

d
pr1 ^ r2qN � log T0

T1

+
¤ Ce�pr1^r2qN�log T0 .

Lemma B.2. Suppose that Assumptions 1 – 4 hold. If T1 Á pr1 ^ r2qN � log T0, then

P

#
sup

∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

RX 1y ¥ C

?
N

T1

+
¤ Ce�pr1^r2qN�log T0 .
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Lemma B.3 (RE condition). Suppose that Assumptions 1 – 3 hold. If T1 Á N � log T0, then with

probability at least 1� Ce�N�log T0, the following RE condition is satisfied:

1

T1

}∆p1qX}2F ¥ κRSC}∆}2F � τ 2}∆}2; for all ∆ P RN�N�T0 ,

where κRSC � λminpΣεqµminpΨ�q and τ 2 � C
apN � log T0q{T1.

Lemma B.4. If Assumptions 1 – 4 hold, then

P
"

1

T1

}R}2F ¥ C
N3{2ρT0

T1

*
¤ Ce�N .

S3.4.1 Proof of Lemma B.1

The proof of Lemma B.1 relies on the following discretization result.

Lemma B.5 (Discretization). Let sΘFp2rminq be a minimal 1{2-net for ΘFp2rminq in the Frobenius

norm.

sup
∆PΘ;p2r1,2r2q

x∆p1q,EX
1y ¤ 4 max

1¤j¤T0

max
MP sΘFp2rminq

xM ,EX 1
jy,

where rmin � r1 ^ r2, and Θ;p2r1, 2r2q is defined as in (S2).

Proof of Lemma B.5. For any ∆ P Θ;p2r1, 2r2q, there exist H P R2r1�2r2�T0 , U 1 P ON�2r1 and

U 2 P ON�2r2 such that

∆ � H�1 U 1 �2 U 2.

By the orthonormality of U 1 and U 2, we have }H}; � }∆};. Let Hp1q � pH1, . . . ,HT0q, where
Hj P R2r1�2r2 are the frontal slices. Note that

x∆p1q,EX
1y � xU 1Hp1qpIT0 bU 2q1,EX 1y � xHp1q,U

1
1EX

1pIT0 bU 2qy �
T0̧

j�1

xHj,U
1
1EX

1
jU 2y.
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Then we can show that

sup
∆PΘ;p2r1,2r2q

x∆p1q,EX
1y ¤ sup

U1PON�2r1 ,U2PON�2r2

sup
°T0

j�1 }Hj}F�1

T0̧

j�1

xHj,U
1
1EX

1
jU 2y

� sup
U1PON�2r1 ,U2PON�2r2

max
1¤j¤T0

}U 1
1EX

1
jU 2}F

� max
1¤j¤T0

sup
U1PON�2r1 ,U2PON�2r2

sup
MPS2r1�2r2

xM ,U 1
1EX

1
jU 2y

� max
1¤j¤T0

sup
U1PON�2r1 ,U2PON�2r2

sup
MPS2r1�2r2

xU 1MU 1
2,EX

1
jy

� max
1¤j¤T0

sup
MPΘFp2rminq

xM ,EX 1
jy.

(S15)

Since sΘFp2rminq is a minimal 1{2-net for ΘFp2rminq in the Frobenius norm, for any M P
ΘFp2rminq, there exists �M P sΘFp2rminq such that }M��M}F ¤ 1{2. Notice thatM��M is of rank

at most 4rmin. Then, we can find T 1,T 2, each with rank at most 2rmin, such thatM��M � T 1�T 2

and xT 1,T 2y � 0. Moreover, it holds }T 1}F � }T 2}F ¤
?
2}T 1 � T 2}F �

?
2}M � �M}F ¤

?
2{2,

and T i{}T i}F P ΘFp2rminq. As a result, we can show that

sup
MPΘFp2rminq

xM ,EX 1
jy � sup

MPΘFp2rminq

#
x�M ,EX 1

jy �
2̧

i�1

x T i

}T i}F ,EX
1
jy}T i}F

+
¤ max�MP sΘFp2rminq

x�M ,EX 1
jy � p}T 1}F � }T 2}Fq sup

MPΘFp2rminq

xM ,EX 1
jy

¤ max�MP sΘFp2rminq
x�M ,EX 1

jy �
?
2

2
sup

MPΘFp2rminq

xM ,EX 1
jy,

which implies

sup
MPΘFp2rminq

xM ,EX 1
jy ¤ 4 max

MP sΘFp2rminq
xM ,EX 1

jy. (S16)

By combining (S15) and (S16), we accomplish the proof of this lemma.

Now we are ready to prove Lemma B.1.

Proof of Lemma B.1. Let sΘFp2rminq be a minimal 1{2-net of ΘFp2rminq in the Frobenius norm,

where rmin � r1 ^ r2. Then its cardinality satisfies

log |sΘFp2rminq| ¤ p4N � 2qrmin log 18 ¤ 18rminN ; (S17)
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see Lemma 3.1 of Candes and Plan (2011). Denote qDM � 18rminN � log T0. By (S17) and Lemma

B.5, for any K ¡ 0, we have

P

�
sup

∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

EX 1y ¥ K

�

¤ P
�

max
1¤k¤T0

max
MP sΘFp2rminq

1

T1

xM ,EX 1
ky ¥ K{4



¤ T0|sΘFp2rminq| max

1¤k¤T0

max
}M}F�1

P
�

1

T1

xM ,EX 1
ky ¥ K{4



¤ expp qDMq max

1¤k¤T0

max
}M}F�1

P
�

1

T1

xM ,EX 1
ky ¥ K{4



.

(S18)

Since εt � Σ1{2
ε ξt and yt �

°8
j�0Ψ

�
jΣ

1{2
ε ξt�j, for any 1 ¤ k ¤ T0, we have

xM ,EX 1
ky �

Ţ

t�T0�1

xM , εty
1
t�ky �

Ţ

t�T0�1

C
M ,Σ1{2

ε ξt

8̧

j�0

ξ1t�k�jΣ
1{2
ε Ψ�1

j

G

�
8̧

j�0

Ţ

t�T0�1

xM ,Σ1{2
ε ξtξ

1
t�k�jΣ

1{2
ε Ψ�1

j y

�
8̧

j�0

Ţ

t�T0�1

x�M jξt�k�j, ξty,

where �M j � Σ1{2
ε MΨ�

jΣ
1{2
ε .

Note that for any fixed k and j and any δj P p0, 1s, by Lemma B.7(i), we have

P

#
Ţ

t�T0�1

x�M jξt�k�j, ξty ¥ Cσ2}�M j}F
"
logp1{δjq �

b
T1 logp1{δjq

*+
¤ 2δj.

For simplicity, denote

aj � σ2}�M j}F
"
logp1{δjq �

b
T1 logp1{δjq

*
.

Then it follows that

P

�
1

T1

xM ,EX 1
ky ¥

C

T1

8̧

j�0

aj

�
¤ 2

8̧

j�0

δj. (S19)

Moreover, by Assumption 2, if }M}F � 1, then }�M j}F ¤ λmaxpΣεq}M}F}Ψ�
j }op ¤ Cρj. By

choosing

δj � exp
!
�4ρ�pj�1q{2 qDM{ logp1{ρq

)
,

11



i.e., logp1{δjq � 4ρ�pj�1q{2 qDM{ logp1{ρq, we can show that

1

T1

8̧

j�0

aj ¤ 4σ2

T1

8̧

j�0

$&%ρpj�1q{2 qDM

logp1{ρq � ρp3j�1q{4

d
T1

qDM

logp1{ρq

,.-
� 4σ2

$&% 1?
ρ� ρ

�
qDM

T1 logp1{ρq �
1

ρ1{4 � ρ
�
d qDM

T1 logp1{ρq

,.-
¤ C

d qDM

T1

. (S20)

In addition, using the inequality xk ¥ k log x for any k ¥ 0 and x ¡ 1, we can show that

8̧

j�0

δj ¤
8̧

j�0

e�2pj�1q qDM � e�2 qDM

1� e�2 qDM
. (S21)

Combining (S19)–(S21), if }M}F � 1, for any 1 ¤ k ¤ P , we have

P

$&% 1

T1

xM ,EX 1
ky ¥ C

d qDM

T1

,.- ¤ 2e�2 qDM

1� e�2 qDM
¤ Ce�

qDM ,

which together with (S18) and T1 Á qDM implies the result of Lemma B.1.

S3.4.2 Proof of Lemma B.2

Note that RX 1 � pRX 1
1, . . . ,RX 1

T0
q. Along the lines of Lemma B.5 in Section S3.4.1, we can

show the following discretization result:

sup
∆PΘ;p2r1,2r2q

x∆p1q,RX 1y ¤ 4 max
1¤k¤T0

max
MP sΘ2p2rminq

xM ,RX 1
ky.

Then, similarly to (S18), for any K ¡ 0, by (S17), we have

P

�
sup

∆PΘ;p2r1,2r2q

x∆p1q,
1

T1

RX 1y ¥ K

�

¤ expp qDMq max
1¤k¤T0

max
}M}F�1

P
�

1

T1

xM ,RX 1
ky ¥ K{4



, (S22)

where qDM � 18pr1 ^ r2qN � log T0.
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Since yt �
°8

j�0Ψ
�
jΣ

1{2
ε ξt�j, for any 1 ¤ k ¤ T0, we have

xM ,RX 1
ky �

Ţ

t�T0�1

xM , rty
1
t�ky

�
Ţ

t�T0�1

C
M ,

8̧

j�T0�1

A�
j

8̧

i�0

Ψ�
iΣ

1{2
ε ξt�j�i

8̧

ℓ�0

ξ1t�k�ℓΣ
1{2
ε Ψ�1

ℓ

G

�
8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

Ţ

t�T0�1

xM ,A�
jΨ

�
iΣ

1{2
ε ξt�j�iξ

1
t�k�ℓΣ

1{2
ε Ψ�1

ℓ y

�
8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

Ţ

t�T0�1

x�M i,j,ℓξt�k�ℓ, ξt�j�iy :� B1 �B2, (S23)

where

B1 �
8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

Ţ

t�T0�1

x�M i,j,ℓξt�k�ℓ, ξt�j�iyItℓ � i� j � ku,

B2 �
8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

Ţ

t�T0�1

x�M i,j,ℓξt�k�ℓ, ξt�j�iyItℓ � i� j � ku,

with Ip�q being the indicator function, and

�M i,j,ℓ � Σ1{2
ε Ψ�1

i A
�1
j MΨ�

ℓΣ
1{2
ε .

Note that for any fixed i, j, ℓ, we can write
°T

t�T0�1x�M i,j,ℓξt�k�ℓ, ξt�j�iy �
°T 11

t�T 10
x�M i,j,ℓξt�s, ξty,

with T 1
0 � T0 � 1� j � i, T 1

1 � T � j � i and s � k � ℓ� j � i (cf. Lemma B.7). In addition, note

that T 1
1 � T 1

0 � 1 � T1.

Then, by Lemma B.7 and a method similar to that for (S19), for any fixed k, we can show that

P

�
B1 ¥

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

Cbi,j,ℓItℓ � i� j � ku
�
¤

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

2δi,j,ℓItℓ � i� j � ku

and

P

#
B2 ¥

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

pCbi,j,ℓ � ci,j,ℓqItℓ � i� j � ku
+
¤

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

δi,j,ℓItℓ � i� j � ku,

where δi,j,ℓ P p0, 1q will be specified shortly (see (S26) below), and

bi,j,ℓ � σ2}�M i,j,ℓ}F
"
logp1{δi,j,ℓq �

b
T1 logp1{δi,j,ℓq

*
and ci,j,ℓ � T1

?
N}�M i,j,ℓ}F.

13



Combining the above inequalities with (S23), we have

P

#
1

T1

xM ,RX 1
ky ¥

C

T1

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

bi,j,ℓ � 1

T1

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

ci,j,ℓItℓ � i� j � ku
+

¤ 2
8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

δi,j,ℓ. (S24)

Note that by Assumption 2, if }M}F � 1, we can upper bound each }�M i,j,ℓ}F as follows:

}�M i,j,ℓ}F ¤ λmaxpΣεq}A�
j }op}Ψ�

i }op}Ψ�
ℓ }op}M}F ¤ Cρi�j�ℓ.

Then, for any 1 ¤ k ¤ T0, we have

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

ci,j,ℓItℓ � i� j � ku ¤ CT1

?
N

8̧

j�T0�1

8̧

i�0

ρ2i�2j�T0

� Cρ2

p1� ρ2q2
?
NρT0T1

¤ C
?
N, (S25)

where the last inequality follows from Assumption 4.

Moreover, by choosing

δi,j,ℓ � exp
!
�2ρ�pi�j�ℓq{2 qDM{ logp1{ρq

)
, (S26)

i.e., logp1{δi,j,ℓq � 2ρ�pi�j�ℓq{2 qDM{ logp1{ρq, we can similarly show that

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

bi,j,ℓ ¤ Cσ2
8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

$&%ρpi�j�ℓq{2 qDM

logp1{ρq � ρ3pi�j�ℓq{4

d
T1

qDM

logp1{ρq

,.-
� Cσ2

$&%
?
ρ

p1�?
ρq3 �

ρT0{2 qDM

logp1{ρq �
ρ3{4

p1� ρ3{4q3 �
d

ρ3T0{2T1
qDM

logp1{ρq

,.-
¤ C

�� qDM

T1

�

bqDM

T1

�
¤ C

qDM

T1

, (S27)

where Assumption 4 is used in the second to last inequality.
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In addition, similarly to (S21), we can show that

8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

δi,j,ℓ ¤
8̧

j�T0�1

8̧

i�0

8̧

ℓ�0

exp
!
�pi� j � ℓq qDM

)
� e�pT0�1q qDM�

1� e� qDM

	3 . (S28)

Combining (S24), (S25), (S27) and (S28), if }M}F � 1, for any 1 ¤ k ¤ T0, we have

P
"

1

T1

xM ,RX 1
ky ¥ C

?
N

T1

*
¤ 2e�pT0�1q qDM�

1� e� qDM

	3 ¤ Ce�
qDM .

Combining this with (S22) and T1 Á qDM, we accomplish the proof of this lemma.

S3.4.3 Proof of Lemma B.3

The proof of Lemma B.3 relies on the following result.

Lemma B.6. Suppose that Assumptions 1 – 3 hold. If T1 Á N � log T0, then

P

#
max
1¤i¤T0

max
1¤j¤T0

����X iX
1
j

T1

� Γpi� jq
����
op

¥ τ 2

+
¤ Ce�N�log T0 ,

where τ 2 � C
apN � log T0q{T1.

Proof. Let sSN�1 be a minimal 1{4-net of SN�1 in the Euclidean norm. By Vershynin (2010), its

cardinality satisfies | sSN�1| ¤ 9N , and for any fixed 1 ¤ i, j ¤ T0,����X iX
1
j

T1

� Γpi� jq
����
op

¤ 2 max
uP sSN�1

����u1

"
X iX

1
j

T1

� Γpi� jq
*
u

���� .
Denote rDM � N log 9� 2 log T0. Hence, for any K ¡ 0, we have

P

#
max
1¤i¤T0

max
1¤j¤T0

����X iX
1
j

T1

� Γpi� jq
����
op

¥ K

+

¤ T 2
0 max

1¤i¤T0

max
1¤j¤T0

P

#����X iX
1
j

T1

� Γpi� jq
����
op

¥ K

+

¤ T 2
0 | sSN�1| max

1¤i¤T0

max
1¤j¤T0

max
}u}2�1

P
�����u1

"
X iX

1
j

T1

� Γpi� jq
*
u

���� ¥ K{2
�

¤ expp rDMq max
1¤i¤T0

max
1¤j¤T0

max
}u}2�1

P
�����u1

"
X iX

1
j

T1

� Γpi� jq
*
u

���� ¥ K{2
�
. (S29)
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Since yt �
°8

j�0Ψ
�
jΣ

1{2
ε ξt�j, for any 1 ¤ i, j ¤ T0, we have

u1X iX
1
ju

T1

�
Ţ

t�T0�1

u1yt�iy
1
t�ju

T1

� 1

T1

8̧

k�0

8̧

ℓ�0

Ţ

t�T0�1

u1Ψ�
kΣ

1{2
ε ξt�i�kξ

1
t�j�ℓΣ

1{2
ε Ψ�1

ℓ u

� 1

T1

8̧

k�0

8̧

ℓ�0

Ţ

t�T0�1

x�M k,ℓξt�j�ℓ, ξt�i�ky :� G1 �G2, (S30)

where

G1 � 1

T1

8̧

k�0

8̧

ℓ�0

Ţ

t�T0�1

x�M k,ℓξt�j�ℓ, ξt�i�kyItℓ � i� k � ju,

G2 � 1

T1

8̧

k�0

8̧

ℓ�0

Ţ

t�T0�1

x�M k,ℓξt�j�ℓ, ξt�i�kyItℓ � i� k � ju,

with Ip�q being the indicator function, and

�M k,ℓ � Σ1{2
ε Ψ�1

k uu
1Ψ�

ℓΣ
1{2
ε .

By Lemma B.7 and a method similar to the proof of Lemma B.2, we can show that

P

�
|G1| ¥ C

T1

8̧

k�0

8̧

ℓ�0

bk,ℓItℓ � i� k � ju
�
¤

8̧

k�0

8̧

ℓ�0

4δk,ℓItℓ � i� k � ju

and

P

#
|G2 � EpG2q| ¥ C

T1

8̧

k�0

8̧

ℓ�0

bk,ℓItℓ � i� k � ju
+
¤

8̧

k�0

8̧

ℓ�0

2δk,ℓItℓ � i� k � ju,

where δk,ℓ P p0, 1q will be specified below, and

bk,ℓ � σ2}�M k,ℓ}F
"
logp1{δk,ℓq �

b
T1 logp1{δk,ℓq

*
.

Since EpG1q � 0, combining the above results with (S30), we have

P

#����u1

"
X iX

1
j

T1

� Γpi� jq
*
u

���� ¥ C

T1

8̧

k�0

8̧

ℓ�0

bk,ℓ

+

¤ P

#
|G1| � |G2 � EpG2q| ¥ C

T1

8̧

k�0

8̧

ℓ�0

bk,ℓ

+

¤ 4
8̧

k�0

8̧

ℓ�0

δk,ℓ. (S31)
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Note that by Assumption 2, if }u}2 � 1, we have

}�M k,ℓ}F ¤ λmaxpΣεq}Ψ�
k}op}Ψ�

ℓ }op ¤ Cρk�ℓ.

Then, by choosing

δk,ℓ � exp
!
�4ρ�pk�ℓ�1q{2 rDM{ logp1{ρq

)
.

i.e., logp1{δk,ℓq � 4ρ�pk�ℓ�1q{2 rDM{ logp1{ρq, we have

1

T1

8̧

k�0

8̧

ℓ�0

bk,ℓ ¤ Cσ2

T1

8̧

k�0

8̧

ℓ�0

$&%ρpk�ℓ�1q{2 rDM

logp1{ρq � ρp3k�3ℓ�1q{4

d
T1

rDM

logp1{ρq

,.-
� Cσ2

$&% 1?
ρp1�?

ρq2 �
rDM

T1 logp1{ρq �
1

ρ1{4p1� ρ3{4q2 �
d rDM

T1 logp1{ρq

,.-
¤ C

d rDM

T1

. (S32)

In addition, similarly to the proof of Lemma B.1, we can show that

8̧

k�0

8̧

ℓ�0

δk,ℓ ¤
8̧

k�0

8̧

ℓ�0

e�2pk�ℓ�1q rD
|M � e�2 rDM

p1� e�2 rDMq2 . (S33)

By (S31)–(S33), if }u}2 � 1, for any 1 ¤ i, j ¤ T0, we have

P

$&%
����u1

"
X iX

1
j

T1

� Γpi� jq
*
u

���� ¥ C

d rDM

T1

,.- ¤ 4e�2 rDM

p1� e�2 rDMq2 ¤ Ce�
rDM .

Combining this with (S29) and T1 Á rDM, we accomplish the proof of this lemma.

Now we are ready to prove Lemma B.3.

Proof of Lemma B.3. By Basu and Michailidis (2015), we have σminpΣT0q ¥ λminpΣεqµminpΨ�q �
κRSC, and hence

E
�}∆p1qX}2F

�
T1

� tr
�
∆p1qΣT0∆

1
p1q

� ¥ σminpΣT0q}∆}2F ¥ κRSC}∆}2F. (S34)

17



Moreover, observe that��}∆p1qX}2F � E
�}∆p1qX}2F

���
T1

� tr

"
∆p1q

�
XX 1

T1

�ΣT0



∆1

p1q

*
�

T0̧

i�1

T0̧

j�1

tr

�
∆i

"
X iX

1
j

T1

� Γpi� jq
*
∆1

j

�

¤
T0̧

i�1

T0̧

j�1

}∆i}F}∆j}F
����X iX

1
j

T1

� Γpi� jq
����
op

¤ }∆}2; max
1¤i¤T0

max
1¤j¤T0

����X iX
1
j

T1

� Γpi� jq
����
op

.

As a result, for any ∆ P RN�N�T0 , we have

1

T1

}∆p1qX}2F ¥
E
�}∆p1qX}2F

�
T1

�
��}∆p1qX}2F � E

�}∆p1qX}2F
���

T1

¥ κRSC}∆}2F � }∆}2; max
1¤i¤T0

max
1¤j¤T0

����X iX
1
j

T1

� Γpi� jq
����
op

.

Combining this with Lemma B.6, we accomplish the proof of Lemma B.3.

S3.4.4 Proof of Lemma B.4

Since rt �
°8

j�T0�1A
�
jyt�j �

°8
j�T0�1

°8
ℓ�0A

�
jΨ

�
ℓΣ

1{2
ε ξt�j�ℓ, we have

}R}2F �
Ţ

t�T0�1

xrt, rty �
Ţ

t�T0�1

8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

A
A�

jΨ
�
ℓΣ

1{2
ε ξt�j�ℓ,A

�
iΨ

�
kΣ

1{2
ε ξt�i�k

E
�

8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

Ţ

t�T0�1

x�M i,j,k,ℓξt�i�k, ξt�j�ℓy,

and �M i,j,k,ℓ � Σ1{2
ε Ψ�1

ℓ A
�1
j A

�
iΨ

�
kΣ

1{2
ε .

Then, by Lemma B.7 and a method similar to the proof of Lemma B.2, we can show that

P

#
}R}2F ¥ C

8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

bi,j,k,ℓ �
8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

ci,j,k,ℓItℓ � i� k � ju
+

¤ 2
8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

δi,j,k,ℓ, (S35)
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where Ip�q is the indicator function, δi,j,k,ℓ P p0, 1q will be specified shortly,

bi,j,k,ℓ � σ2}�M i,j,k,ℓ}F
"
logp1{δi,j,k,ℓq �

b
T1 logp1{δi,j,k,ℓq

*
and

ci,j,k,ℓ � T1

?
N}�M i,j,k,ℓ}F.

By Assumption 2 and 3,

}�M i,j,k,ℓ}F ¤ λmaxpΣεq}Ψ�
ℓ }op}A�

j }F}A�
i }op}Ψ�

k}op ¤ Cρi�k�ℓ}A�
j }F.

Then, since ci,j,k,ℓ ¥ 0, we have

8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

ci,j,k,ℓItℓ � i� k � ju ¤
8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

ci,j,k,ℓ

¤ CT1

?
N

8̧

i�T0�1

8̧

k�0

8̧

ℓ�0

ρi�k�ℓ
8̧

j�T0�1

}A�
j }F

� Cρ

p1� ρq3
?
NρT0T1

8̧

j�T0�1

��A�
j

��
F

¤ Cρ2

p1� ρq4λmaxpΣεqNρ2T0T1

¤ CNρ3T0{2, (S36)

where the last but two inequality follows from Assumption 2 and the last inequality follows from

Assumption 4. Moreover, by choosing

δi,j,k,ℓ � exp
 �2ρ�pi�k�ℓ�jq{2N{ logp1{ρq( ,
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i.e., logp1{δi,j,k,ℓq � 2
?
jρ�pi�k�ℓq{2N{ logp1{ρq, we can show that

8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

bi,j,k,ℓ

¤ Cσ2
?
N

8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

#
ρpi�k�ℓ�jq{2N

logp1{ρq � ρ3pi�k�ℓ�jq{4

d
T1N

logp1{ρq

+

� Cσ2
?
N

#
ρ

p1�?
ρq4 �

ρT0N

logp1{ρq �
ρ3{2

p1� ρ3{4q2 �
d

ρ3T0T1N

logp1{ρq

+
¤ Cσ2

?
N

�
ρT0N �

a
ρ5T0{2N

	
¤ CN3{2ρT0 ,

(S37)

where we used Assumption 2 in the first inequality and Assumption 4 in the second to last

inequality.

In addition, similarly to (S21), we can show that

8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

δi,j,k,ℓ ¤
8̧

i�T0�1

8̧

j�T0�1

8̧

k�0

8̧

ℓ�0

exp t�pi� k � ℓ� jqNu

¤ e�pT0�1q2N

p1� e�Nq4 ¤
e�T 2

0N

p1� e�Nq4 ¤ Ce�N . (S38)

Combining (S35)–(S38), the proof of this lemma is complete.

S3.5 Two auxiliary lemmas

Below we present two auxiliary lemmas. Lemma B.7 is used in the proofs of Lemmas B.1, B.2,

B.4, and B.6, while Lemma B.8 establishes the basic martingale concentration bound which is

used to prove Lemmas B.7 and B.3.

Lemma B.7. Let T0   T be arbitrary fixed time points, and T1 � T � T0. Suppose that ξt is a

random vector with independent, zero-mean, unit-variance, σ2-sub-Gaussian coordinates for any

T0 � 1 ¤ t ¤ T . Then

(i) for any δ P p0, 1s, M P RN�N , and fixed nonzero integer 1 ¤ s ¤ T0,

P

#
Ţ

t�T0�1

xMξt�s, ξty ¥ Cσ2}M}F
!
logp1{δq �

a
T1 logp1{δq

)+
¤ 2δ (S39)
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and

P

#����� Ţ

t�T0�1

xMξt�s, ξty
����� ¥ Cσ2}M}F

!
logp1{δq �

a
T1 logp1{δq

)+
¤ 4δ; (S40)

(ii) for any δ P p0, 1s and M P RN�N ,

P

#
Ţ

t�T0�1

xMξt, ξty ¥ Cσ2}M}F
!
logp1{δq �

a
T1 logp1{δq

)
� T1

?
N}M}F

+
¤ δ (S41)

and

P

#����� Ţ

t�T0�1

xMξt, ξty � E

�
Ţ

t�T0�1

xMξt, ξty
������ ¥ Cσ2}M}F

!
logp1{δq �

a
T1 logp1{δq

)+

¤ 2δ. (S42)

Proof. For any integer s, denote ξrss � pξ1T�s, ξ
1
T�1�s, . . . , ξ

1
T0�1�sq1 P RT1N , Sξ,rss �

°T
t�T0�1xMξt�s, ξty,

and Vξ,rss �
°T

t�T0�1 }Mξt�s}2. Note that ξrss is a random vector with independent, zero-mean,

unit-variance, σ2-sub-Gaussian coordinates for any fixed integer s. For simplicity, in the following

we omit the subscript rss in ξrss, Sξ,rss, and Vξ,rss whenever s � 0.

We first prove claim (i) of this lemma. Without loss of generality, assume that s is a positive

integer. Note that Vξ � }pIT1 b M qξ}2 � ξ1Qξ, where Q � IT1 b M 1M . Then EpVξq �
}IT1 bM}2F � T1}M}2F. By the (one-sided) Hanson-Wright inequality (Vershynin, 2010), for any

η ¥ 0,

P
�
Vξ � T1}M}2F ¥ η

� ¤ exp

"
�cmin

�
η

σ2}Q}op ,
η2

σ4}Q}2F


*
,

where c ¡ 0 is an absolute constant. Since }Q}op � }M}2op ¤ }M}2F, and }Q}F ¤ }IT1 b
M}F}IT1 bM}op ¤

?
T1}M}2F, we can show that

P
�
Vξ ¥ T1}M}2F � η

� ¤ exp

"
�cmin

�
η

σ2}M}2F
,

η2

σ4T1}M}4F


*
¤ δ.

by choosing

η � Cσ2}M}2F
!
logp1{δq �

a
T1 logp1{δq

)
, (S43)
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where C is dependent on c. Moreover, by Lemma B.8, for any α, β ¡ 0, we have

PpSξ ¥ αq ¤ PpSξ ¥ α, Vξ ¤ βq � PpVξ ¥ βq ¤ exp

�
� α2

2σ2β



� PpVξ ¥ βq.

This implies that, if β � T1}M}2F � η and α ¥ a
2σ2β logp1{δq, then PpSξ ¥ αq ¤ δ. Hence, we

can establish (S39) by choosing

α � Cσ2}M}F
!
logp1{δq �

a
T1 logp1{δq

)
.

Furthermore, applying (S39) to �M , we directly have

P

#
Ţ

t�T0�1

xMξt�s, ξty ¤ �Cσ2}M}F
!
logp1{δq �

a
T1 logp1{δq

)+
¤ 2δ,

which, combined with (S39), yields the two-sided bound in (S40).

The proof of claim (ii) is similar to the analysis of Vξ above. Note that Sξ,r0s � ξ1r0spIT1bM q1ξr0s.
Applying the (two-sided) Hanson-Wright inequality, we have

P
 ��Sξ,r0s � EpSξ,r0sq

�� ¥ η0
( ¤ 2 exp

"
�cmin

�
η0

σ2}M}op ,
η20

σ4T1}M}2F


*
¤ 2δ

if we choose

η0 � Cσ2}M}F
!
logp1{δq �

a
T1 logp1{δq

)
, (S44)

where C is dependent on c. This leads to (S42) in the lemma. Moreover, since EpSξ,r0sq �
T1 trpM q ¤ T1

?
N}M}F, similarly we can also obtain the one-sided result:

P
 
Sξ,r0s ¥ T1 trpM q � η0

( ¤ exp

"
�cmin

�
η0

σ2}M}op ,
η20

σ4T1}M}2F


*
¤ δ

with the same choice of η0 as in (S44). Therefore, (S42) is proved as well.

Lemma B.8 (Martingale concentration). Let tFt, t P Zu be a filtration. Suppose that twtu and

tetu are processes taking values in Rd, and for each integer t, wt is Ft�1-measurable, et is Ft-

measurable, and et | Ft�1 is mean-zero and σ2-sub-Gaussian. Let T0   T be arbitrary fixed time

points. Then, for any α, β ¡ 0, we have

P

#
Ţ

t�T0�1

xwt, ety ¥ α,
Ţ

t�T0�1

∥wt∥2 ¤ β

+
¤ exp

�
� α2

2σ2β



.

Proof. See Lemma 4.2 in Simchowitz et al. (2018).
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S4 Proofs of theoretical results in Section 4.2

This section gives the proofs of Theorems 3, 4 and Corollary 2 in Sections C.1-C.3, respectively.

Section C.4 provides five auxiliary lemmas, which are used in the proof of Theorem 4. We first

introduce several parameter spaces of A P RN�N�T0 below,

Θpr1, r2q � tA P RN�N�T0 | rankpAp1qq ¤ r1, rankpAp2qq ¤ r2u,

ΘSPpr1, r2, sq � tA P RN�N�T0 | rankpAp1qq ¤ r1, rankpAp2qq ¤ r2, }A}0 ¤ s, u,

Θ;pr1, r2q � tA P Θpr1, r2q, }A}; � 1u and ΘSP
1 pr1, r2, sq � tA P ΘSPpr1, r2, sq, }A}F � 1u.

S4.1 Proof of Theorem 3

It can be verified that r∇LpAqsp1q � �T�1
1 pY �Ap1qXqX 1 and Y � pA�

Sγ
qp1qX �pA�

Sc
γ
qp1qX � rE.

As a result, for any M P RN�N�T0 ,

x∇LpA�
Sγ
q,My � �xT1

�1rEX 1,Mp1qy � xT1
�1pA�

Sc
γ
qp1qXX 1,Mp1qy. (S1)

From Lemmas B.1 and B.2 and by a method similar to (S8), we can show that, if T1 Á pr1 ^
r2qN � log T0 and γ Áatpr1 ^ r2qN � log T0u{T1, then

P

#
sup

∆PΘ;pr1,r2q

x 1
T1

rEX 1,∆p1qy ¥ Cγ

+
¤ Ce�pr1^r2qN�log T0 ,

which, together with the fact that }M}; ¤
?
s}M}F �

?
s for any M P ΘSP

1 pr1, r2, sq, implies that

x 1
T1

rEX 1,Mp1qy ¤ }M}; sup
∆PΘ;pr1,r2q

x 1
T1

rEX 1,∆p1qy ¤ Cγ
?
s (S2)

holds with probability at least 1� Ce�pr1^r2qN�log T0 .

We next handle the second term at the right hand side of (S1). It holds that, from Assumptions

2 and 3,

ExpA�
Sc
γ
qp1qXX 1,Mp1qy

T1

� tr
�
pA�

Sc
γ
qp1qΣT0M

1
p1q

	
¤ λmaxpΣT0q}A�

Sc
γ
}F}M}F ¤ C2κRSS}A�

Sc
γ
}F}M}F,
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and

|xpA�
Sc
γ
qp1qXX 1,Mp1qy � ExpA�

Sc
γ
qp1qXX 1,Mp1qy|

T1

¤
T0̧

i�1

T0̧

j�1

����tr �A�
i

"
X iX

1
j

T1

� Γpi� jq
*
M j

�
Iti P Sc

γu
����

¤ }A�
Sc
γ
};}M}; max

1¤i¤T0

max
1¤j¤T0

����X iX
1
j

T1

� Γpi� jq
����
op

.

As a result, by Lemma B.6 and the fact that }M}; ¤
?
s}M}F,

T1
�1xpA�

Sc
γ
qp1qXX 1,Mp1qy

¤
ExpA�

Sc
γ
qp1qXX 1,Mp1qy

T1

�
|xpA�

Sc
γ
qp1qXX 1,Mp1qy � ExpA�

Sc
γ
qp1qXX 1,Mp1qy|

T1

¤
�
C2κRSS}A�

Sc
γ
}F � τ 2

?
s}A�

Sc
γ
};
	
}M}F. (S3)

holds with probability at least 1�Ce�N�log T0 when T1 Á s2pN � log T0q. We accomplish the proof

by combining (S1) – (S3) and letting }M}F � 1.

S4.2 Proof of Theorem 4

This proof is divided into six steps. Some notations and conditions are given in the first step,

and verified in the last step. Without loss of generality, we assume that 0   σL   1   σU and

0   κRSC   1   κRSS throughout this proof.

Step 1 (Notations and conditions) Without confusion, we use A� to denote A�
Sγ

for simplicity in

this proof. SinceA� has Tucker ranks r1 and r2 along the first two modes, its Tucker decomposition

can be assumed to have the form of A� � G��1U
�
1�2U

�
2 , where G

� P Rr1�r2�T0 , U�
i P RN�ri and

U�1
i U

�
i � b2Iri for 1 ¤ i ¤ 2. Moreover, at the k-th iteration of Algorithm 1, the pre-thresholding

estimator rAk�1
has the Tucker form of rGk�1 �1 U

k�1
1 �2 U

k�1
2 , where rGk�1

,U k�1
1 and U k�1

2 are

obtained by one-step gradient descent, and the hard-thresholding operation gives

Ak�1 � HTp rAk�1
, sq � Gk�1 �1 U

k�1
1 �2 U

k�1
2 .

Note that the zero frontal slices in A�, rAk�1
and Ak�1 correspond to the zero ones in G�, rGk�1

and Gk�1, respectively.
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On the other hand, we denote by S̆ the union set S̆k�1,γ � SkYSk�1YSγ, where the subscripts

of k and γ are suppressed when there is no confusion, and it holds that |S̆| ¤ 3s since s ¥ sγ.

Moreover, it can be verified that Ak
S̆
� Ak, Ak�1

S̆
� Ak�1 and

Ak�1 � HTp rAk�1

S̆ , sq with rAk�1

S̆ � rGk�1

S̆ �1 U
k�1
1 �2 U

k�1
2 .

The distances between rAk�1

S̆ , Ak�1 and A� can be measured by

rEk�1 � min
RiPOri�ri ,1¤i¤2

2̧

i�1

}U k�1
i �U�

iRi}2F � }rGk�1

S̆ � G� �1 R
1
1 �2 R

1
2}2F,

Ek�1 � min
RiPOri�ri ,1¤i¤2

2̧

i�1

}U k�1
i �U�

iRi}2F � }Gk�1 � G� �1 R
1
1 �2 R

1
2}2F,

respectively, and their optimizers are denoted by p rRk�1

1 , rRk�1

2 q and pRk�1
1 ,Rk�1

2 q. We next intro-

duce or rephrase the following list of conditions:

� Suppose that there exist α, β ¡ 0 such that

x∇LpAq �∇LpA�q,A�A�y ¥ α}A�A�}2F � β}∇LpAq �∇LpA�q}2F, (S4)

holds for any A P ΘSPpr1, r2, 3sq. Moreover, by Cauchy-Schwarz and the fact that xy ¤
αx2 � 0.25α�1y2, it can be further verified that αβ ¤ 0.25.

� We assume that b � σ
1{4
U for simplicity, and the proof can be easily adjusted if cσ

1{4
U ¤ b ¤

Cσ
1{4
U for two absolute constants 0   c   C. Moreover, for 0 ¤ k ¤ K and i � 1 and 2,

}U k
i }op ¤ 1.1σ

1{4
U , σminpU k

i q ¥ 0.9σ
1{4
U and }Gk

piq}op ¤ 1.1σ
1{2
U . (S5)

Finally, for all 0 ¤ k ¤ K,

Ek ¤ c0σ
1{2
L

κ3{2
�: C1, (S6)

where κ � σU{σL, and c0 ¡ 0 is a small absolute constant (smaller than 1) determined later.
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� Let pA,U i, Eq be pAk,U k
i , E

kq, p rAk�1

S̆ ,U k�1
i , rEk�1q or pA0,U 0

i , E
0q, respectively. An im-

portant two-sided inequality is derived from Lemma C.2 by letting b � σ
1{4
U and ce � 0.1,

namely

CL}A�A�}2F ¤ E ¤ CU,1}A�A�}2F � CU,2

2̧

i�1

}U 1
iU i � b2Iri}2F, (S7)

where CL � r5pσU � 2σ
3{2
U qs�1, CU,1 � 3σ�1

U � 8σ�2
L σ

�1{2
U � 40σ�2

L and CU,2 � 2σ
�1{2
U � 10.

Step 2 (Descent of rEk�1) This step aims to establish

rEk�1 ¤ Ek � η2pQG,1 �
2̧

i�1

Qi,1q � 2ηpQG,2 �
2̧

i�1

Qi,2q, (S8)

where Q1,j, Q2,j and QG,j with j � 1 and 2 are defined in (S15), (S16) and (S20), respectively.

Note that, by the definition of rEk�1,

rEk�1 ¤
2̧

i�1

}U k�1
i �U�

iR
k
i }2F � }rGk�1

S̆ � G� �1 pRk
1q1 �2 pRk

2q1}2F. (S9)

For the first term of (S9), the gradient descent update of U k�1
1 gives

}U k�1
1 �U�

1R
k
1}2F � }U k

1 � ηr∇U1LpAkq � aU k
1pU k1

1 U
k
1 � b2Ir1qs �U�

1R
k
1}2F

� }U k
1 �U�

1R
k
1}2F � η2}∇U1LpAkq � aU k

1pU k1
1 U

k
1 � b2Ir1q}2F

� 2ηx∇U1LpAkq,U k
1 �U�

1R
k
1y � 2aηxU k

1pU k1
1 U

k
1 � b2Ir1q,U k

1 �U�
1R

k
1y,
(S10)

where ∇U1LpAq � r∇LpAqsp1qpIT0 b U 2qG1
p1q is the partial derivative of the loss function LpAq

with respect to U 1. We will first handle the last three terms of (S10) one-by-one (without the

scaling constants). Starting with the second term,

}∇U1LpAkq � aU k
1pU k1

1 U
k
1 � b2Ir1q}2F ¤ 2}∇U1LpAkq}2F � 2a2}U k

1pU k1
1 U

k
1 � b2Ir1q}2F.
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Let C2 � 1.5σ
3{4
U and, by the definition of dual norm, the conditions at (S5) and }Gk}0 � s,

}∇U1LpAkq}2F � sup
MPRN�r1 ,}M}F�1

x∇U1LpAkq,My2

� sup
MPRN�r1 ,}M}F�1

x∇LpAkq,Gk �1 M �2 U
k
2y2

¤ 2 sup
MPRN�r1 ,}M}F�1

x∇LpA�q,Gk �1 M �2 U
k
2y2

� 2 sup
MPRN�r1 ,}M}F�1

x∇LpAkq �∇LpA�q,Gk �1 M �2 U
k
2y2

¤ 2C2
2

�
e2stat � }∇LpAkq �∇LpA�q}2F

�
,

which leads to

}∇U1LpAkq � aU k
1pU k1

1 U
k
1 � b2Ir1q}2F

¤ 4C2
2

�
e2stat � }∇LpAkq �∇LpA�q}2F

�� 3σ
1{2
U a2}U k1

1 U
k
1 � b2Ir1}2F �: Q1,1. (S11)

We next consider the third term at (S10). Let AU1 � G �1 pU 1 � U�
1R1q �2 U 2 and, by the

conditions at (S5), }Ak
U1
}F ¤ C2}U k

1 �U�
1R

k
1}F for all k ¥ 1. Moreover, by the conditions at (S5)

and the fact that xy ¤ 0.5x2 � 0.5y2,

x∇LpA�q,Ak
U1
y ¤ sup

MPΘSP
1 pr1,r2,sq

x∇LpA�q,My � }Ak
U1
}F

¤ 0.5C2
2C

�1
1 e2stat � 0.5C1}U k

1 �U�
1R

k
1}2F.

As a result,

x∇U1LpAkq,U k
1 �U�

1R
k
1y � x∇LpAkq,Gk �1 pU k

1 �U�
1R

k
1q �2 U

k
2y

� x∇LpAkq �∇LpA�q,Ak
U1
y � x∇LpA�q,Ak

U1
y

¥ x∇LpAkq �∇LpA�q,Ak
U1
y � 0.5C1}U k

1 �U�
1R

k
1}2F

� 0.5C2
2C

�1
1 e2stat. (S12)
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For the last term at (S10), it holds that

xU k
1pU k1

1 U
k
1 � b2Ir1q,U k

1 �U�
1R

k
1y � xU k1

1 U
k
1 � b2Ir1 ,U

k1
1 U

k
1 �U k1

1 U
�
1R

k
1y

� 0.5}U k1
1 U

k
1 � b2Ir1}2F � 0.5xU k1

1 U
k
1 � b2Ir1 , pU k

1 �U�
1R

k
1q1pU k

1 �U�
1R

k
1qy

¥ 0.25}U k1
1 U

k
1 � b2Ir1}2F � 0.25}U k

1 �U�
1R

k
1}4F

¥ 0.25}U k1
1 U

k
1 � b2Ir1}2F � 0.25C1}U k

1 �U�
1R

k
1}2F,

(S13)

where the second equality is due to the fact that, for a symmetric matrix W P Rr1�r1 ,

xW ,U 1
1U 1 �U 1

1U
�
1R1y � 0.5xW , pU 1 �U�

1R1q1pU 1 �U�
1R1qy � 0.5xW ,U 1

1U 1 � b2Ir1y,

the first inequality is due to Cauchy-Schwarz inequality and the fact that xy ¤ 0.5x2� 0.5y2, and

the last inequality is due to the fact that }U k
1 �U�

1R
k
1}2F ¤ Ek ¤ C1 at (S6). We combine the last

two terms of (S10), i.e. (S12) and (S13), with the scaling constant a ¡ 0, and it leads to

x∇U1LpAkq,U k
1 �U�

1R
k
1y � axU k

1pU k1
1 U

k
1 � b2Ir1q,U k

1 �U�
1R

k
1y

¥ x∇LpAkq �∇LpA�q,Ak
U1
y � p1� aqC1}U k

1 �U�
1R

k
1}2F

� 0.25a}U k1
1 U

k
1 � b2Ir1}2F � 0.5C2

2C
�1
1 e2stat �: Q1,2. (S14)

By plugging (S11) and (S14) into (S10), it holds that

}U k�1
1 �U�

1R
k
1}2F ¤ }U k

1 �U�
1R

k
1}2F � η2Q1,1 � 2ηQ1,2. (S15)

We can similarly define Q2,1 and Q2,2 such that

}U k�1
2 �U�

2R
k
2}2F ¤ }U k

2 �U�
2R

k
2}2F � η2Q2,1 � 2ηQ2,2. (S16)

We now return to deal with the last component in (S9). Let ∇GLpAq be the partial derivative
of the loss function LpAq with respect to G, and it holds that ∇GLpAq � ∇LpAq �1 U

1
1 �2 U

1
2.

Then the gradient descent update of rGk�1

S̆ gives

}rGk�1

S̆ � G� �1 pRk
1q1 �2 pRk

2q1}2F � }Gk � ηr∇GLpAkqsS̆ � G� �1 pRk
1q1 �2 pRk

2q1}2F
� }Gk � G� �1 pRk

1q1 �2 pRk
2q1}2F � η2}r∇GLpAkqsS̆}2F

� 2ηx∇GLpAkq,Gk � G� �1 pRk
1q1 �2 pRk

2q1y. (S17)
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For the second term at (S17), by the definition of dual norm, |S̆| ¤ 3s and the conditions at (S5),

}r∇GLpAkqsS̆}2F � sup
MPRr1�r2�T0 ,}M}F�1

xr∇GLpAkqsS̆,My2

¤ sup
MPRr1�r2�T0 ,}M}F�1,}M}0¤3s

x∇LpAkq,M�1 U
k
1 �2 U

k
2y2

¤ 2 sup
MPRr1�r2�T0 ,}M}F�1,}M}0¤3s

x∇LpA�q,M�1 U
k
1 �2 U

k
2y2

� 2 sup
MPRr1�r2�T0 ,}M}F�1,}M}0¤3s

x∇LpAkq �∇LpA�q,M�1 U
k
1 �2 U

k
2y2

¤ 2C2
3

�
e2stat � }∇LpAkq �∇LpA�q}2F

� �: QG,1, (S18)

with C3 � 1.5σ
1{2
U . For the last term at (S17), let AG � pG�G��1R

1
1�2R

1
2q�1U 1�2U 2 and, by

the conditions at (S5), }Ak
G}F ¤ C3}Gk�G��1 pRk

1q1�2 pRk
2q1}F. From the definition of ∇GLpAkq,

it holds that

x∇GLpAkq,Gk � G� �1 pRk
1q1 �2 pRk

2q1y � x∇LpAkq �∇LpA�q,Ak
Gy � x∇LpA�q,Ak

Gy.

By the conditions at (S5), |S̆| ¤ 3s and that xy ¤ 0.5x2 � 0.5y2,

x∇LpA�q,Ak
Gy ¤ sup

MPΘSP
1 pr1,r2,2sq

x∇LpA�q,My � }Ak
G}F

¤ 0.5C2
3C

�1
1 e2stat � 0.5C1}Gk � G� �1 pRk

1q1 �2 pRk
2q1}2F,

which leads to

x∇GLpAkq,Gk � G� �1 pRk
1q1 �2 pRk

2q1y

¥ x∇LpAkq �∇LpA�q,Ak
Gy � C1}Gk � G� �1 pRk

1q1 �2 pRk
2q1}2F � C2

3C
�1
1 e2stat �: QG,2.

(S19)

By plugging (S18) and (S19) into (S17), we can obtain that

}rGk�1

S̆ � G� �1 pRk
1q1 �2 pRk

2q1}2F ¤ }Gk � G� �1 pRk
1q1 �2 pRk

2q1}2F � η2QG,1 � 2ηQG,2, (S20)

which, together with (S14) and (S15), leads to (S8).
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Step 3 This step aims to develop a lower bound for QG,2�
°2

i�1Qi,2 at (S8). From (S14), a similar

definition for Q2,2, (S19) and the definition of Ek, we have

QG,2 �
2̧

i�1

Qi,2 ¥x∇LpAkq �∇LpA�q,Ak
G �

2̧

i�1

Ak
Ui
y � p1� aqC1E

k

� 0.25a
2̧

i�1

}U k1
i U

k
i � b2Iri}2F � C4e

2
stat, (S21)

where C4 � pC2
2 � C2

3qC�1
1 . By the conditions at (S5) and (S6), Lemma C.3 holds with B ¤

pEkq1{2 ¤ pC1E
kq1{4. Then, by plugging ce � 0.1 to Lemma C.3, the first term becomes

x∇LpAkq �∇LpA�q,Ak
G �

2̧

i�1

Ak
Ui
y �x∇LpAkq �∇LpA�q,Ak �A�y

� x∇LpAkq �∇LpA�q,Hk
ϵ y,

where }Hk
ϵ }F ¤ 3pσ1{2

U � σ
1{4
U qpC1E

kq1{2. Given (S4) holds for some given α, β ¡ 0, we can use

xy ¤ 0.5x2 � 0.5y2 to further lower bound the above term,

x∇LpAkq �∇LpA�q,Ak
G �

2̧

i�1

Ak
Ui
y ¥ α}Ak �A�}2F

� 0.5β}∇LpAkq �∇LpA�q}2F � 0.5β�1}Hk
ϵ }2F

¥ ασ
3{2
L

κ1{2
C5E

k � αC�1
U,1CU,2

2̧

i�1

}U k1
i U

k
i � b2Iri}2F

� 0.5β}∇LpAkq �∇LpA�q}2F � 0.5β�1}Hk
ϵ }2F,

where the second inequality is obtained from (S7) with C5 � rσ3{2
L κ�1{2CU,1s�1. Then, this jointly

with }Hk
ϵ }F ¤ 3pσ1{2

U � σ
1{4
U qpC1E

kq1{2 can be used to further lower bound the inequality at (S21),

which becomes

QG,2 �
2̧

i�1

Qi,2 ¥
�
ασ

3{2
L

κ1{2
C5 � r1� a� 5β�1pσ1{2

U � σ
1{4
U q2sC1

�
Ek

� r0.25a� αC�1
U,1CU,2s

2̧

i�1

}U k1
i U

k
i � b2Iri}2F

� 0.5β}∇LpAkq �∇LpA�q}2F � C4e
2
stat.
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Then, we choose c0 ¡ 0 contained in the constant term C1 small enough such that r1 � a �
5β�1pσ1{2

U �σ
1{4
U q2sC1 ¤ 0.5ασ

3{2
L κ�1{2C5. From the definition right after (S7), we have CU,1 ¥ 3σ�1

U

and CU,2 ¤ 10pσ�1{2
U �1q, and they lead to C�1

U,1CU,2 ¤ 4pσ1{2
U �σUq. Let a � 80αpσ1{2

U �σUq leading
to αC�1

U,1CU,2 ¤ 0.05a, and the above inequality takes the simple form

QG,2 �
2̧

i�1

Qi,2 ¥ασ
3{2
L

2κ1{2
C5E

k � 0.2a
2̧

i�1

}U k1
i U

k
i � b2Iri}2F � C4e

2
stat

� 0.5β}∇LpAkq �∇LpA�q}2F.
(S22)

Step 4 This step uses the intermediate results at Steps 2 and 3 to bound rEk�1 with Ek. From

(S11), a similar definition for Q2,1 and (S18), we have

QG,1 �
2̧

i�1

Qi,1 �p8C2
2 � 2C2

3q
 }∇LpAkq �∇LpA�q}2F � e2stat

(
� 3σ

1{2
U a2

2̧

i�1

}U k1
i U

k
i � b2Iri}2F,

which, together with (S22), implies that

η2pQG,1 �
2̧

i�1

Qi,1q � 2ηpQG,2 �
2̧

i�1

Qi,2q ¤ �ηασ
3{2
L

κ1{2
C5E

k

� rη2p8C2
2 � 2C2

3q � 2ηC4se2stat

�
�
3η2σ

1{2
U a2 � 0.4ηa

	 2̧

i�1

}U k1
i U

k
i � b2Iri}2F

� �
η2p8C2

2 � 2C2
3q � ηβ

� }∇LpAkq �∇LpA�q}2F.

(S23)

Recall that C2 � 1.5σ
3{4
U , C3 � 1.5σ

1{2
U and a � 80αpσ1{2

U � σUq, and it holds that 8C2
2 � 2C2

3 ¤
18σUp1 � σ

1{2
U q and σ

1{2
U a ¤ 80ασUp1 � σ

1{2
U q ¤ 20β�1σUp1 � σ

1{2
U q, where the second inequality

comes from αβ ¤ 0.25; see the discussion after (S4). Set η � η0βrp1 � σUqp1 � σ
1{2
U qs�1 and

η0 ¤ 1{150, and it can be verified that

3η2σ
1{2
U a2 � 0.4ηa ¤ 0 and η2p8C2

2 � 2C2
3q � ηβ ¤ 0. (S24)

Again, note that η � η0βrp1� σUqp1� σ
1{2
U qs�1 with η0 ¤ 1{150 and ηpC2

2 � C2
3q ¤ 0.02β, leading

to η2p8C2
2 � 2C2

3q ¤ 0.02β2 and ηC4 � ηpC2
2 � C2

3qC�1
1 ¤ 0.02βC�1

1 . This, together with (S8),
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(S23) and (S24), implies that

rEk�1 ¤ p1� η0αβC6qEk � 0.02βpβ � C�1
1 qe2stat, (S25)

where C6 � σ
3{2
L κ�1{2p1� σUq�1p1� σ

1{2
U q�1C5, and

η0αβC6 ¤ η0αβ

CU,1

  η0σU

204
  1

since η0   204σ�1
U and αβ ¤ 0.25. Moreover,

αβC6 � αβ

p1� σUqp1� σ
1{2
U qCU,1

¥ αβ

204κ2
:� δα,β,

which, together with (S25), implies that

rEk�1 ¤ p1� η0δα,βqEk � 0.02βpβ � C�1
1 qe2stat. (S26)

Step 5 This step upper bounds Ek�1 by rEk�1, and hence by Ek. To begin with, we first establish

the inequality between Ek�1 and rEk�1,

Ek�1 ¤
2̧

i�1

}U k�1
i �U�

i
rRk�1

i }2F � }Gk�1 � G� �1 p rRk�1

1 q1 �2 p rRk�1

2 q1}2F, (S27)

and rEk�1 � °2
i�1 }U k�1

i �U�
i
rRk�1

i }2F�}rGk�1

S̆ �G��1p rRk�1

1 q1�2p rRk�1

2 q1}2F, where S̆ � SkYSk�1YSγ.

Denote by s̆ the cardinality of S̆, i.e., s̆ � |Sk�1 Y Sk Y Sγ|. Note that 2xy ¤ µx2 � µ�1y2 for any

µ ¡ 0 and x, y P R, and then the second term at the right hand side of (S27) satisfies the following

inequality,

}Gk�1�G� �1 p rRk�1

1 q1 �2 p rRk�1

2 q1}2F
¤ p1� µsq}rGk�1

S̆ � G� �1 p rRk�1

1 q1 �2 p rRk�1

2 q1}2F � p1� 1

µs

q}Gk�1 � rGk�1

S̆ }2F,
(S28)

where µs �
aps̆� sq{ps̆� sγq   1.

Moreover, Ak�1 � Gk�1 �1 U k�1
1 �2 U k�1

2 , rAk�1 � rGk�1

S̆ �1 U k�1
1 �2 U k�1

2 , and Ak�1 �
HTp rAk�1

S̆ , sq. Since sγ   s ¤ s̆, it can be verified that

}Gk�1 � rGk�1

S̆ }2F ¤
�

2¹
i�1

σminpU k�1
i q

��2

}Ak�1 � rAk�1

S̆ }2F

pLemma C.4q¤ µ2
s

�
2¹

i�1

σminpU k�1
i q

��2

} rAk�1

S̆ �A�}2F
(S5)&(S7)¤ C7µ

2
s
rEk�1, (S29)
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which, together with (S27) and (S28), implies that

Ek�1 ¤ r1� p1� 2C7qµss rEk�1, (S30)

where C7 � 2σ�1
U C�1

L � 10p1� 2σ
1{2
U q.

Note that µs is a function of s̆ with s̆ ¥ s and, by the condition of |SkYSk�1| ¤ p1�νqs, it holds
that s̆ ¤ p1�νkqs�sγ. Note that sγ ¤ νks, and it can be verified that µs ¤

a
2νk{p1� νkq  

?
2νk,

and hence p1� 2C7qµs ¤ η0δα,β as long as νk ¤ p1{128qp3� 5σ
1{2
U q�2η20δ

2
α,β. As a result, from (S26)

and (S30),

Ek�1 ¤ �
1� η20δ

2
α,β

�
Ek � C8e

2
stat, (S31)

where C8 � 0.02r1� p1� 2C7qµssβpβ � C�1
1 q. By unfolding this iteration, we can obtain that

EK ¤ �
1� η20δ

2
α,β

�K
E0 � η�2

0 δ�2
α,βC8e

2
stat,

which, together with (S7) and U 01
i U

0
i � b2Iri for 1 ¤ i ¤ 2, leads to

}AK �A�}2F ¤ C�1
L EK ¤ C�1

L

�
1� η20δ

2
α,β

�K
E0 � C�1

L C8η
�2
0 δ�2

α,βe
2
stat

¤ CU,1C
�1
L

�
1� η20δ

2
α,β

�K }A0 �A�}2F � CU,1C
�1
L C8η

�2
0 δ�2

α,βe
2
stat. (S32)

Step 6 (Verifying conditions at (S4), (S5) and (S6)) We first show that the conditions at (S4)

hold with certain values of α and β. From Lemmas C.1 and C.5, if T1 Á s2pN � log T0q and we

choose

α � 3κRSCκRSS

κRSC � 3κRSS

and β � 1

κRSC � 3κRSS

,

then the inequality at (S4) holds with probability at least 1�Ce�N�log T0 . Note that κRSC ¤ κRSS

and αβ ¤ 0.25, and it can be further verified that

β ¤ 0.25κ�1
RSC and

3κRSC

16κRSS

¤ αβ ¤ 1

4
, (S33)

which can be used to update quantities, δα,β, a and νk in Steps 4, 3 and 5, respectively. Specifically,

δα,β � αβ

204κ2
¥ κRSC

1088κRSSκ2
:� δ,
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a � 80αpσ1{2
U � σUq � 240pσ1{2

U � σUq
κ�1
RSS � 3κ�1

RSC

and νk ¤ 10�10 � η
2
0κ

2
RSC

κ2
RSSκ

4
,

where the final inequality ensures that νk ¤ p1{128qη20δ2α,βp3� 5σ
1{2
U q�2. Moreover, since κRSC   1

and c0   1,

C8 � 0.02r1� p1� 2C7qµssβpβ � C�1
1 q ¤ 0.62c�1

0 κ2κ�2
RSC, (S34)

which, together with the fact that CU,1C
�1
L À κ3{2σ

�1{2
L , can be used to rewrite (S32) into

}AK �A�}2F À κ3{2σ
�1{2
L

�
1� η20δ

2
�K }A0 �A�}2F � κ7{2σ

�1{2
L κ�2

RSCη
�2
0 δ�2e2stat.

We next verify (S6). Note that }U 01
i U

0
i � b2Iri}2F � 0 for 1 ¤ i ¤ 2 and, by the initialization

error bound and (S7), it holds that

E0 ¤ CU,1}A0 �A�}2F ¤ c0
σ
1{2
L

κ3{2
. (S35)

Suppose that the above inequality holds for Ek. Then, by (S31) and (S34),

Ek�1 ¤ �
1� η20δ

2
�
Ek � 0.62c�1

0 κ2κ�2
RSCe

2
stat

¤ �
1� η20δ

2
� � c0σ1{2

L

κ3{2
� 0.62c�1

0 κ2κ�2
RSCe

2
stat

� c0
σ
1{2
L

κ3{2
�
�
c0
η20δ

2σ
1{2
L

κ3{2
� 0.62c�1

0 κ2κ�2
RSCe

2
stat

�
¤ c0

σ
1{2
L

κ3{2

since, when e2stat ¤ p1{800qc20η20κ�8κ�4
RSSκ

4
RSC,

c0
η20δ

2σ
1{2
L

κ3{2
¥ 0.62c�1

0 κ2κ�2
RSCe

2
stat.

Hence the inequality at (S6) holds.

Finally, we verify (S5). Since κ ¥ 1 and b � σ
1{4
U , it holds Ek ¤ c0σ

1{2
L κ�3{2 ¤ c0σ

1{2
U where

c0   0.01 is a very small number. From the definition of Ek, we can verify that, for i � 1 or 2:

}U k
i }op ¤ }U�

iR
k
i }op � }U k

i �U�
iR

k
i }op ¤ σ

1{4
U � }U k

i �U�
iR

k
i }F ¤ 1.1σ

1{4
U ,

σminpU k
i q ¥ }U�

iR
k
i }op � }U k

i �U�
iR

k
i }op ¥ σ

1{4
U � }U k

i �U�
iR

k
i }F ¥ 0.9σ

1{4
U , and

}Gk
piq}op ¤ }Rk

iG
�
piqpIT0 bRk

i�1q1}op � }Gk
piq �Rk

iG
�
piqpIT0 bRk

i�1q1}op
¤ σ

1{2
U �?

c0σ
1{4
U ¤ 1.1σ

1{2
U .

We hence accomplish the whole proof.
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S4.3 Proof of Corollary 2

Note that, by Assumption 2 and the low-rank conditions at (2.4), }A�
j }F ¤ C

?
r1 ^ r2ρ

j for j ¥ 1.

Let Qγ be the smallest integer such that C
?
r1 ^ r2ρ

j ¤ γ for all j ¥ Qγ, and it can be verified

that Qγ � rlogpC?r1 ^ r2{γq{ logp1{ρqs and τ 2Qγ À 1. As a result, by a method similar to (S14),

we can show that

}A�
Sc
γ
}2F À γ2Qγ and τ 2}A�

Sc
γ
}2; À γ2Qγ. (S36)

Moreover, by choosing γ � atpr1 ^ r2qN � log T0u{T1, we have Qγ � log T1{ logp1{ρq. Let s �
Qγ � log T1{ logp1{ρq, and it is implied by Theorem 3 that

e2stat À
rpr1 ^ r2qN � log T0ss

T1

. (S37)

On the other hand, by plugging the values of γ and Qγ into the first term in (S36), we have

}A�
Sc
γ
}2F ¤ Ce2stat for an absolute constant C. Note that }AK �A�}2F ¤ 2}AK �A�

Sγ
}2F � 2}A�

Sc
γ
}2F

and, from Theorem 4,

}AK �A�}2F ¤ 2D1 p1�D2qK }A0 �A�
Sγ
}2F � 2pC �D3qe2stat,

where D1 � κ3{2σ
�1{2
L , D2 � η20δ

2, D3 � κ7{2σ
�1{2
L κ�2

RSCη
�2
0 δ�2, and C À D3.

As a result, when

K ¥ logp2D3q � log e2stat � logD1 � log }A0 �A�
Sγ
}2F

logp1�D2q , (S38)

the optimization error can be shown to be dominated by the statistical error, i.e.

}AK �A�}2F À
rpr1 ^ r2qN � log T0ss

T1

.

Moreover, from (S37), log e2stat can be upper-bounded by some absolute positive constant when

T1 Á tpr1^r2q�s2uN�s2 log T0. Recall that the absolute constant η0 ¤ 1{150 and }A0�A�
Sγ
}2F À

σ
5{2
L κ�3{2, and the bound at (S38) can be further simplified into

K Á logpκ7{2σ
�5{2
L κ�2

RSCδ
�2q

logp1� η20δ
2q .

Hence, the proof of this corollary is accomplished.
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S4.4 Five auxiliary lemmas

This subsection gives five auxiliary lemmas used in the proof of Theorem 4.

Lemma C.1 (Restricted strong convexity and smoothness conditions). Suppose that Assumptions

1–4 are satisfied. If T1 Á s2pN � log T0q, then for any A1,A2 P ΘSPpr1, r2, sq,

0.5κRSC}A1 �A2}2F ¤ LpA1q � LpA2q � x∇LpA2q,A1 �A2y ¤ 1.5κRSS}A1 �A2}2F

holds with probability at least 1� Ce�N�log T0, where κRSC and κRSS are defined in Theorem 1.

Proof. Recall that

LpA1q � LpA2q � x∇LpA2q,A1 �A2y � 1

2T1

}pA1 �A2qp1qX}2F.

Let ∆ � A1 �A2, and it holds that ∆ P ΘSPp2r1, 2r2, 2sq. Using this notation and ignoring the

constant scaling, we have the inequalities

1

T1

}∆p1qX}2F ¤
E
�}∆p1qX}2F

�
T1

�
��}∆p1qX}2F � E

�}∆p1qX}2F
���

T1

, (S39)

and

1

T1

}∆p1qX}2F ¥
E
�}∆p1qX}2F

�
T1

�
��}∆p1qX}2F � E

�}∆p1qX}2F
���

T1

. (S40)

First, by (S34), Basu and Michailidis (2015) and Assumptions 2 & 3, we have

κRSC}∆}2F ¤
E
�}∆p1qX}2F

�
T1

� tr
�
∆p1qΣT0∆

1
p1q

� ¤ λmaxpΣεqµmaxpΨ�q ¤ κRSS}∆}2F.

Moreover, by a method similar to the proof of Lemma B.3,��}∆p1qX}2F � E
�}∆p1qX}2F

���
T1

�
����tr"∆p1q

�
XX 1

T1

�ΣT0



∆1

p1q

*����
¤

T0̧

i�1

T0̧

j�1

����tr �∆i

"
X iX

1
j

T1

� Γpi� jq
*
∆1

j

�����
¤

T0̧

i�1

T0̧

j�1

}∆i}F}∆j}F
����X iX

1
j

T1

� Γpi� jq
����
op

¤ }∆}2; max
1¤i¤T0

max
1¤j¤T0

����X iX
1
j

T1

� Γpi� jq
����
op

.
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Note that }∆}; ¤
?
2s}∆}F and then, by Lemma B.6, it can be verified that, when T1 Á s2pN �

log T0q, ��}∆p1qX}2F � E
�}∆p1qX}2F

���
T1

¤ sτ 2}∆}2F ¤ 0.5κRSC}∆}2F
holds with probability at least 1 � Ce�N�log T0 , where τ 2 � C

apN � log T0q{T1. This, together

with (S39) and (S40), accomplishes the proof of this lemma.

Lemma C.2. Consider two tensors A� � G��1U
�
1 �2U

�
2 P RN�N�T0 and A � G�1U 1�2U 2 P

RN�N�T0, where G� and G P Rr1�r2�T0 are core tensors, and U�
i ,U i P RN�ri with i � 1 and 2 are

factor matrices. We define their distance below,

E � min
RiPOri�ri , 1¤i¤2

#
2̧

i�1

}U i �U�
iRi}2F � }G� G� �1 R

1
1 �2 R

1
2}2F

+
.

Suppose that, for i � 1 and 2, }U i}op ¤ p1 � ceqσ1{4
U , }Gpiq}op ¤ p1 � ceqσ1{2

U , U�1
i U

�
i � b2Iri, and

σL ¤ σminpA�
piqq ¤ }A�

piq}op ¤ σU , where ce ¡ 0, b ¡ 0, 0   σL ¤ σU , and σminpAq denotes the

smallest nonzero singular value of matrix A. It then holds that

c3}A�A�}2F ¤ E ¤ c2}A�A�}2F � 2p1� c1qb�2
2̧

i�1

}U 1
iU i � b2Iri}2F,

where c1 � 3p1� ceq4σ3{2
U b�4, c2 � 3b�4 � 8p1� c1qσ�2

L b�2, and c3 � r3p1� ceq4pσU � 2σ
3{2
U qs�1.

Proof. We first prove the upper bound. For any Ri P Ori�ri with i � 1 and 2,

}G� G� �1 R
1
1 �2 R

1
2}2F � b�4}G�1 U

�
1R1 �2 U

�
2R2 �A�}2F,

and, by the fact that px� y � zq2 ¤ 3x2 � 3y2 � 3z2,

}G�1 U
�
1R1 �2 U

�
2R2 �A�}2F

¤ 3}A�A�}2F � 3}G�1 pU 1 �U�
1R1q �2 U 2}2F � 3}G�1 U

�
1R1 �2 pU 2 �U�

2R2q}2F

¤ 3}A�A�}2F � 3p1� ceq4σ3{2
U

2̧

i�1

}U i �U�
iRi}2F.

As a result,

}G� G� �1 R
1
1 �2 R

1
2}2F ¤ 3b�4}A�A�}2F � c1

2̧

i�1

}U i �U�
iRi}2F, (S41)
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with c1 � 3p1� ceq4σ3{2
U b�4, which implies that

E ¤ 3b�4}A�A�}2F � p1� c1q
2̧

i�1

min
RiPOri�ri

}U i �U�
iRi}2F. (S42)

We next handle the second term of (S42). For i � 1 and 2, consider an SVD formU i � sU i
sΣi

sV 1
i.

Note that }U i �U�
iRi}2F ¤ 2}U i � b sU i

sV 1
i}2F � 2}b sU i

sV 1
i �U�

iRi}2F, and then

min
RiPOri�ri

}U i �U�
iRi}2F ¤ 2}sΣi � bIri}2F � 2 min

RiPOri�ri

}b sU i �U�
iRi}2F, (S43)

where }sΣi � bIri}2F ¤ b�2}U 1
iU i � b2Iri}2F; see (E.3) in Han et al. (2022). On the other hand, sU i

and b�1U�
i have orthonormal columns and they span the left singular subspaces of Apiq and A�

piq,

respectively. Then, from Lemma 1 in Cai and Zhang (2018),

min
RiPOri�ri

}b sU i �U�
iRi}2F ¤ 2b2} sU 1

iKpb�1U�
i q}2F ¤ 2b�2σ�2

L }A�A�}2F, (S44)

where sU iK P ON�pN�riq lies in the orthogonal complementary subspace of sU i and the last inequal-

ity is due to

}A�A�}2F � }Apiq �A�
piq}2F ¥ } sU 1

iKA
�
piq}2F � b4} sU 1

iKpb�1U�
i qpb�1U�1

i qA�
piq}2F

¥ b4σ2
L} sU 1

iKpb�1U�
i q}2F.

From (S43) and (S44), we have

min
RiPOri�ri

}U i �U�
iRi}2F ¤ 2b�2}U 1

iU i � b2Iri}2F � 4b�2σ�2
L }A�A�}2F,

which, together with (S42), implies that

E ¤ c2}A�A�}2F � 2p1� c1qb�2
2̧

i�1

}U 1
iU i � b2Iri}2F,

where c2 � 3b�4 � 8p1� c1qσ�2
L b�2.

We next prove the lower bound. Note that }G�
piq}op � b�2}A�

piq}op ¤ σUb
�2 for 1 ¤ i ¤ 2, and
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then it holds that

}A�A�}2F ¤ 3}pG� G� �1 R
1
1 �2 R

1
2q �1 U 1 �2 U 2}2F

� 3}pG� �1 R
1
1 �2 R

1
2q �1 pU 1 �U�

1R1q �2 U 2}2F
� 3}pG� �2 R

1
2q �1 U

�
1 �2 pU 2 �U�

2R2q}2F
¤ c�1

3 E,

where c3 � r3p1� ceq4pσU � 2σ
3{2
U qs�1.

Lemma C.3. Consider the two tensors, A� � G� �1 U
�
1 �2 U

�
2 P RN�N�T0 and A � G �1

U 1 �2 U 2 P RN�N�T0, in Lemma C.2, and it holds that, for i � 1 and 2, }U i}op ¤ p1 � ceqσ1{4
U ,

}Gpiq}op ¤ p1 � ceqσ1{2
U , U�1

i U
�
i � b2Iri, and }A�

piq}op ¤ σU , where ce ¡ 0, b ¡ 0, and 0   σU .

Define three tensors below,

AG � pG� G� �1 R
1
1 �2 R

1
2q �1 U 1 �2 U 2, AU1 � G�1 pU 1 �U�

1R1q �2 U 2,

and AU2 � AU1 � G�1 U 1 �2 pU 2 �U�
2R2q. If there exists a B ¥ 0 such that }G� G� �1 R

1
1 �2

R1
2}F ¤ B and }U i �U�

iRi}F ¤ B for Ri P Ori�ri with i � 1 and 2, then

}Hϵ}F ¤ rp1� ceqσ1{2
U � p2� ceqσ1{4

U sB2 with Hϵ � AG �
2̧

i�1

AUi
� pA�A�q.

Proof. Note that

AG �
2̧

i�1

AUi
� A�A� �Hp1q

ϵ �Hp2q
ϵ �Hp3q

ϵlooooooooooomooooooooooon
�Hϵ

,

where

Hp1q
ϵ � G�1 pU 1 �U�

1R1q �2 pU 2 �U�
2R2q,

Hp2q
ϵ � pG� G� �1 R

1
1 �2 R

1
2q �1 pU 1 �U�

1R1q �2 U 2,

Hp3q
ϵ � pG� G� �1 R

1
1 �2 R

1
2q �1 U

�
1R1 �2 pU 2 �U�

2R2q.

(S45)

It can be easily verified that

}Hp1q
ϵ }F ¤ p1� ceqσ1{2

U B2, }Hp2q
ϵ }F ¤ p1� ceqσ1{4

U B2 and }Hp1q
ϵ }F ¤ σ

1{4
U B2.

Hence, the proof of this lemma is accomplished.
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Lemma C.4 (Contractive projection property (CPP)). Consider a tensor X P RN�N�T0 with

frontal slices tX i, 1 ¤ i ¤ T0u, and let S1 � t1 ¤ j ¤ T0, }Xj}F ¡ 0u be the collection of nonzero

frontal slices. Moreover, X� P RN�N�T0 is another tensor with S2 being the collection of nonzero

frontal slices. Denote by sj the cardinality of Sj with j � 1 and 2. If s2   s ¤ s1 and S2 � S1,

then

}HTpX, sq �X}2F ¤
s1 � s

s1 � s2
}X�X�}2F.

Proof. This lemma is a trivial extension of Lemma 1.1 in Jain et al. (2014) to the case with tensors,

and the proof is also similar.

Lemma C.5. Let f be a continuously differentiable function and, for any tensors A and B,

m

2
}A�B}2F ¤ fpAq � fpBq � x∇fpBq,A�By ¤ M

2
}A�B}2F,

where 0   m ¤ M   8. It then holds that

x∇fpAq �∇fpBq,A�By ¥ mM

m�M
}A�B}2F �

1

m�M
}∇fpAq �∇fpBq}2F.

Proof. This lemma is from Theorem 2.1.11 in Nesterov (2003) and is provided here to make the

proof self-contained.

S5 Additional details in the simulation studies

In this section, we first present an additional simulation study to compare the sensitivity of the

soft- and hard-thresholding algorithm with respect to T0. Next, we present more details regarding

the generation of Bj and Cj in our VAR data generating processes.

S5.1 Sensitivity of soft- and hard-thresholding

This subsection presents two additional simulations to compare the finite-sample performance of

the soft- and hard-thresholding methods from Section 3.1 at various values of T and T0. Specifi-

cally, the goal is to demonstrate that the tuning parameter λ in the soft-thresholding algorithm is
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more sensitive to changes in T and T0 than the sparsity level s in the hard-thresholding algorithm,

thus supporting our preference for the more stable hard-thresholding algorithm.

The first experiment aims to show how the parameter estimation errors vary with respect to

T under different λ’s and s’s while holding T0 fixed. We generate the data using the VARMA

process with pN, rq � p20, 4q, and four sample sizes are considered with T � 400, 600, 800 and

1000. The running order is fixed at T0 � 100, and the effective sample size is T1 � T � T0. There

are 500 replications for each sample size, and the hard-thresholding method, i.e. Algorithm 1,

is first considered to search for estimates with the sparsity level s varying from 4 to 18. Figure

1 gives the parameter estimation errors, averaged over 500 replications, and it can be seen that

the optimal sparsity level grows slowly from nine to eleven as the sample size T increases. In the

meanwhile, Algorithm 1 modified with the soft-thresholding method in Section 3.1 is also applied,

and the tuning parameter λ varies among the values of t0.5j � 10�3, 1 ¤ j ¤ 33u. The averaged

parameter estimation errors are presented in Figure 1, and the optimal values of λ change a lot

when the sample size increases from T � 400 to 1000. Moreover, since the fitted models at each

fixed λ may have different sparsity levels, Figure 1 also plots the sparsity levels of 100 fitted models

at the optimal value of λ for each sample size. The sparsity level varies roughly from 20 to 30,

and the variation decreases as the sample size increases. Finally, although parameter estimation

errors for both methods become larger as sample sizes decrease, those for the soft-thresholding

method may vary dramatically, especially when the sample size is as small as T � 400.

The second experiment aims to show how the parameter estimation errors vary with respect

to T0 under different λ’s and s’s while holding T fixed. We fix the sample size at T � 800, while

four running orders are considered with T0 � 25, 50, 100 and 200. The sparsity level for the hard-

thresholding method varies from s � 5 to 14, and the tuning parameter for the soft-thresholding

method takes the values of λ P t0.5j � 10�3, 4 ¤ j ¤ 20u. All the other settings are the same as

those in the first experiment, and the estimation results are also given in Figure 1. The stability of

the hard-thresholding method is confirmed again, while the optimal values of λ are more sensitive

to the change in T0 for the soft-thresholding method. In fact, when the running order is as large as

41



Figure 1: Plots of parameter estimation errors against sparsity levels s (left panel) for the hard-

thresholding (HT) method and tuning parameters λ (middle panel) for the soft-thresholding (ST)

method, where the optimal setting on each curve with the minimum error is highlighted in red,

and boxplots (right panel) for sparsity levels of 100 fitted models at the optimal values of λ. Two

cases are considered: varying sample size T but fixed running order T0 (upper panel) and varying

running order T0 but fixed sample size T (lower panel).

T0 � 200, the parameter estimation errors from the soft-thresholding method vary dramatically,

and we can even observe a much higher variation in sparsity levels of the fitted models at the

optimal values of λ. This further undermines the stability of the soft-thresholding method.

S5.2 Generation of Bj and Cj

We illustate with a simple case where r2   r1 and subsequently rp4q � r1 � r2 and rpjq � r2

for j P t1, 5, 8, 9u. The generation details of Bj’s and Cj’s are as follows. We first generate an

N�N orthonormal matrixO � po1, . . . ,oNq using python function scipy.stats.ortho group.rvs(N).
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Then we set B1 � po1, . . . ,or2q, B4 � por2�1, . . . ,or1q and randomly draw with replacement r2

columns from the set to1, . . . ,or1u to form B5,B8,B9 P RN�r2 , respectively. Meanwhile, we

generate another N � N orthogonal matrix rO � pro1, . . . , roNq and set C1 � pro1, . . . , ror2q. Then

we randomly sample r1 � r2 columns from C1 without replacement to form C4 and r2 columns

from C1 with replacement to form C5,C8,C9 P RN�r2 , respectively.

S6 Additional information on the macro-economic dataset

In Tables 2–9, we provide more detailed descriptions of the variables of the macro-economic dataset

in Section 6 and their transformations.

Figure 2 plots projection matrices of the estimated response loading, i.e. pU 1
pUT

1 , and the

predictor loadings, pU 2
pUT

2 , for the small size dataset. We reorder the variables the same way ass

described in Section 6 of the main paper. It can be observed that the loading matrices are not

only low-rank but also sparse, which can explain why the sparsity-based methods also achieve

good forecasting performance. Moreover, the loading matrices for the predictor and response

factors differ from each other. The predictor factor summarizes the dynamics from CPI of all

items (CPIAUCSL), all items less food&energy (CPIFESL) and apparel (CPIAPPSL), while the

response factor mainly depicts how the CPI of all items responds to the changes in the predictor

variables.

Figure 3 plots projection matrices of the estimated response loading, i.e. pU 1
pUT

1 , and the

predictor loadings, pU 2
pUT

2 , for the medium size dataset. We reorder the variables the same way

ass described in Section 6 of the main paper. Again, the loading matrices for the predictor

and response factors differ from each other. The predictor factor mainly summarizes the personal

consumption expenditure, overall goods prices or durable goods prices, and producer price indices.

In the meantime, the response factor additionally captures how durable goods and consumer price

indices respond to the changes in the predictor variables.
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Table 1: Variable Descriptions and FRED MNEMONICS

Short Name Description FRED MNEMONIC

PCED Personal Consumption Expenditures: Chain-type Price Index (Index 2017=100) PCEPI

GPDI Defl Gross Private Domestic Investment: Chain-type Price Index (Index 2017=100) GPDIDEF

GS1 TB3M 1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market (Percent) GS1TB3M

Nonborrowed Reserves Depository Reserves Of Depository Institutions, Nonborrowed (Millions of Dollars) NONBORRES

PPI FinConsGds Food Producer Price Index by Commodity for Finished Consumer Foods (Index 1982=100) PPIFCG

PCED OtherServices Personal consumption expenditures: Other services (chain-type price index) PCEDOTHERSERV

Total Reserves Depository Total Reserves of Depository Institutions (Billions of Dollars) TOTRESNS

Real Price Oil Producer Price Index by Commodity for Fuels and Related Products and Power: Crude Petroleum (Domestic Production) (Index 1982=100) PPIORLY

BAA GS10 Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity (Percent) BAAGS10

PPI Crude Materials Producer Price Index: Crude Materials for Further Processing (Index 1982-84=100) PPICRMAT

PCED FIRE Personal consumption expenditures: Financial services and insurance (chain-type price index) PCEDFIRE

Fed Funds Effective Federal Funds Rate (Percent) FEDFUNDS

PPI Metals Nonferrous Producer Price Index: Commodities: Metals and metal products: Primary nonferrous metals (Index 1982=100) PPINMET

Nikkei Stock Avg Nikkei Stock Average NIKKEI225

Real NonRevCredit Total Real Nonrevolving Credit Owned and Securitized, Outstanding (Billions of Dollars), deflated by Core PCE NONREVSL

Real LoansRE Real Real Estate Loans, All Commercial Banks (Billions of 2017 U.S. Dollars), deflated by Core PCE REALLNS

TM 3M FedFunds 3-Month Treasury Constant Maturity Minus Federal Funds Rate TM3MFED

Real HHW RESA Real Real Estate Assets of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE HHWRENSA

Real AHE MFG Real Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing (2017 Dollars per Hour), deflated by Core PCE AHEMAN

Real ConsLoans Real Consumer Loans at All Commercial Banks (Billions of 2017 U.S. Dollars), deflated by Core PCE CONLOANSNSA

Real Nonfin NCorp NW Real Nonfinancial Noncorporate Business Sector Net Worth (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector NFCNWNSA

Real Nonfin NCorp Assets Real Nonfinancial Noncorporate Business Sector Assets (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector NONCORPNSA

Real ConsuCred Total Consumer Credit Outstanding, deflated by Core PCE TOTALSL

Cons Expectations University of Michigan: Consumer Sentiment (Index 1st Quarter 1966=100) UMCSENT

Real NonRevCredit Total Real Nonrevolving Credit Owned and Securitized, Outstanding (Billions of Dollars), deflated by Core PCE NONREVSL

Real Nonfin NCorp Assets Real Nonfinancial Noncorporate Business Sector Assets (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector NONCORPNSA

Real LoansRE Real Real Estate Loans, All Commercial Banks (Billions of 2017 U.S. Dollars), deflated by Core PCE REALLNS

Real HHW LiabSA Real Total Liabilities of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE HHWTOTNSA

Real Nonfin NCorp NW Real Nonfinancial Noncorporate Business Sector Net Worth (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector NFCNWNSA

Real HHW RESA Real Real Estate Assets of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE HHWRENSA

Real Nonfin NCorp Liab Real Nonfinancial Noncorporate Business Sector Liabilities (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector NFCLNSA

Fed Funds Effective Federal Funds Rate (Percent) FEDFUNDS

Real CL Loans Real Commercial and Industrial Loans, All Commercial Banks (Billions of 2017 U.S. Dollars), deflated by Core PCE BUSLOANS

CPI Services Consumer Price Index for All Urban Consumers: Services (Index 1982-84=100) CUSR0000SAS

CPI Consumer Price Index for All Urban Consumers: All Items (Index 1982-84=100) CPIAUCSL

CPI LessMedCare Consumer Price Index for All Urban Consumers: All items less medical care (Index 1982-84=100) CUSR0000SAM

Real NCorp Assets Real Nonfinancial Corporate Business Sector Assets (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector NFCBAA

CPI LessFood Consumer Price Index for All Urban Consumers: All Items Less Food (Index 1982-84=100) CUSR0000SA0L1

Nonrev CC PersInc Nonrevolving consumer credit to Personal Income NONREVCCPI

TM 6MTH 6-Month Treasury Bill: Secondary Market Rate (Percent) DGS6MO

GS10 TB3M 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market (Percent) GS10TB3

BAA GS10 Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity (Percent) BAAGS10

Figure 2: Projection matrices of the estimated response and the predictor loadings for the small

size dataset.
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Figure 3: Projection matrices of the estimated response and the predictor loadings for the medium

size dataset.
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Table 2: Price Indices. FRED MNEMONIC: mnemonic for data in FRED-QD. SW MNEMONIC:

mnemonic in Stock and Watson (2012). T: data transformation code, where 6 = second difference

of log series. DESCRIPTION: brief definition of the data. G: Group code, where 6 = price index

variables.

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

IPDBS BusSec Defl 6 Business Sector: Implicit Price Deflator (Index 2017=100) 6

GDPCTPI GDP Defl 6 Gross Domestic Product: Chain-type Price Index (Index 2017=100) 6

GPDICTPI GPDI Defl 6 Gross Private Domestic Investment: Chain-type Price Index (Index 2017=100) 6

PCEPILFE PCED LFE 6 Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) (Index 2017=100) 6

PCECTPI PCED 6 Personal Consumption Expenditures: Chain-type Price Index (Index 2017=100) 6

DDURRG3Q086SBEA PCED DurGoods 6 Personal consumption expenditures: Durable goods (chain-type price index) 6

DFDHRG3Q086SBEA PCED DurHousehold 6 Personal consumption expenditures: Durable goods: Furnishings and durable household equipment (chain-type price index) 6

DMOTRG3Q086SBEA PCED MotorVec 6 Personal consumption expenditures: Durable goods: Motor vehicles and parts (chain-type price index) 6

DODGRG3Q086SBEA PCED OthDurGds 6 Personal consumption expenditures: Durable goods: Other durable goods (chain-type price index) 6

DREQRG3Q086SBEA PCED Recreation 6 Personal consumption expenditures: Durable goods: Recreational goods and vehicles (chain-type price index) 6

DIFSRG3Q086SBEA PCED FIRE 6 Personal consumption expenditures: Financial services and insurance (chain-type price index) 6

DGDSRG3Q086SBEA PCED Goods 6 Personal consumption expenditures: Goods (chain-type price index) 6

DNDGRG3Q086SBEA PCED NDurGoods 6 Personal consumption expenditures: Nondurable goods (chain-type price index) 6

DCLORG3Q086SBEA PCED Clothing 6 Personal consumption expenditures: Nondurable goods: Clothing and footwear (chain-type price index) 6

DFXARG3Q086SBEA PCED Food Bev 6 Personal consumption expenditures: Nondurable goods: Food and beverages purchased for off-premises consumption (chain-type price index) 6

DGOERG3Q086SBEA PCED Gas Enrgy 6 Personal consumption expenditures: Nondurable goods: Gasoline and other energy goods (chain-type price index) 6

DONGRG3Q086SBEA PCED OthNDurGds 6 Personal consumption expenditures: Nondurable goods: Other nondurable goods (chain-type price index) 6

DOTSRG3Q086SBEA PCED OtherServices 6 Personal consumption expenditures: Other services (chain-type price index) 6

DRCARG3Q086SBEA PCED RecServices 6 Personal consumption expenditures: Recreation services (chain-type price index) 6

DSERRG3Q086SBEA PCED Serv 6 Personal consumption expenditures: Services (chain-type price index) 6

DFSARG3Q086SBEA PCED FoodServ Acc. 6 Personal consumption expenditures: Services: Food services and accommodations (chain-type price index) 6

DHLCRG3Q086SBEA PCED HealthCare 6 Personal consumption expenditures: Services: Health care (chain-type price index) 6

DHCERG3Q086SBEA PCED HouseholdServ. 6 Personal consumption expenditures: Services: Household consumption expenditures (chain-type price index) 6

DHUTRG3Q086SBEA PCED Housing-Utilities 6 Personal consumption expenditures: Services: Housing and utilities (chain-type price index) 6

DTRSRG3Q086SBEA PCED TransSvg 6 Personal consumption expenditures: Transportation services (chain-type price index) 6

WPSFD4111 PPI:FinConsGds(Food) 6 Producer Price Index by Commodity for Finished Consumer Foods (Index 1982=100) 6

WPSFD49502 PPI:FinConsGds 6 Producer Price Index by Commodity for Finished Consumer Goods (Index 1982=100) 6

WPSFD49207 PPI:FinGds 6 Producer Price Index by Commodity for Finished Goods (Index 1982=100) 6

WPU0561 Real Price:Oil 6 Producer Price Index by Commodity for Fuels and Related Products and Power: Crude Petroleum (Domestic Production) (Index 1982=100) 6

PPIIDC PPI:IndCom 6 Producer Price Index by Commodity Industrial Commodities (Index 1982=100) 6

WPSID61 PPI:IntMat 6 Producer Price Index by Commodity Intermediate Materials: Supplies & Components (Index 1982=100) 6

PPIACO PPI 6 Producer Price Index for All Commodities (Index 1982=100) 6

PPICMM 6 Producer Price Index: Commodities: Metals and metal products: Primary nonferrous metals (Index 1982=100) 6

WPSID62 6 Producer Price Index: Crude Materials for Further Processing (Index 1982=100) 6
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Table 3: (Price Indices continued) Consumer price index-related variables from the price group.

T: data transformation code, where 6 = second difference of log series. G: Group code, where 6

= price index variables.

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

CPIAUCSL CPI 6 Consumer Price Index for All Urban Consumers: All Items (Index 1982-84=100) 6

CPIULFSL 6 Consumer Price Index for All Urban Consumers: All Items Less Food (Index 1982-84=100) 6

CPILFESL CPI LFE 6 Consumer Price Index for All Urban Consumers: All Items Less Food & Energy (Index 1982-84=100) 6

CUSR0000SA0L5 6 Consumer Price Index for All Urban Consumers: All items less medical care (Index 1982-84=100) 6

CUSR0000SA0L2 6 Consumer Price Index for All Urban Consumers: All items less shelter (Index 1982-84=100) 6

CPIAPPSL 6 Consumer Price Index for All Urban Consumers: Apparel (Index 1982-84=100) 6

CUSR0000SAC 6 Consumer Price Index for All Urban Consumers: Commodities (Index 1982-84=100) 6

CUSR0000SAD 6 Consumer Price Index for All Urban Consumers: Durables (Index 1982-84=100) 6

CPIMEDSL 6 Consumer Price Index for All Urban Consumers: Medical Care (Index 1982-84=100) 6

CUSR0000SAS 6 Consumer Price Index for All Urban Consumers: Services (Index 1982-84=100) 6

CPITRNSL 6 Consumer Price Index for All Urban Consumers: Transportation (Index 1982-84=100) 6

Table 4: Earnings and productivity variables. T: data transformation code, where 5 = first

difference of log series, 6 = second difference of log series. G: Group code, where 7 = earnings and

productivity variables.

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

CES0600000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing (Dollars per Hour) 7

RCPHBS CPH:Bus 5 Business Sector: Real Compensation Per Hour (Index 2017=100) 7

OPHPBS OPH:Bus 5 Business Sector: Real Output Per Hour of All Persons (Index 2017=100) 7

ULCBS ULC:Bus 5 Business Sector: Unit Labor Cost (Index 2017=100) 7

COMPRNFB CPH:NFB 5 Nonfarm Business Sector: Real Compensation Per Hour (Index 2017=100) 7

OPHNFB OPH:nfb 5 Nonfarm Business Sector: Real Output Per Hour of All Persons (Index 2017=100) 7

ULCNFB ULC:NFB 5 Nonfarm Business Sector: Unit Labor Cost (Index 2017=100) 7

UNLPNBS UNLPay:nfb 5 Nonfarm Business Sector: Unit Nonlabor Payments (Index 2017=100) 7

CES2000000008x Real AHE:Const 5 Real Average Hourly Earnings of Production and Nonsupervisory Employees: Construction (2017 Dollars per Hour), deflated by Core PCE 7

CES3000000008x Real AHE:MFG 5 Real Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing (2017 Dollars per Hour), deflated by Core PCE 7
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Table 5: Interest rates variables. T: data transformation code, where 1 = no transformation, 2 =

first difference. G: Group code, where 8 = interest rate variables.

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

GS1TB3Mx GS1 tb3m 1 1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market (Percent) 8

GS1 TB-1YR 2 1-Year Treasury Constant Maturity Rate (Percent) 8

GS10TB3Mx GS10 tb3m 1 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market (Percent) 8

GS10 TB-10YR 2 10-Year Treasury Constant Maturity Rate (Percent) 8

TB3MS TB-3Mth 2 3-Month Treasury Bill: Secondary Market Rate (Percent) 8

TB3SMFFM 1 3-Month Treasury Constant Maturity Minus Federal Funds Rate 8

T5YFFM 1 5-Year Treasury Constant Maturity Minus Federal Funds Rate 8

GS5 2 5-Year Treasury Constant Maturity Rate 8

TB6M3Mx tb6m tb3m 1 6-Month Treasury Bill Minus 3-Month Treasury Bill, secondary market (Percent) 8

TB6MS TM-6MTH 2 6-Month Treasury Bill: Secondary Market Rate (Percent) 8

FEDFUNDS FedFunds 2 Effective Federal Funds Rate (Percent) 8

AAAFFM 1 Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate 8

AAA AAA Bond 2 Moody’s Seasoned Aaa Corporate Bond Yield© (Percent) 8

BAA10YM BAA GS10 1 Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity (Percent) 8

BAA BAA Bond 2 Moody’s Seasoned Baa Corporate Bond Yield (Percent) 8

Table 6: Money and credit variables. T: data transformation code, where 5 = first difference of log

series, 6 = second difference of log series, 7 = the difference in return series, i.e. ∆pxt{xt�1 � 1q.
G: Group code, where 9 = money and credit variables.

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

DTCOLNVHFNM 6 Consumer Motor Vehicle Loans Outstanding Owned by Finance Companies (Millions of Dollars) 9

BUSLOANSx Real C&Lloand 5 Real Commercial and Industrial Loans, All Commercial Banks (Billions of 2017 U.S. Dollars), deflated by Core PCE 9

CONSUMERx Real ConsLoans 5 Real Consumer Loans at All Commercial Banks (Billions of 2017 U.S. Dollars), deflated by Core PCE 9

M1REAL Real m1 5 Real M1 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 9

M2REAL Real m2 5 Real M2 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 9

REALLNx Real LoansRealEst 5 Real Real Estate Loans, All Commercial Banks (Billions of 2017 U.S. Dollars), deflated by Core PCE 9

NONBORRES 7 Reserves Of Depository Institutions, Nonborrowed (Millions of Dollars) 9

INVEST 6 Securities in Bank Credit at All Commercial Banks (Billions of Dollars) 9

BOGMBASEREALx Real Mbase 5 St. Louis Adjusted Monetary Base (Billions of 1982-84 Dollars), deflated by CPI 9

TOTALSLx Real ConsuCred 5 Total Consumer Credit Outstanding, deflated by Core PCE 9

DTCTHFNM 6 Total Consumer Loans and Leases Outstanding Owned and Securitized by Finance Companies (Millions of Dollars) 9

NONREVSLx Real NonRevCredit 5 Total Real Nonrevolving Credit Owned and Securitized, Outstanding (Billions of Dollars), deflated by Core PCE 9

TOTRESNS 6 Total Reserves of Depository Institutions (Billions of Dollars) 9
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Table 7: Household and non-household balance sheet variables. T: data transformation code,

where 1 = no transformation, 2 = first difference, and 5 = first difference of log series. G:

Group code, where 10 = household balance sheet variables and 14 = non-household balance sheet

variables

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

LIABPIx liab PDISA 5 Liabilities of Households and Nonprofit Organizations Relative to Personal Disposable Income (Percent) 10

NWPIx W PDISA 1 Net Worth of Households and Nonprofit Organizations Relative to Disposable Personal Income (Percent) 10

CONSPIx 2 Nonrevolving consumer credit to Personal Income 10

TARESAx Real HHW:TA RESA 5 Real Assets of Households and Nonprofit Organizations excluding Real Estate Assets (Billions of 2017 Dollars), deflated by Core PCE 10

TNWBSHNOx Real HHW:WSA 5 Real Net Worth of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE 10

HNOREMQ027Sx Real HHW:RESA 5 Real Real Estate Assets of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE 10

TABSHNOx Real HHW:TASA 5 Real Total Assets of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE 10

TFAABSHNOx Real HHW:FinSA 5 Real Total Financial Assets of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE 10

TLBSHNOx Real HHW:LiabSA 5 Real Total Liabilities of Households and Nonprofit Organizations (Billions of 2017 Dollars), deflated by Core PCE 10

TLBSNNCBBDIx 1 Nonfinancial Corporate Business Sector Liabilities to Disposable Business Income (Percent) 14

TNWMVBSNNCBBDIx 2 Nonfinancial Corporate Business Sector Net Worth to Disposable Business Income (Percent) 14

TLBSNNBBDIx 1 Nonfinancial Noncorporate Business Sector Liabilities to Disposable Business Income (Percent) 14

TNWBSNNBBDIx 2 Nonfinancial Noncorporate Business Sector Net Worth to Disposable Business Income (Percent) 14

CNCFx 5 Real Disposable Business Income, Billions of 2017 Dollars (Corporate cash flow with IVA minus taxes on corporate income, deflated by Implicit Price Deflator for Business Sector IPDBS) 14

TTAABSNNCBx 5 Real Nonfinancial Corporate Business Sector Assets (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS 14

TLBSNNCBx 5 Real Nonfinancial Corporate Business Sector Liabilities (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS 14

TNWMVBSNNCBx 5 Real Nonfinancial Corporate Business Sector Net Worth (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS 14

TABSNNBx 5 Real Nonfinancial Noncorporate Business Sector Assets (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS 14

TLBSNNBx 5 Real Nonfinancial Noncorporate Business Sector Liabilities (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS 14

TNWBSNNBx 5 Real Nonfinancial Noncorporate Business Sector Net Worth (Billions of 2017 Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS 14

Table 8: Exchange rate variables. T: data transformation code, where 5 = first difference of log

series. G: Group code, where 11 = exchange rate variables.

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

EXCAUSx EX rate:Canada 5 Canada / U.S. Foreign Exchange Rate 11

EXJPUSx Ex rate:Japan 5 Japan / U.S. Foreign Exchange Rate 11

EXSZUSx Ex rate:Switz 5 Switzerland / U.S. Foreign Exchange Rate 11

EXUSUKx Ex rate:UK 5 U.S. / U.K. Foreign Exchange Rate 11

Table 9: Stock market variables and consumer sentiment. T: data transformation code, where 1

= no transformation, 2 = first difference, and 5 = first difference of log series. G: Group code,

where 12 = consumer sentiment variable, and 13 = stock market variables.

FRED MNEMONIC SW MNEMONIC T DESCRIPTION G

UMCSENTx Cons. Expectations 1 University of Michigan: Consumer Sentiment (Index 1st Quarter 1966=100) 12

NIKKEI225 5 Nikkei Stock Average 13

S&P 500 5 S&P’s Common Stock Price Index: Composite 13

S&P div yield 2 S&P’s Composite Common Stock: Dividend Yield 13

S&P PE ratio 5 S&P’s Composite Common Stock: Price-Earnings Ratio 13
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S7 Additional empirical experiment on realized volatility

It is an important task in finance to predict realized volatility (Chen et al., 2010), and this

subsection attempts to tackle this problem by considering the daily realized volatility for N � 46

stocks from January 2, 2012 to December 31, 2013, with sample size T � 495. The stocks

are from S&P 500 companies with the largest trading volumes on the first day of 2013, and they

cover a wide range of sectors, including communication service, information technology, consumer,

finance, healthcare, materials and energy. The tick-by-tick data are downloaded from the Wharton

Research Data Service (WRDS), and the daily realized volatility is calculated based on five-minute

returns (Andersen et al., 2006). The stationarity can be confirmed for these series by checking

their sample autocorrelation functions, and each sequence is standardized to have zero mean and

unit variance; see the Table 11 information on the 46 stocks.

Algorithm 1 is applied again to search for the VAR sieve estimates, and the running order T0

is initially set to t
?
495u. The AIC chooses the sparsity level s � 4 for most running orders T0

and s � 3 for the others, while the selected lags are always among t1, 3, 4, 8u. We may argue that

the movement of market volatility is largely driven by intra-week information, with a bit spillover

effect from the previous week. As a result, the lag order is fixed at T0 � 10, providing two more

lags as a buffer. The ranks and sparsity level selected by the AIC are pr1, r2, sq � p3, 3, 4q. The

rolling forecast procedure, used in the macroeconomic application of the main paper, is employed

here as well, reserving the last 10% of the observations for one-step-ahead predictions. Table 2

presents the mean squared forecast error (MSFE) and model confidence set (MCS) p-values from

the proposed method, alongside the competing methods introduced in Section 5 of the main pa-

per. For VAR-based models, we consider a finite lag order of p � 4. At the suggestion of a

reviewer, we include the Heterogeneous AutoRegressive (HAR) model (Corsi, 2009) as an addi-

tional benchmark for this application. In contrast to the macroeconomic analysis in the main

paper, our preliminary analysis of the realized volatility dataset suggests that the underlying re-

sponse and predictor factors lie within approximately the same low-dimensional space. Therefore,

the proposed model is fitted using the approach outlined in Remark 5, which enforces U 1 � U 2.

As shown in Table 10, the proposed model performs best among all models. This superior per-
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formance, compared to VARMA-based methods, may be due to the non-consecutive nature of

the non-zero lags, which requires greater flexibility in capturing diverse temporal patterns. Addi-

tionally, the realized volatility data exhibit longer temporal dependence, meaning that truncating

the lags may introduce bias, resulting in weaker performance from finite-order VAR models with

p � 4.

Table 10: Mean squared forecast errors (MSFE) and mean absolute forecast errors (MAFE) of

our methods and other models on the realized volatility dataset. The best result in each column

is highlighted in bold black font.

Models MSFE pMCS

RW 6.46 0.00

AR(1) 5.00 0.20

AR(2) 4.95 0.20

VAR(1) 5.18 0.03

VAR(2) 5.77 0.03

VAR (ℓ1) 5.24 0.03

VAR (MLR) 5.06 0.20

VAR (SHORR) 5.12 0.20

BVAR 5.41 0.01

VARMA (ℓ1) 5.21 0.03

VARMA (HLag) 5.21 0.03

Approx VARMA 5.19 0.03

FactorAug Reg 4.82 0.20

HAR 4.75 0.20

Ours 4.68 1.00
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Table 11: Forty six selected S&P 500 stocks. CODE: stock code in the New York Stock Exchange.

NAME: name of company. G: group code, where 1 = communication service, 2 = information

technology, 3 = consumer, 4 = financials, 5 = healthcare, 6 = materials and industrials, and 7 =

energy and utilities.

CODE NAME G CODE NAME G

T AT&T Inc. 1 JPM JPMorgan Chase & Co. 4

NWSA News Corp 1 WFC Wells Fargo & Company 4

FTR Frontier Communications Parent Inc 1 MS Morgan Stanley 4

VZ Verizon Communications Inc. 1 AIG American International Group Inc. 4

IPG Interpublic Group of Companies Inc 1 MET MetLife Inc. 4

MSFT Microsoft Corporation 2 RF Regions Financial Corp 4

HPQ HP Inc 2 PGR Progressive Corporation 4

INTC Intel Corporation 2 SCHW Charles Schwab Corporation 4

EMC EMC Instytut Medyczny SA 2 FITB Fifth Third Bancorp 4

ORCL Oracle Corporation 2 PFE Pfizer Inc. 5

MU Micron Technology Inc. 2 ABT Abbott Laboratories 5

AMD Advanced Micro Devices Inc. 2 MRK Merck & Co. Inc. 5

AAPL Apple Inc. 2 RAD Rite Aid Corporation 5

YHOO Yahoo! Inc. 2 JNJ Johnson & Johnson 5

QCOM Qualcomm Inc 2 AA Alcoa Corp

GLW Corning Incorporated 2 FCX Freeport-McMoRan Inc.

AMAT Applied Materials Inc. 2 X United States Steel Corporation

F Ford Motor Company 3 GE General Electric Company

LVS Las Vegas Sands Corp. 3 CSX CSX Corporation

EBAY eBay Inc. 3 ANR Alpha Natural Resources 7

KO Coca-Cola Company 3 XOM Exxon Mobil Corporation 7

BAC Bank of America Corp 4 CHK Chesapeake Energy 7

C Citigroup Inc. 4 EXC Exelon Corporation 7
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