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Abstract

This supplementary material contains theoretical comparison with the un-
weighted and FHS methods, additional simulation results on the finite-sample
performance of the proposed estimation method in comparison with existing and
unweighted methods and on the random weights in the bootstrapping procedure,
as well as additional results for the empirical analysis. It also provides technical

details for Lemma A.1, Theorems 1-4, Corollaries 1-3 and Equation (2.6).

1 Theoretical comparison with the unweighted and

FHS methods

In this section, we compare the asymptotic efficiency of the proposed estimator ém with
that of the unweighted estimator va and that of the FHS estimator gm.

To compare the asymptotic efficiency of the proposed estimator §m and its un-
weighted counterpart @m we calculate the asymptotic relative efficiency (ARE) of ém to
0., defined as ARE(0ry, 6:,) = (|Ss|/|1])/® 74D, where £ and 5, are the asymptotic
covariance matrices of ém and 5771, respectively, and | - | is the determinant of a matrix;
see Serfling (1980). As ¥; and ¥y both depend on the GARCH parameters, the innova-
tion distribution and the quantile level in a very complicated way, we will consider the

ARESs for specific settings.
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Table S.1: ARE(0,,,0,,) for the GARCH(1, 1) model with oy = 0.1 and different values
for (o, 31), where the innovations {n,} follow the standard normal and Student’s ¢,
and t5 distributions, and 7 = 0.01, 0.05, 0.1 and 0.15, based on a generated sequence of
n = 10, 000.

T 51 0.15 0.45 0.80
a; 0.15 045 0.80 0.15 045 0.80 0.15

0.01 ¢4, 1.39 331 5.14 1.28 419 35.11 1.79
ts 1.23 169 9.77 1.39 335 71.09 11.02
Normal 1.06 1.45 9.75 1.07 717 5792 1.53

0.05 4, 1.32  8.51 42.83 258 474 21.07 189
ts 1.79 222  9.15 1.19 10.11 2354 1.85
Normal 1.04 1.63 4.42 1.09 346 3554 143
0.10 144 255 4.06 5.70 1.29 411 28.85 3.46
175 1.15 236 17.13 1.48 12.04 80.63 1.77
Normal 1.06 1.43 7.33 1.08 4.61 10547 1.42

0.15 141 225 223 643 141 228 21.16 145
173 1.66 6.17 36.80 2.00 3.85 69.58 240

Normal 1.05 1.72  9.69 1.07 219 9247 1.35

We generate a sequence with n = 10,000 from the GARCH(1, 1) model,

2o =\, he = ag + gzt + Brhe, (S.1)

where ag = 0.1, and the innovations {n;} follow the standard normal and standardized
Student’s t5 and t4; distributions with unit variance. To calculate 2; and X5, we substi-
tute the matrices involved in them by corresponding sample-average estimates and use
theoretical values for b,, f(b;), k1 and kg, since both f(-) and 7 are known. We con-
sider different values for (ay, 31), and the results are given in Table S.1. It can be seen
that ARE(@M, ém) > 1 for all cases considered; i.e., the proposed weighted estimator is
asymptotically more efficient than the unweighted estimator.

Likewise, we can compute the ARE of the proposed estimator @m to the FHS es-
timator @;m and the results are reported in Table S.2. It can be seen that the FHS
estimator 0,,, is asymptotically more efficient, i.e., ARE(@M, 9~m) < 1, when {n;} follow
the Student’s t5 distribution, while the proposed estimator ém can be asymptotically

more efficient, i.e., ARE(0;,,60.,) > 1, when {n;} become more heavy-tailed. This can

be explained in part by the efficiency gain of the quantile regression estimation and the
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Table S.2: ARE(0,,,0,,) for the GARCH(1, 1) model with oy = 0.1 and different values
for (aq, 1), where the innovations {n,} follow the Student’s t41, t45 and t5 distributions,

and 7 = 0.01, 0.05, 0.1 and 0.15, based on a generated sequence of n = 10, 000.

T B4 0.15 0.45 0.80
a;  0.15 0.45 0.80 0.15 0.45 0.80 0.15

0.01  t44 1.32 1.26 1.24 0.85 0.80 0.77 0.30
las 0.54 0.52 0.52 0.38 0.37 0.35 0.14

ts 0.40 0.39 0.38 0.30 0.27 0.26 0.11

0.05 41 2.47 2.35 2.27 1.45 1.32 1.27 0.41
tas 1.02 0.99 0.97 0.71 0.67 0.62 0.24

ts 0.75 0.72 0.71 0.53 0.50 0.48 0.20

0.10 41 2.75 2.61 2.53 1.58 1.40 1.38 0.48
tas 1.14 1.10 1.08 0.76 0.71 0.69 0.26

ls 0.81 0.80 0.77 0.59 0.54 0.52 0.21

0.15  t41 2.62 2.49 241 1.47 1.37 1.33 0.45
las 1.07 1.05 1.02 0.73 0.68 0.66 0.25

ts 0.77 0.74 0.73 0.55 0.50 0.48 0.19

efficiency loss of the Gaussian QMLE, as the data become more heavy-tailed. In addi-
tion, for a given parameter vector and innovation distribution, it can be observed that

the ARE is generally the largest when 7 = 0.05 and 0.1.

2 Additional simulation results

2.1 Finite-sample comparison of conditional quantile estima-

tion performance with existing methods

In this subsection, we focus on three data generating processes as follows.

e Model 1 (Global GARCH process with larger volatility):
i.e., model (S.1) with (g, a1, 51) = (0.1,0.8,0.15);

e Model 2 (Global GARCH process with more persistent effect of shocks):
i.e., model (S.1) with (g, a1, 51) = (0.1,0.15,0.8);



e Model 3 (Quantile process which contains the GARCH process as a special case):

a0
[0 i
2, = O Y(U,) - 0 5t la11 I(Uy = 0.5) + ana I (U < 0.5)] > 1 1a? ),
- M

j=1
where {U,} are i.i.d. uniform over (0,1), ®(-) is the distribution function of the

standard normal distribution, and (g, 11, 12, £1) = (0.1,0.8,0.15,0.15).

Note that for model (S.1) with standard normal innovations {7}, the conditional quantile

function is

o6}

j—1,.2
+ o Z Bw,

j=1

(&%)

1—p

Qr (w4 Fier) = ©7H(7)

which is a special case of Model 3 with a3; = a2 = a;3. However, when aj; # aqo,
Model 3 allows not only the scale Q,, = ®~!(7) of the conditional quantile Q,(x;|F;_1)

to change with 7, but also its shape, since

(I)fl(T)\/lg—%l +an Z;il Bf_lxt{j, if 7>0.5
@—1(7)\/15_%1 + o Z;il ﬁf_lx?,j, if 7 <0.5

@l - |

We first consider the global GARCH processes, i.e., Models 1 and 2, with the innova-
tions {n:} following the standard normal or standardized Student’s ¢5 distribution. We
estimate the conditional quantiles at 7 = 0.05 using six estimation methods: the pro-
posed hybrid method, the FHS method, and the four other methods discussed in Section
6 of the paper. We call the estimates of Q. (z;|F;_1) for 1 < ¢ < n the in-sample forecasts,
and that of Q,(z,41|F,) the out-of-sample forecast. Three sample sizes, n = 200, 500
and 1000, are considered, and 1000 replications are generated for each sample size. For
each setting, we compute the bias and mean squared error (MSE) of the estimates by
averaging individual values over all time points and all samples. The results for Models
1 and 2 are reported in Tables S.3 and S.4, respectively.

Before comparing the specific methods in details, we list several general observations
from Tables S.3 and S.4: (1) a smaller in-sample bias or MSE is usually associated with a
smaller out-of-sample bias or MSE; (2) for all methods except RiskM, the absolute value
of the in-sample bias and in-sample MSE generally decrease as n increases, while the out-
of-sample performance is less stable; (3) the RiskM method performs significantly poorer
than the other methods in terms of both the bias and MSE in most cases. Therefore, in

the following comparison, we will leave the RiskM method aside.
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Table S.3: Bias (x10) and MSE for in-sample and out-of-sample conditional quantile
estimates obtained by six methods at 7 = 0.05 for Model 1 with normal or Student’s

ts-distributed innovations.

Normal distribution Student’s t5 distribution
Bias MSE Bias MSE
n In Out In Out In Out In Out
200  Hybrid -0.028 -0.020 0.121 0.088  -0.231 -0.094  0.194 0.175
FHS -0.271 -0.275  0.075 0.057  -0.509 -0.474  0.139  0.107
XK, 0.293 0.130  0.390 0.275 0.131 0.115 0472 0417
XKy 0.300 0.134  0.368 0.319 0.137 0.066  0.475  0.638

CAViaR 0.165 0.060 0.162 0.147  -0.060 -0.035  0.291  0.270
RiskM  -1.266 -1.572 1.633 1.261 -1.491 -1.818 1.338 1.324

500 Hybrid -0.017 0.004 0.064 0.046 -0.079 -0.070  0.092  0.049

FHS -0.108 -0.099  0.041 0.029 -0.198 -0.167  0.073  0.028
XK, 0.201 0.205 0.354 0.139 0.132 0.077 0430 0.134
XKy 0.206 0.219  0.358 0.137 0.148 0.060  0.447 0.134

CAViaR  0.059 0.043 0.128 0.066 0.009 0.014 0.273  0.070
RiskM  -1.591 -1.585  2.282 1467 -1.615 -1.745 1.603 1.162

1000 Hybrid -0.001 -0.007  0.028 0.023  -0.040 -0.047  0.048 0.032

FHS -0.045 -0.054 0.013 0.010 -0.105 -0.231  0.032 0.061
XKy 0.153 0.090 0.279 0.173 0.127  0.557  0.414 12911
XKs 0.152  0.110  0.271 0.147 0.130  0.500  0.422 10.190

CAViaR 0.037 0.026  0.075  0.039 0.001  0.057  0.198  0.205
RiskM  -1.566 -1.700  1.951 1472  -1.637 -1.492  1.931 2897

We first compare the bias for different methods. For both models, the proposed
hybrid method has the smallest bias when {7;} are normal, while the CAViaR method
has the smallest bias when {7} are Student’s t5-distributed. This may be explained
by the greater efficiency of the Gaussian QMLE, which is employed in Step E1, for
normal innovations than the Student’s ts-distributed innovations. It is also clear that
the FHS method has much larger biases than the proposed method and the CAViaR
method for Model 1, and it has much larger biases than all quantile regression based
methods for Model 2. It is worth pointing out that the generally smaller biases of the
quantile regression based methods reflect their greater flexibility in capturing the specific

conditional quantile structure.



Table S.4: Bias (x10) and MSE for in-sample and out-of-sample conditional quantile
estimates obtained by six methods at 7 = 0.05 for Model 2 with normal or Student’s

ts-distributed innovations.

Normal distribution Student’s t5 distribution

Bias MSE Bias MSE
n In Out In Out In Out In Out
200  Hybrid -0.193 -0.268  0.193 0.207  -0.593 -0.726  0.401 0.461
FHS -0.685 -0.755  0.114 0.120 -1.194 -1.352  0.262 0.278
XK, -0.103 -0.112  0.392 0.471  -0.417 -0.533  0.741 0.866
XKy -0.075 -0.012  0.350 0.422  -0.333 -0.360  0.660 0.835

CAViaR 0.129 0.218  0.157 0.194  -0.143 -0.079  0.317 0.365
RiskM 0.466 -0.061  0.150 0.142  -0.460 -1.017  0.270 0.272

500 Hybrid -0.027 0.034  0.078 0.082  -0.166 -0.105  0.145 0.166

FHS -0.253 -0.218  0.045 0.048  -0.442 -0.458  0.090 0.086
XK, -0.061 0.071  0.231 0266 -0.166 -0.102  0.435 0.561
XKy -0.017 0.085  0.173 0.191 -0.129 -0.076  0.342 0.613

CAViaR  0.099 0.181  0.069 0.078 0.006 0.110  0.131  0.156
RiskM 0.249 0.167  0.132 0.128  -0.580 -0.581  0.236  0.207

1000  Hybrid 0.002 -0.006  0.038 0.041 -0.084 -0.172  0.077 0.132

FHS -0.092 -0.097 0.021 0.021 -0.216 -0.276  0.048 0.094
XKy -0.068 -0.020  0.146 0.155  -0.156 -0.348  0.361 1.334
XK, -0.020  0.010  0.097 0.103  -0.100 -0.298  0.259 1.254

CAViaR 0.066 0.073  0.034 0.038 -0.001 -0.001  0.092 0.085
RiskM 0.175 0.090  0.129 0.128  -0.627 -0.597  0.247  0.287

It is also noteworthy that the XK methods perform poorly for Model 1, but have fairly
small bias for Model 2. This is caused by the sieve approximation h; = vg + Z;n:l VX2 j
in the XK methods, where an unnecessarily large order m can introduce too much noise.
Notice that a larger n needs a larger m, and smaller a; and ; favor smaller m. As
the magnitude of #; has a greater impact on the choice of m than a;, the problem of
choosing an excessively large m is more severe in Model 1.

For the MSE, the FHS method is the best method in most cases, which not surpris-
ing since when the true model is the GARCH model, the FHS method is expected to
be generally more efficient than any quantile regression based method. The second best

method in terms of the MSE is the proposed hybrid method for Model 1, and is the



CAViaR method for Model 2. This is also as expected for the reason that, compared
with CAViaR, the proposed hybrid method relies on an initial estimation that reduces
efficiency, but uses weights to improve efficiency. As a result, the efficiency gain from
the weights will be more pronounced when the conditional variances {h;} have larger
variations, namely the case of Model 1. In addition, it is noteworthy that the pro-
posed procedure takes much less computation time than CAViaR. For instance, for our
1000 replications of Model 1 with normal innovations and n =1000, CAViaR takes 15.6
minutes, but the proposed procedure takes only 2.8 minutes.

Finally, we consider Model 3, which is a quantile process and possesses different
shapes for 7 > 0.5 and 7 < 0.5. Thus, the conditional quantile structure is misspecified
if a GARCH(1, 1) model is assumed. We estimate the conditional quantiles of the 1000

replications generated from Model 3 using exactly the same estimation methods as for

Table S.5: Bias (x10) and MSE (x10) for in-sample and out-of-sample conditional
quantile estimates obtained by six methods at 7 = 0.05 for Model 3.

Bias MSE
n In Out In Out
200  Hybrid 0.020  -0.017 0.197 0.474
FHS -0.497  -0.677 0.453 0.664
XKy 0.085 0.197 0.287 1.074
XK, 0.087 0.172 0.280 0.877

CAViaR  0.067 0.045 0.180 0.261
RiskM -1.620  -1.811 1.161 0.976

500  Hybrid 0.014 0.027 0.080 0.071

FHS -0.366  -0.327 0.246 0.231
XK, 0.027  -0.021 0.100 0.214
XKy 0.030 0.000 0.099 0.214

CAViaR  0.025 0.014 0.077 0.082
RiskM -1.590  -1.570 0.864 0.699

1000  Hybrid 0.001  -0.025 0.035 0.026

FHS -0.326  -0.340 0.207 0.162
XK, 0.008  -0.010 0.065 0.036
XK 0.011  -0.003 0.071 0.038

CAViaR  0.008  -0.008 0.038 0.028
RiskM -1.546  -1.538 0.825 0.786




Models 1 and 2. As shown in Table S.5, the comparative performance of the methods
is quite different from that in Tables S.3 and S.4. The FHS method is worse than
all the quantile regression based methods in terms of both the bias and MSE. The
proposed method, together with the CAViaR method which has comparable performance,
is superior to the other methods. This suggests that the proposed hybrid method indeed
enjoys greater flexibility, and hence greater robustness, than the FHS method when the
data have a more complex conditional quantile structure which cannot be captured by

the global GARCH model.

2.2 Finite-sample comparison of efficiency with the unweighted

estimator

To compare the efficiency of ém and 5m in finite samples, we generate the data from
the GARCH(1,1) model in (S.1) with standard normal or standardized Student’s t5-
distributed innovations, using (ag, aq, f1) = (0.4,0.2,0.2) and (g, a1, 51) = (0.4,0.2,0.6).
The sample size is n = 2000, and two quantile levels, 7 = 0.05 and 0.1, are considered.
Figure S.1 provides the box plots for the two estimators based on 1000 replications. It
shows that the interquartile range of the weighted estimator é\m is smaller than that
of the unweighted counterpart 5m under all settings; the latter also suffers from more
severe outliers. The efficiency gains from the weights seem larger for the Student’s ¢
cases. Moreover, for the unweighted estimator va, the sample median slightly deviates
from the true value 6,4 especially when the innovations are Student’s ¢5-distributed. The

results suggest that the weighted estimator is more efficient in finite samples.

2.3 Performance of the mixed bootstrapping procedure for more

choices of random weights

In the last two experiments in Section 5, due to the limit of space, we only reported
the results for standard exponential random weights. In this subsection, we provide the
corresponding results for other choices of random weights.

In the second experiment in Section 5, we considered the residual QACF 7y . and the
bootstrapping approximation of its asymptotic distribution. The data were generated
from the GARCH(1, 1) model in (S.1) with (ag, a1, £1) = (0.1,0.15,0.8) and {n,} follow-

ing the standard normal or standardized Student’s ¢5 distributions with unit variance.
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Figure S.1: Box plots for the weighted estimator 0. (white boxes) and the unweighted estimator 0. (grey boxes), at 7 = 0.05 or 0.1, for two
models with normal or Student’s ¢5-distributed innovations. Model (a): (ap, a1, 1) = (0.4,0.2,0.2); Model (b): (ag, a1, 51) = (0.4,0.2,0.6).
The thick black line in the center of the box indicates the sample median, and the thin red line indicates the value of the corresponding

element of the true parameter vector #.y. The notations ag, a; and ; represent the corresponding elements of @m and 5m.
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Table S.6: Bias (x100), ESD (x100) and ASD (x100) for the residual QACF 7y, at 7 = 0.05 or 0.1 and k = 2,4 or 6, for normal or Student’s

ts-distributed innovations, where ASD; corresponds to random weight W; for i = 1,...,4.
Normal distribution Student’s t5 distribution
n k  Bias ESD ASD; ASD, ASD3; ASD, Bias ESD ASD; ASD, ASD; ASD,
7 =10.05

500 2 1.27 488 6.72 6.33 6.50 6.52 0.78 436 591 571 575 5.82
4 090 488 6.83 6.44 6.62 6.63 069 4.67 594 573 579 584

6 1.04 491 681 646 6.62 6.63 037 4.75 6.03 583 587 593

1000 2 048 324 405 390 397 397 0.30 3.13 3,57 353 353 3.55
4 0.50 3.34  4.09 3.94 4.01 4.02 0.35 3.13 3.94 348 3.49 3.51

6 043 329 413 399 4.06 4.06 0.18 335 366 3.61 3.62 3.64

2000 2 029 223 259 253 256 2.56 028 215 230 229 229 230
4 0.15 2.26 2.62 2.56 2.59 2.59 0.10 2.26 2.31 2.30 2.30 2.30

6 0.16 2.25 2.63 2.57  2.60 2.60 0.15 2.20 2.32 2.31 2.31 2.31

7=0.1

500 2 0.67 435 534 522 527 528 0.69 432 482 487 4.83 485
4 047  4.59 5.43 5.31 5.36 5.38 0.42 4.31 484 487 485 4.86

6 061 464 544 533 537 5.39 0.08 452 490 493 490 4.92

1000 2 036 3.13 344 341 342 343 025 314 326 328 326 3.28
4 0.15 319 351 347 349 3.49 0.30 3.01 317 3.19 3.18 3.18

6 030 316 354 351 352 3.53 -0.01 320 329 330 329 3.30

2000 2 0.20 2.23 2.33 2.32 2.32 2.33 0.09 2.21 2.23 2.24 2.23 2.24
4 002 214 236 235 236 2.36 0.10 219 221 221 220 221

6 0.14 2.19 2.38 2.37  2.38 2.37 0.04 2.18 2.23 2.23 2.23 2.23




Table S.7: Rejection rate (%) of the test statistic Q(K) for K = 6 at the 5% significance

level, for normal or Student’s ¢5-distributed innovations and d = 0, 0.3 or 0.6, where @);

denotes the test statistic based on random weight W, for ¢ =1,..., 4.
Normal distribution Student’s t5 distribution
n d Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
7=0.05

500 0.0 28 20 21 20 1.9 18 21 1.4
0.3 4.8 33 42 36 3.8 27 33 29
0.6 74 6.9 6.7 6.8 78 72 84 7.3
1000 0.0 33 29 34 33 3.0 32 34 30
0.3 72 6.5 6.6 6.5 10.6 9.8 10.7 9.9
0.6 21.6 214 21.8 214 294 29.6 29.5 29.5
2000 0.0 4.5 44 44 44 5.3 47 52 48
0.3 16.1 157 154 159 279 265 274 26.9
0.6 55.2 5H4.8 H4.7 550 698 70.6 69.8 70.6
7=0.1
500 0.0 34 29 31 32 3.4 3.7 37 32
0.3 6.9 6.0 68 64 6.5 59 6.2 59
0.6 27.0 251 26.7 258 21.0 20.1 20.1 20.1
1000 0.0 4.0 37 39 44 4.3 42 43 39
0.3 157 158 155 154 16.3 15.7 16.5 16.0
0.6 609 61.3 61.0 60.7 46.8 472 46.6 46.9
2000 0.0 4.9 44 45 45 4.3 4.2 42 4.2
0.3 365 355 36.0 36.3 343 342 338 334
0.6 925 933 929 928 832 831 829 831

Three sample sizes, n = 500, 1000 and 2000, and two quantile levels, 7 = 0.05 and 0.1,
were considered, with 1000 replications for each sample size. Table S.6 reports the results
for four distributions for the random weights {w;}: the standard exponential distribution
(W1); the Rademacher distribution (W3), which takes the values 0 or 2, each with proba-
bility 0.5 (Li et al., 2014); Mammen’s two-point distribution (W3), which takes the value
(—+/5 + 3)/2 with probability (v/5 + 1)/2v/5 and the value (v/5 + 3)/2 with probability
1—(v/5+1)/2v/5 (Mammen, 1993); and a mixture of the standard exponential distribu-
tion and the Rademacher distribution (W,) with mixing probability 0.5. We can observe
that the choice of random weights has little influence on the bootstrap approximations,

and our other findings are similar to those in Section 5.
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In the third experiment in Section 5, we evaluated the empirical size and power of

the proposed test statistic Q(K). The data generating process was
xy = /ey, he = 04+ 0222 | 4+ da? 4 0.2k,

with {n;} following the same distributions as in the previous experiment, and the depar-
ture d = 0, 0.3 or 0.6. We conducted the estimation assuming a GARCH(1, 1) model;
thus, d = 0 corresponds to the size of the test, and d # 0 corresponds to the power.
Table S.7 reports the results for the four random weights distributions considered in
the previous experiment. Again, the performance is insensitive to the choice of random

weights, and our other findings are also similar to those reported in Section 5.

3 Additional results for the empirical analysis

3.1 Case-by-case comparison with the FHS method

To further illustrate the superiority of the proposed method over the FHS method in the
empirical analysis, we conduct a case-by-case comparison of the two methods based on
the results reported in Table 4 of the paper.

As the CC and DQ tests are complementary to each other, we focus on the minimum
of the two p-values to evaluate the backtesting performance. We categorize the 18 cases
reported in Table 4 in the paper (i.e., six quantile levels for three stock market indexes)

into three groups and employ the following criteria for each group:

e Category-0: If for both methods, the minimum p-value is less than 0.05 (i.e., at
least one p-value is less than 0.05), then both methods are equally poor, and hence

we do not compare them for this case.

e Category-1: If for both methods, the minimum p-value is larger than 0.2 (i.e.,
both p-values are larger than 0.2), then both methods are equally good in terms of

backtesting, and the method with the smaller empirical coverage error is better.

e Category-2: For all other cases, the method with the larger minimum p-value is

better; i.e., the backtesting result determines which method is better.

Table S.8 summarizes the empirical coverage error, minimum p-values, the winner

and the corresponding category of each case, which shows that the proposed hybrid
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Table S.8: Empirical coverage error (%), minimum p-value of the CC and DQ tests,
the better method (H, Hybrid; F, FHS) and corresponding category for all the 18 cases

considered in the paper.

ECE Minimum p-value Better method
Hybrid FHS Hybrid FHS (category)
S&P 500
L1.0 -0.02 0.04 0.000 0.082 F (2)
L2.5 -0.48 -0.36 0.001 0.005 -
L5.0 -0.90 -1.15 0.017 0.016 -
U5.0 0.54 0.84 0.245 0.244 H (1)
U2.5 0.30 0.42 0.356 0.222 H (1)
U1.0 0.08 0.33 0.275 0.342 H (1)
Dow 30
L1.0 -0.14 0.16 0.063 0.115 F (2)
L2.5 -0.54 -0.24 0.000 0.000 -
L5.0 -0.72 -0.78 0.000 0.027 -
U5.0 0.84 1.21 0.273 0.064 H (2)
U2.5 0.11 0.24 0.568 0.806 H (1)
U1.0 -0.28 0.39 0.418 0.221 H (1)
HSI
L1.0 0.11 -0.02 0.393 0.425 F (1)
L2.5 -0.04 0.14 0.362 0.290 H (1)
L5.0 -0.69 -0.69 0.421 0.159 H (2)
U5.0 0.14 -0.23 0.766 0.635 H (1)
U2.5 0.04 0.35 0.477 0.631 H (1)
U1.0 -0.17 0.26 0.048 0.492 F (2)

method is better for 10 cases, while the FHS method is better for 4 cases. Therefore, we

may conclude that the proposed method achieves better performance overall.

3.2 Performance of the proposed method after quantile rear-

rangements

We have also re-calculated both the backtesting and empirical coverage results for the
proposed hybrid method after conducting the quantile rearrangement in Chernozhukov

et al. (2010). We find that all empirical coverage errors do not change at all from the
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results in Table 4 in the paper, after the percentage points are rounded down to two
decimal places. Moreover, the p-values of the CC and DQ tests change very little; see
Table S.9 for the p-values of the tests for the proposed method before and after the

quantile rearrangement for all the 18 cases considered in the paper.

Table S.9: p-values of the CC and DQ tests for the proposed method before and after

the quantile rearrangement for all the 18 cases considered in the paper.

Before rearrangement After rearrangement

T S&P 500 Dow 30 HSI S&P 500 Dow 30 HSI
L1.0 CC 0.031 0.228 0.746 0.031 0.228 0.746
DQ 0.000 0.063 0.393 0.000 0.064 0.397

L25 CC 0.007 0.028 0.362 0.007 0.028 0.362
DQ 0.001 0.000 0.571 0.001 0.000 0.570

L5.0 CC 0.017 0.212 0.421 0.017 0.212 0.421
DQ 0.017 0.000 0.556 0.017 0.000 0.558

U5.0 CC 0.544 0.273 0.866 0.544 0.273 0.866
DQ 0.245 0.281 0.766 0.245 0.282 0.763

U2.5 CC 0.356 0.568 0.995 0.356 0.568 0.995
DQ 0.585 0.656 0.477 0.585 0.655 0.471

Ul.0 CC 0.275 0.418 0.640 0.275 0.418 0.640
DQ 0.384 0.905 0.048 0.384 0.906 0.054

4 Technical details

This section gives detailed proofs of Lemma A.1, Theorems 1-4, Corollaries 1-3 and
Equation (2.6). A preliminary Lemma S.1 is also included, which is used to prove the
asymptotic negligibility of the effect of the initial values {zf,..., 27 ,, ho,..., hi_p}.
Throughout the proofs, C' is a generic positive constant which may take different
values at its different occurrences, and C'(M) is such a constant whose value depends

on M. We denote by | - || the norm of a matrix or column vector, defined as |Al =

Vr(AAY) = 4 /3 5 lag[?. Tnaddition, let 2,(0) = (1,27, ..., 27 he1(0), - hyp(6)),
Z0) = (L,xf,,...,27_, he 1(6), . .. ,%t,p(O))', and, for simplicity, write z; = 2z/(6p),
% = %(6,), and 3, = %,(6,), where 8, is the Gaussian QMLE of model (1.1). In the proofs

of Theorems 2 and 4, the notations E*, O(1) and 0}(1) correspond to the bootstrap
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probability space.

Lemma S.1. Under Assumption 1,

ohy(6)  hy(6)

sup [ (0) — hu(60)] < Cp'¢and  sup | = pr

6e® 0e©

< Cp'¢,

where C' > 0 and 0 < p < 1 are constants, and ¢ is a random variable independent of t

with E|(|% < oo for some § > 0.

Proof of Lemma S.1. The lemma can be proved by a method similar to that for Equa-
tions (6) and (7) in the proof of Theorem 1 in Zheng et al. (2016). O

Proof of Lemma A.1. We first prove (i). For any 6 = (a,01,...,04,51,...,05,) € ©
and v > 1, define

* * * * * #*\/ /8*
U(v,0) = {0* = (ag,07,...,a;,Bf,...,55) € ©: max - < 7}

1<j<p f3;

Claim (i) follows from a more general result: for any x > 0, there is v > 1 such that

E[sup sup ht(e*)] < 0. (S.2)

00 o%eU(v,0) Pt (0)

Notice that for any ¢, the set U(y,6) only imposes an upper bound on the $’s, while
the condition [|f; — 5| < ¢ restricts the distance between 6; and 6.
We shall prove (S.2). Note that the functions h:(f), as defined recursively in (2.2),

can be written in the form of
[oe]
he(0) = co(0) + D c;(0)a7
j=1

and the series converges with probability one for all § € ©; see, e.g., Berkes et al. (2003).
Moreover, ¢y(0) = ap/(1 =1 — - —B,) = C1 = w/(1 — pw) > 0 for all § € O, and from
Lemma 3.1 in Berkes et al. (2003), it holds that

sup¢;(0) < Copi,  j =0, (S.3)
[=C)

where p; = pi/” € (0,1), and

(p*
sup sup (")

< O3y, =0, S.4
00 greU(+,0) Cj(0) ’ (5:4)

for some constants Cy, C5 > 0. Using (S.4), we have

he(0%) _ Cy SV e(0)at
sup su < =+ Cysu J .
9e£ O*GU(I?y,H) h(0) Ch ’ Oeg C + 230:1 Cj(e)x?—j
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and then it suffices to show that for any x > 1,

sup Z?:l Ve (Q)x?fj
pco C1 + Z;O=1 cj(0)x}; .

< 0O

Y

where || - |, denotes the L, norm, i.e., | X||. = (E|X]|*)¥*. Note that there is dy > 0 such
that E|z2|% < co. Thus, for any x > 1 and §; € (1—8y/k, 1), by (S.3) and the Minkowski
inequality, we have

sup Z?:l Ve (Q)x?—j
oeo C1 + Zj’ozl Cj(e)xt{j .

$ Ve (Q)x?_j
su
9632 o [c;(0)xF ;]

e¢]
=
Z (Copjai- )

<

—(1-461)
<oyt

K

o0
Zvé& [Blaf =207 < oo,

if v is close enough to 1. Therefore, (S.2) holds, and so does (i).
From the proof of Theorem 2.2 in Francq and Zakoian (2004), under Assumption 1,

for any xk > 0,

1 om(0)|" 1 h(0)"
E E d
o 7@ 00 | = TR ne) aeoe an
1 Bh(0) |f
E
o | 7a(0) 26,00,,06, )

where 1 < i, k, £ < p+q+1; see also Lemma 3.6 in Berkes and Horvath (2004). Combining
these with (i), we immediately obtain (ii)-(iv). O

Proof of Theorem, 1. Let Ly () = Y hi ' pr (n—0'%) and L, (0) = X0 by o (yi—0'%).
Notice that for z # 0,
v

prlo =) = pile) = =ynle) + | [T < 5) = 1w < O)]ds, (85

0

where 9, (z) = 7 — I(z < 0); see Knight (1998). Then, for any fixed u € RPTI+!

Ln(0r0 + 1 2u) — Ly(0r0) = — Ly (u) + Lo (u), (S.6)
where
Lin(u) = >0 ()i [(Br0 + 07 2u)'% — 0L,%]
t=1
no_ (0r0+n 1/2u)’zt 0 0%t
Loy (u) = Z htlf [I(er <s)—1(é,<0)]ds,
0

@,
I

1
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and &, = y; — 0.y %. Let u) be the (j + g + 1)-th element of u, and denote 6(]) = b-Bo;,

for j =1,...,p. It can be verified that
(6r0 +n™2u)'% — 0% = Eun(0n) + Eone(0n) + Eani(Bn), (8.7)

where

, yOhy_;(60)
glnt(e) :n_1/2 Uz +Zﬁ¢0 ta;/ 0 0 00)’

Ohi—;(6)

Eone (0 ht _i(0) — hy—j] + Z 5(3) [ht —(0) — hy—j — T(@ - 00)],

%\

£3nt = ht ] ht*j (9)]

i

%\

Z 3Y) { R (0) = hu_j(0)] — [Pu—j(60) — ht—j]} .

For any M > 0, denote ©,, = ©,,(M) = {# € © : |0 — 6y| < n~"2M}. Using the Taylor
expansion, it holds that

0*hy—;(6)

000" |’ (58)

5ht] ‘ Mzzp:w(y)

Ge@n

©)
sup " E uV’| su
oee |Eon( | | su o @

and by Lemma S.1,

sup |€3ne (0))]

ey
ohy_j(6)  Ohy (6)
06 olo

|

<n Y20(M)p'c. (S.9)

< 2 (191 o) s+ M

Moreover,

éir = (80— b))y + ay, where a, = Zﬁ [he_j — hi_(00)] € Fo. (S.10)

7j=1

We first consider Ly, (u), which can be decomposed into four parts,
Lin(u 2 A (0,) + Z Agie(0,) + i Aspie(0,) + Z Aun(6,), (S.11)
=1 =1 t—1
where
Arn(8) = e 00y (00630 (8) + Vr (€0) [y (0) = oy M (O)] (€2t (8) + Eana(0)],

Azt (0) = [10r(Et,r) — ¥r(er = br)1hy (0)[€1ne(0) + St (0],
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Azni(0) = ¥y (g0 — bR H(0) €0 (0)  and  Agns(0) = ¥r (50 — by )by H(0) €1, (6).

Note that infeeg hi () = w and infyee ht(ﬁ) > w. By Lemma S.1, (S.8) and (S.9), we can

show that
ap |3 Ae@)] < L3 sup 6@ + 5 3 ot sup (€00 ®)] + e 6)])
0€0n |17 W = 0e0, w? =1 0€On
= 0,(1), (S.12)

which, together with the fact that \/n(f, — 6,) = O,(1), implies that

D Avn(0) = 0,(1). (S.13)

Note that by Lemma S.1 and Assumption 2, we have

p
|F(b,) — F(b, — hi'a,)| < sup f(x Z 57 ||ht i(B0) = hy_;(80)] < Cp'¢.
It then follows from (S.10) that

Elr(é1r) — ¥r(er — br)| = E|F(b;) — F(br — h;lat”
= B[[F(b) — F(b, — ha)|1(CoC < )]
+ E[|F(b:) — F(b- — hi 'a)[I(Cp'¢ > p'?)]

< P + Pr(Cpi¢ > pi'?) < p? + Cp™t?, (S.14)

where we used the Markov inequality and the fact that E|¢|% < oo. Moreover,

1
|7tz < YETIT 2 +wq -, (S.15)
§1nt(92) |h;1UIZt| ht 1 ﬁht,j (90)
su su su , (S.16
el,ezfen hi(01) Vn ee@]i h(0) w\f Z WTO' p hi—;(8) 06 ( )
and by the Taylor expansion,
Eani( 92 ol 1 0Ohy j(05)
< u su
01,0,c0, | ht(6h) wn Z| 91 92€p@n hi—j(61) 00
]\42 1 Phyj(6)
+ = su S.17
2un ]Z; 6% |91 heo, | Tue_5(61) 2000/ (58:17)

As a result, by the Hélder inequality, Lemma A.1 and (S.14)-(S.17), we have

1/2
\ " €1t (O)] + |62t (O]
E:ii ;Agnt ; (Bl (&r) — tr (e — b)) [E;;gg( 1 ht(0)2 ) ]
= o(1),
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which, together with the fact that \/n(6, — 6y) = O,(1), implies that
D g (0,) = 0,(1). (S.18)
t=1

Applying the Taylor expansion to h, *(f) and &,:(6) respectively, we have

hi (0)&ani(0) = Eane(0) + Esne(0), (S.19)

1 & u oh,_ (6 P 52h (6
@WF_ZLJAQQ% 9%2 i) g gy,

nj:1 ht 50/ t 6969/
Eant (0) Ohy(07) ) < ul?) %hy;(05)
0) = — 0 — 6,) - 0—6
Eont(0) h2(67) o0’ (0= o) ; h, 0000’ (0= o)
LN 0Phe(6)
+ = - (91' — 901)(914 — 90k)(98 - 90£)>
6 &, A4 b 00:00,00,

with 67 and 65 both between 6 and 6y. Then, it follows from Lemma A.1, the ergodic
theorem and /n(6, — ) = O,(1) that

Z (2 — b )ame (Bn) = 0,(1) (S.20)
and
E sup Zw — b)) (0)] < Y E sup [&u(0)] = O(n™'?), (S.21)
0eOn |1 —1 0€On
which implies
D Asua(0) = 0,(1). (S.22)

t=1

By a method similar to that for » ;" Agnt(gn), we can show that

i e (B) — hy e (@) = 0,(1),
which implies

Z A4nt(5 Zn: ) hy £1nt( n) + 0p(1) = u'Thy, + Ty, + 0,(1), (S.23)
where

\ N 234 ohy_ (6
T 2 (er—b, ﬁ and TQn:\f(e — ) TZ (e,—b, ZB taye( 0).

t t
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Combining (S.11), (S.13), (S.18), (S.22), and (S.23), we have
Lyn(u) = u'Thy, + Ton + 0p(1). (S.24)

Next we consider Ly, (u). For simplicity, denote I}*(s) = I(¢;,, < s) — I(é, < 0).

From (S.7), we have the decomposition

LQn(u) = Z Blnt(gn) + Z BQnt(an) + Z BSnt(&m) + Z B4nt(§n)a (825)
t=1 t=1 t=1 t=1
where
~ 1 517Lt(0)+£2nt(9)+£3nt(9) ~ 1 1 51nt(9)+£2nt(9)
Bini(0) = hy (6) If(s)ds + [hy " (0) — hy (9)]J I (s)ds,
flnt(0)+£2nt(6) 0
1 51nt(9)+§2nt(0)
Bow(0) = hr (e)J I3 (s)ds,
glnt(e)

E1nt(0) E1nt(0)
By (0) = [h2(0) — hi ] J I*(s)ds, and  Buw(0) = h" J I*(s)ds.
0

By a method similar to that for (S.13), we can show that

;g;&ﬂm<ggﬂﬁﬁ?+a@‘&m“W@”@MWJ
= 0,(1), (5.26)

which, together with the fact that v/n(6, — 6p) = O,(1), implies

iBW(e”n) — 0,(1). (S.27)

t=1

From (S.10), (S.16), (S.17), Assumption 2 and the Holder inequality, we have

E sup
€O,

zn] Bani(6)

t=1

<EZQme@@mmuQaA<wp«mwn+bmw0
=1 6eO, /€O,

911/2

1/2
lE sup ([€1ne(0)] + |fznt(9)|)]

0cO,, hy

which, combined with the fact that /n(6, — 6y) = O,(1), yields

n

> Baui(0) = 0,(1). (S.28)

t=1
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Similarly, it follows from (S.10), (S.16), Assumption 2 and the Holder inequality that

FE su B3 (0)| < E su (| |€s.r sup nQ)zol,
wup 33 B)] < £ 3 up [17°0) = i 6e0)] (11 < sop 610 ) = o)
and then

> Bsu(0) = 0,(1). (S.29)
Finally, for > ;" | B4m(5n), denote
glnt(g)

B () = ho! J [F(b — hag + h's) — P(b, — hla)] ds,

0

and we first show that
Z Bui (6, Z B, (6,) + 0,(1). (S.30)
For any v € RP*9+! let n,(v) = by Sol"t(eﬁn_l/%) I} (s)ds, and denote

2 B4nt 90+n 1/2 ) ant(eoﬁ‘nilﬂ Z{ﬁt )|Ft 1]}

For any fixed v such that |v|| < M, by (S.16), Lemma A.1 and Assumption 2, we have

—1/2 E1ne(Bo+n~1/20)
Eni(v) < E { [Sint (00 + 0 v)] J [Fb, — 2 4 2y F(p, — %)]ds}
0

hi

1
< 5 5up F(@)E|h (0o + n~20) P < n=¥2C, (S.31)
z€R

implying that

ES2(v ZEm (5.32)
Note that
5 & ; 1 0hy_;(6p)
o1 (0 12,y ¢, (B —1/2 <2 @) | 2 ZPt=\70) )
' vagfu@'& t(Botn™v) = Eu (B + 7 )| w\/ﬁzi'ﬁro' he—; 00

Then, for any vy, vy € RPFIH! such that |v |, |ve]| < M, in view of (S.10), (S.16), Lemma

A.1 and Assumption 2, we have

E sup |ni(vy) — ne(va)|
o1 —va <6
E1ne(Bo+n 1 2v1)
=E|h;t sup f I7(s)ds

[v1—v2|<é

|

< E|:ht1 sup |€1nt(60 + n*1/2’(}1) — glnt(eo + n*1/2U2)|[(|ét’T| < sup |§1nt(9)|)—|

[v1—v2| <6 0€0,,

) <n 10,

E1nt(Bo+n—1/2vq)

1 0he_;(60)
ht,j 20

5 nt
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and hence

n

E sup [Su(v1) = Su(va)] 2D E sup |ni(vr) — me(v2)] < 26C,

o1 —va] <6 =1 lvi—ve|<é

which, together with (S.32) and the finite covering theorem, implies supj,<y [Sn(v)| =
0p(1), and then (S.30) holds.

By elementary calculation and the Taylor expansion, we have

n n £1nt(9)
D Bi(0) = h 1f Fbr — hy Ya)hy tsds + Ry (6)
t=1 t=1
1 n
5 Z 2€0,4(0) + Ran(0) + Rin(0), (S.33)

Ran(0) = 2 3 022, (O (b, — hi'ar) — F(b,)].

Note that

n

sup |Ry,(0)| < —sup |f Z

0e0, - @

glnt

and by Lemma S.1,
glnt )

sup | R (0)] < Gsup|f |c2p

0eO,

Then, by (S.16), Lemma A.1 and Assumption 2, we have
Rin(0n) = 0,(1) and  Ra(8,) = 0,(1).
Hence, by (S.25), (5.27)-(S.30) and (S.33), together with the ergodic theorem, we have
1
Lon(u) = 2 Zh 51nt ) +0p(1)
1 ~
= §f(bT)u’qu + b, f (b )u'Toy/n(6,, — 0o) + T3, + 0,(1), (S.34)

where

~ e L 18h19 ohi—;, (0
_f(bT)(gn_go)ZZE (J)TO h2 taje( 0) tajef( 0)(9n—90)-

t=1j1=1jo=1
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Combining (S.6), (S.24) and (S.34) yields that

v

Ln(e.,-o + nfl/Qu) - Ln(eTo) = — Ul [Tln — be(bT)FQ\/ﬁ(QNn - 90)] + %f(bT)UIQQU

— T, + T, + 0,(1),

where

~ 1= |eg] Ohe (6
Vi, 0y =~ 3 1=l

+0,(1); (.35)

see Francq and Zakoian (2004). By the central limit theorem and Corollary 2 in Knight
(1998), together with the convexity of L,(-), we have

~ Q, 1
\/ﬁ(eﬂz - 970) f(br)

where T}, = n~1/? >y Ur(er — br)z/hy; see also Lemma 2.2 of Davis et al. (1992). The

— 2 Ty, — b, Ton/n(0, — 0) + 0,(1) =4 N(0,3y), (S.36)

proof is complete. O

Proof of Theorem 2. Let L%(0) = >, wih . (y—0'Z) and L* (0) = Dy wihy pr (g —
0'%). For any fixed u € RPT4+! similar to (S.6), it holds that

Ly (60 + 0" Pu) = Ly (6r0) = =L, () + L3, (u), (S.37)

where

and

(97-0 + TL_l/QU)/g: - Ozt glnt( ) + €2nt( ) + §3nt(§:;)-

From the proof of Theorem 1, we have J = J + 0p(1), which together with (3.4) implies

V(@ — T_Z w— 1) (1 . %') ;t ah;(:“) + 0% (1), (S.38)

and

~ ~ ~

V(@ — 00) = V(@ 8,) + v/n(@, — 60) = 03(1). (8.39)

23



Without any confusion, we redefine the functions A;,; with 1 <7 < 4 from the proof

of Theorem 1 as follows,

A (01, 62) = Y- (€, ) 1(01)Esne (02) + ¢T(€m)[ Y(601) — Byt (01)][E1ne(02) + Eane(62)],

[1r(€r) — e (o0 = bo)1hy H(01)[€1ne (02) + E2ne(B2)],

Aot (01, 02) =
) ;1(91)§2nt(92)7 and A4nt(917 62) = wT(st - bT)

ASnt(eh 92) = w‘r(gt - bT h hgl(el)flnt(62)7

as well as B;,; with 1 <7 < 3 as follows,

E1nt(02)+Eant(02)+E3nt(02)

Buns(01,05) — htl(el)f I3 (s)ds
E1nt(02)+E2nt(02)
- E1nt(02)+E2nt(02)
00— 0] | I7(s)ds,
0
E1nt(02)+Eant(02)
Bani(61,62) = 1 (00 | T(s)ds, and
E1nt(62)
E1nt(02)
Bius(01,602) = [hi(61) — hi''] J I (s)ds,
0

while the definition of By, (+) is the same as in the proof of Theorem 1.
By methods similar to (S.13), (S.18), (S.22) and (S.23) respectively, together with

Assumption 2, Lemma S.1, (S.8), (S.9) and (S.38), we can show that
Zthint(§n7 N:L) =o,(1), 1<i<3,

and

Z WtA4nt(§n7 Qn Z withy (e h flnt(e*) +o (1) = ulTl*n + T3, + 0;(1),

where T}, = n=Y2 3" wib, (e — by)2e/hy and

T2*n:\/70_60 Z th TZ

,p, is defined as in the proof of Theorem 1. As a result,

where 89 = b.Bo;, j = 1,...
Zthlnt 5 5 ) + ZthZnt(gna N:L) + Zth3nt(§na ")+ Zth4nt(§na ")
t=1

=u'Ty, + Ty, +05(1).
Moreover, by methods similar to (S.27)-(S.29), we can verify that

Z Wt _1 int 971797*1) =0 (1)7 1 Z Z Wy — 1 B4nt ) = O;(l)7

t=1
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which implies

LE (u Z Bini (0, 0%) + Z Bont (0, 02) + > Bant(0, 02) + > Bune (07) + 03(1),
t=1 t=1

and hence, similar to the proof of (S.34), it can be further verified that
1 ~
L3 (u) = Ef(bf)u'qu + 0, f(br)u'Tan/n(0) — 6) + Ty, + 0, (1), (S.41)

where

® 1 / el (31) 1 aht —Jj1 (60) aht —J2 (60) N
T377, = 5 8 - 60 Zl 21 Z TO h2 ag 60/ (en - 90)
t=171=1j2=1

Therefore, combining (S.37), (S.40) and (S.41), we have

v

N 1
LE (00 +n Y2u) — LE(0,0) = — o/ [Tl*n — b, f(b)To/n(0F — 90)} + §f(bT)u'92u

- TQ*n + T;n + O;(1)7

where T}, = n Y237 wib (e — by)2i/he.

Denote X; = n~Y2(w; — 1)tp- (e — by)2/hy, and then T, — T, = >y X;. For any
constant vector ¢ € RPTI+! et y, = E*(¢'Xy) and o2 = > | E*(d X, X[c). Then, p; = 0,
and by (S.15) we have

1

n 2+5 n
<Z E*|ClXt . ’ut|2+5) [;

t=1

CZt

Y- (e ht

246 | 246
] (E*|wt |2+5)2+6

= 0p(1),

as long as 0 < & < Ko, since E*|w;[**" < oo from the assumptions of this theorem.
Moreover, by the ergodic theorem, 02 = ¢'n~t Y1 [, (e,—b,)]?h; *2i2ic = T(1—7)/ Qac+
0,(1). Thus, we can show that the Liapounov’s condition, Y1 | E*|¢'X; — u,[**° =
0,(02), holds for 0 < & < rg. This, together with the Cramér-Wold device and the
Lindeberg’s central limit theorem, implies that conditional on F,,
Tl*n - Tln = ZXt —d N(Oa 7_(1 - 7—)92)
=1
in probability as n — co.
Since L¥(+) is convex, by Corollary 2 of Knight (1998), it holds that

~ 1 ~
Vi, = 020) = 5Ty = 005 T/l = ) + 1), (5.42)
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which, in conjunction with (S.36), yields the Bahadur representation of the corrected

bootstrap estimator Hm,

A A . lerjln 1 — |eq| ORy (0 )
Vil =) = 5 (T = T + =2 2= D (e 1 e o)

Denote X = n "2(w, — 1)d,, with d, = (V-(g, — b,)24/hy, (1 — |e4]) a7 0hi(00)/06") .
Note that by (S.15) and Elg;|>*™° < oo for vy > 0, we have E|d;[*"* < co. Then, for
0 < ¢ < min(ko, 1), we can similarly verify the Liapounov’s condition, > , E”‘|C’XtT —
w20 = 0,(a1?%), where uf = E*(¢X]) and of> = 3 | B*(¢ X[ X[¢). Applying the
Lindeberg’s central limit theorem and the Cramér-Wold device, we accomplish the proof

of the theorem. 0

Proof of Theorem 3. Observe that

Z 1/}7' gtT |€t kT|
\Ft Rl

Z ¢T Etr |5t k7'|+ Z glnt+ Z 52nt+ Z ggnt7 (843)

t k+1 t=k+1 t=k+1 t=k+1

where

glnt = n_1/2[¢7(gt77') - ¢T(€t,7)]|€t—k‘,’r|7 g?nt = n_1/2¢7(5t,’r)(|§t—k,r| - |€t—k,’r|)7 and
Esnt = 0P [r Err) — Ur (e ) (Eimrr] — lEt—kr]).

To derive the asymptotic result for the quantity on the left-hand side of (S.43), we shall
begin by proving that

3 Euns = —F(60) [ 1B — 0r0) + b (B, — 60)] + 0,1, (8.44)

t=k+1
where di, = E(h; e rr]2) and do = E(ht_1|e€t,k’7|2§=1 BojOhi—;(6p)/00). For any

u,v € RPYa+L define
bi(u,v) = (B0 + n~ )%, (6 + n~0)h

Since /n(B,y, — 0,0) = O,(1), \/n(B, — by) = O,(1), and

n 1 ~
D) = 3 I <br) — 1< 8,200 Il
t=k+1 \/ﬁt=k+1

to prove (S.44), it suffices to show that for any M > 0,

1 n
N t; 1 1w, v) + f(br) (digu + brdyyv)

sup
lull,[ol<M

= 0,(1), (S.45)
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where ¢y (u,v) = {I(e; < b;) — I[e, < gt(ua v) etk
Let S,(u,v) =n=Y237" , {d(u,v) — E[¢y(u,v)|Fi—1]}, and we shall first show that

sup  |Sn(u,v)| = o0,(1). (S.46)
lullv]<M

For any u,v € RPT9+L define
by(u,v) = (00 + n"%u) 2,6y + n~20)R7 L.
Note that for any u,;,v; € RPT4*! =12 since
bt(ulyvl) - (U27U2)

p J) —1/2,,(9)
+n _ _
E | [ht—j (Qo +n 1/21)1) - ht—j (00 +n 1/27)2)]

S Ugj) % hy 2 (ur — us)

1 —u
\/,Zh—Q[ht J(90+n 12U2)_ht—j]+ \/ﬁ )

t

by the Taylor expansion and (S.15), where B%) = b,y for j = 1,...,p, we can readily
show that if ||ul|, |v;| < M, then

|b¢ (w1, v1) — by (ug, va)]

cunf( ) S
<——= — vy + ——
v [l ) e

For any u,v € RP"4*! such that |uf, [v]| < M, by the Holder inequality and the fact

1 ohe ;(0)
— . 4
| e | s

that Flg ™ < oo for vy > 0, we have

n n v 2
Z Eo;(u,v) < Z {E ‘](& <b.) = I[e, < by(u, v)] }””0 (Eler_p. )
t=k+1 Rl
o
—C Y | B|FGw ) - PO
t=k-+1

b [B|F b)) - P75 } (5.48)

where the last inequality follows from the fact that (z + y)* < 2% + y* for any =,y = 0

and 0 < a < 1. Note that by Lemma S.1, we have

sup  |by(u, v) — by(u, v)
lull;[ol<M j=1

< C(M)p'c. (S.49)

p ]) ~1/2
+n M ~
< 3 Pl Mg 0) — by (0)
Oe
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Then, by Assumption 2 and a method similar to that for (S.14), we can show that
E |F(by(u,v)) — F(by(u,v))| < p’* + C(M)p"">. (S.50)
Moreover, since b, = b,(0,0), it follows from (S.47), Lemma A.1 and Assumption 2 that

E|F(b(u,v)) — F(b,)| < sup f(z)E|b;(u,v) — b.| <n Y2C(M). (S.51)

zeR

In view of (S.48), (S.50) and (S.51), for any u,v € RPTI+ with |jul, |jv]| < M,

n

ES2(u,0) <~ 3 B¢Hu,v) = of1). (S.52)

t=k+1
For any ¢ > 0, let U(0) be the set of all four-tuples (u;, us, v1,v2) of column vectors
in RPTT! such that |[u;, |vs]| < M, i = 1,2, and |u; — us|, |[v; — v2| < J, and denote by
v an element of U(d). Moreover, for simplicity, denote Zti = Zt(ui, v;) and by = by(u;,v;)

for ¢ = 1, 2. Let At = SupUeU(é) |,5t1 — ,l;t2| and At = SupveU((s) |bt1 — bt2|. Notice that

sup |¢y(u1, v1) — ¢¢(ug,v2)| < sup ‘I(& < g1;2) —I(e; < Ztl)“gt—k,r|
velU(d) veU(9)

< I(ler = bra| < A))|erpr |-

Then, applying the Holder inequality, together with E|e;[*™ < oo for 19 > 0 and the

fact that (z + y)* < 2 4 y* for any z,y = 0 and 0 < a < 1, we have

E sup |oi(ug,v1) — ¢p(uz, ve)
velU(6)

< [E‘F(EtQ + &t) — F(by — At) ‘}1/2 (Egik,r)lﬂ
1/2

< C{ |BIFP (e + ) = F (e + At)ﬂl/2 + |EIF (e~ A) = F(be - A)]

+ I:E‘F(Bﬂ + At) — F (b — At)‘]lm } (S.53)

Since |A; — A < SUD,er/(5) | (b1 — bia) — (b — by2)| < 2 SUD|y |, v <M [be(u, v) — be(u, )], by
(S.49) and a method similar to that for (S.14), we can verify that

E|F (b + Ay) — F (b2 + )] < p? + C(M)p™"72. (S.54)
Furthermore, it follows from Assumption 2, (S.47) and Lemma A.1 that

E|F (b + Ar) — F(bs — A)| < 2sup f(z) B(A,) < nY26C(M). (S.55)

reR
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As a result of (S.53)-(S.55), we have

n

2
E sup [Sy(u1, v1) = Sp(uz, v2)| < —= Z E sup [¢i(u1,v1) = de(ua, v2)| < 0C(M),
velU(d) \/ﬁ t=k+1 VEU(S)

which, together with (S.52) and the finite covering theorem, implies (S.46).
Since E|¢i(u,v)|Fi 1] = [F(br) — F(Zt(u,v))]|€t,k77|, to prove (S.45), it remains to
show that
1 C 7 ! /
7n 2 [Fr) = Foulw,0)) |lernr| + f(br) (digu + brdyy0)
t=k+1

By (S.49), Assumption 2 and a method similar to that for (S.14), we can show that

sup
lull,Jvl<M

= 0,(1). (S.56)

E( sup ‘F(gt(uav))—F(bt(u,v))DQ<pt+C(M)p5°t/2,

lull, o< M

which, in conjunction with the Holder inequality and Fle;|*™° < oo for vy > 0, yields

E  sup
lull, ol <M

%ﬁ P = F(bu(u,0))] e

: t:ﬂ E( sup | F(by(u,v)) — F(Zt(u,v))‘)Q]I/Q(Eggm)m o(1).

Vn ul, ||v|<M
and hence,
sup = i [F(be(u,v)) — F(zt(u,v))]|5t_k77| = 0,(1). (S.57)
ulllel<M |V 5
Note that by the Taylor expansion,
h, 2w BY) oh, (6o)
bT _ b - t t o 70 J _ R
1 0) n nj; he 0 (v, v),
where
v A u® ok (0) v BY) 4 nm VU 62h,_(67)
R _ D A AN - 70 J
o) =3 ; .8 ;1 I 009 "

with 6* between 6y and 6y + n~'/?v. Then, by (S.47), Assumption 2, Lemma A.1 and

the ergodic theorem, we can show that

1 n
sup  |—— F(b;) — F(bi(u,v))||et—k+| + f(bs) (dypu + brdbyv)
lull Jol <M \/ﬁt;;l[ ]
< f(b;) sup Z (u,0)]|er—kr| + dipu + brdyv
IIUH7IIUII<M n o
FlaplF@IS S s (b — b o) Pleeir
5 Sup T)|l—= up r — 0\U, v t—k,T
2 zeR \/ﬁt:k+1 lull, ol <M

= 0,(1).
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This together with (S.57) implies (S.56), and therefore, (S.44) holds.

Next, we consider Z?: ps1 Eant- Observe that

815,7' - é\157' <lnt( ™ ) + <2nt( ™ an)a

where

Yt — QIToZt Yt — Qizt(e)

_ v~ 02(0)  y— 0.500)
ht ht(e) :

Cint(05,0) = ) h(0)

and  (on(0,,0) =

Then, similar to the decompositions in (S.6), (S.11) and (S.25), by using the identity in
(S.5), it can be verified that

n—=k n—k
Z ant - Z Zlnt ™) ) + Z Z2nt(6)7'n79n) + Z Z3Tlt(67'na0n)a (858)

t=k+1 t=1 =1

where
Clnt(0710)+c2nt(9779)
T (0.0) = w{ — om0, )1 — 20(e1 < b.)] + QJ It(s)ds},
\/ﬁ Cint(0+,0)
Zont(0;,0) = —Mcm(@, 0)[1 —2I(e; < b;)], and

NG

2 Cint(0+,0)
D (0.0) — % J I,(s)ds,
0

with I;(s) = I(er, < s) — I(er; < 0). For any M > 0, let ©,, = O,,(M) = {0,
16; — 00| < n~Y2M,0,/b, € ©}. Note that (o, (6-,0) = %;1(0)62[3,5(9) — z(0)] +
[ (0) — b (0)][ye — 0'.2:(6)]. Then, similar to (S.9), (S.12) and (S.26), by Lemma S.1,

it can be shown that

1 p
SUp_ (Gou (0, 0) < - D5 sup (8] sup i (6) — hu(6)]

0:€0,,,0€0, j=1 0,0y,

1
~|— — sup |ht( ) —h(0)]  sup |y, — 0. 2(0)]
96@ 0:€0,y,0€0,

<C<M>pf<[1+ sup g —0=()]].
0:€0 1,00,

Consequently, it follows from Lemma A.1 that

Z%m%@

t=1

sup
0:€0 1,00,

Z sup |C2nt(87'78)| = Op(1)7

t 1 0:€0 1,00,

which, together with \/ﬁ(HAm —070) = Opy(1) and V8, — 6y) = 0,(1), yields
Z Zint Brm, 0,) = 0,(1). (S.59)
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Applying the second-order Taylor expansion to h, (), and the first and second-order

Taylor expansions to 6z,(0) respectively, similar to (S.19), it can be verified that

Clnt (97'7 6) = CSnt (07'7 0) + C4nt((977 9)7 (SGO)
where

P 6ht j 90) 1€t — bT 5ht(90)
C3nt(97'7 6) (0 - 67’0) 0 00 ht (9 - 90) ht 89 3
Con(0,.8) =(0— 80) Z 5@ Y aht_]( 5, (0—6) i B8 c2hy_;(63) 0 )
Ant AT 0 o0 hy 0000 0

C(0- eo> ACIEIC P ﬁ*“) ohe ;(07),,
hy o0 Ry (0 = 0r0) + Z h, o0 (0= )

—0.2(0) (0 —00)'| 2 Oh(63) 5’%( 5 1 Ph(63) (0 — 0)
he(6%) 2 | h26x) 00 00" hy(6%) 0000 0"
with 6,03 and 6% all lying between 6y and 6, and 3} @ and ,BTQ both between 50)
and 5&”. Then, similar to (S.20) and (S.21), by Lemma A.1 and the ergodic theorem,
together with \/ﬁ(am —0:0) = Op(1) and v, —6y) = O,(1), it can be shown that

1
n

Z_l w7(€t+k,T)C3nt(ATn7 9 )[1 - 2[(5t < b )] = Op(1)7

Bl

and

E  sup Z r(Etikr)Cant (07, 0)[1 — 21 (e < b;)]
0:€0n,0€0,

1 n—k
< — E n T = -1/
Tn tZ sup  [Gune(0r, )] = O(n=77),

1 0-€0,,,0€0,

which implies

n—=k
" Zoni(0rn, 0) = 0,(1). (S.61)
t=1

Similarly, using the Taylor expansion in (S.60), together with Lemma A.1 and Assump-

tion 2, we can show that

n—k
Z Z3nt ((97'7 6)

t=1

E  sup
0,+€O+p,0€0,

—EZ sup <1m<97,9>|1(|et—bf|< sup |<1m<97,9>|)

i—1 07€0+n,0€0y, 0:€0p,0€0,

n—k 2
<Pl S g s fnl.0)) = 0 )

Voo 5 e, 0e0,
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and as a result,

n—k
Z Zat (Orm, 0n) = 0p(1). (S.62)
=1
Combining (S.58), (S.59), (S.61) and (S.62), we have
D & = 0,(1). (S.63)
t=k+1
Now we consider Y, ; Es,;. Similar to the proof of (S.44), for any u,v € RPHI+!,
define o, (u, v) = {I(g; < br)—I[e, < by(u,v)]} [|€t—k.r (w, v)| — |et—k r|], where & ,(u,v) =
lye — (0-0 + 0~ 2u)'Z (60 + nV?0)] h; (6 + n~Y2v). Then, for any M > 0, we can

readily verify that

sup  |— Elpy(u,v)|Fio1]}| = 0p(1)
Jul Jol<p f ; ’
and
1 n
sup | —— Elpi(u,v)|Fi1]| = op(1),
Jul Jol<p \/ﬁt;1 ’

which yields

D1 Esn = 0,(1). (S.64)
t=k+1

Therefore, combining (S.43), (S.44), (S.63) and (S.64), we have

n

gtT |5t k:7'| 1/)7' 5t7’ |5t k7'|
\/*

t= t=k+1

— F{02) | A/ = Or0) + bedyy/n(B — o) | + 0,(1).
(S.65)

Finally, by the law of large numbers and a proof similar to that for (S.58), we can

show that
~ 1 ¢ IR
|Ha,r — Har| = EZ Etr| = lewrl)] +0p(1) < EZ Etr — Er| 4+ 0p(1) = 0,(1),
t=1 t=1
and then,
~2 1z 1 2
Oar = Z(|€t,7| MQ,T) . Z 815,7 — Mg, t+ Op(l)
n 4~ n 4~
t=1 t=1
1 &,
= _Z(gf‘r 6?7)4_0—27—’_010(1)
n b
t=1
= Ua,T + Op(]')7
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which, together with (S.65), (S.35) and (S.36), yields

n

1 1 1 Z
Thr = —F7———— ﬁ Z {wﬂ'(gt,ﬁ') (|5tk,7—| - dlleZlh_i)

(r—r)oz, " Th
b f(br) (dy, — dy5'T) T _}ft' d) } +0p(n”""%). (5.66)
Consequently, for R = (ry,,...,7k), we have
Rt 1y {wem) (etl - D19513>
(=732, ik e
+ b, f(by) (D — D12, 'Ty) J ! ! _hjgt| ah;(:()) } + o,(n"Y?), (S.67)
where €1 = (let—1]s -, |et—k.-|) and D; = (di1,...,dix) for i = 1 and 2. Applying

the central limit theorem and the Cramér-Wold device, we have /nR —4 N(0,3,).
To prove this theorem, it remains to show that >, is positive definite. Note that
¥, is the covariance matrix of (1 — 7'2)_1/203(5“‘/“ + s9;Var), where sy, = ¥.(g;,),

Sot = 1— |€t|7

1 0hy(6
Vie = €1 — Dlgglﬁ and Vo, = b f(b;) (Da — D195 'T) J—l—ﬂ.
ht h’t 60

Suppose that Y4 is singular. Then, there exists A € R¥ such that A # 0 and
Slt)\/‘/lt + Sgt)\l‘/gt =0 a.s. (868)

Since s1; = ¢, (er,) =7 —I(e; — b, < 0) # 0 for 7 € (0,1), (S.68) can be written as

NV = =20, as.

S1t

Note that si; and sg; are independent of F;_;, and Vj; and V5 are measurable with

respect to F;_1. Taking the expectation conditional on F;_; on both sides, we have
NVie=c\NVy  as.,
where

Sot |€t| —1
- -p(2)-F .
¢ <81t> |:7'—I(€t—b7-<0):|

As a result, (S.68) implies that

(cs1p+ s20) N Vo =0 as. (S.69)
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Define the (p + ¢ + 1) x 1 constant vector
1 ="0b,f(b)J 1 (Dy — D102y T2) .

Then, N'Va; = p'hy; [0h(0)/06], and (S.69) can be written as
1 Ohi(6o)

(CSM + SQt) -—

hy 00

=0 as. (S.70)
Suppose that g = 0. Then, it follows from (S.68) that
NV =0 as. (S.71)

By a method similar to that for the proof of Theorem 8.2 in Francq and Zakoian (2010),
we can show that (S.71) is impossible; we will prove this result at the end of the proof
of this theorem.

Suppose that 1 # 0. From the proof of Theorem 2.2 in Francq and Zakoian (2004),
by Assumption 1(iii), the matrix J must be positive definite: i.e., for u # 0, we have

&'aht(eo)
P{ht 30 03 > 0.

This, together with (S.70) and the independence of csi; + sy and p'h; *[0h(6y)/06],
implies that

cs1y + s, =0  a.s.

That is, |e;| — 1 = ¢7 — ¢l (g; < b;) almost surely, which is impossible due to the almost
everywhere positiveness and differentiability of the density f(-) on a fixed small interval
around b,. Therefore, 34 is nonsingular.

Finally, we prove that (S.71) is impossible. Suppose that (S.71) holds. Denote
A= (A1,..., k)" and define the (p + ¢ + 1) x 1 constant vector

7= (/717 s 7’)/p+q+1)l = Q;lDll)\

Then, (S.71) can be written as

Zt

o 0 as. (5.72)

Nei_1 — o

Note that v # 0. Otherwise, N'¢; ;=0 almost surely, which implies that there exists
je{l,...,K} such that \; # 0 and |g;_;,| = —)\;1 Zfiuij Ailet—i-|. By the indepen-
dence of |g;_1+]|, ..., |6tk |, we then have that |e; .| is degenerate, which is true if and

only if &; is degenerate. This contradicts Assumption 1(ii). Thus, v # 0.

34



By (S.72) and the positiveness of h;, we have
hNeioi —~'2=0 as. (S.73)

For notational simplicity, we denote by Ry, R»,... random variables measurable with
respect to Fi_o. Then we have hy = agihi—i|ei—1| + R1, Nerm1 = Mlei—1-| + Re, and
vz = alyr_1| + Rs. As a result, it follows from (S.73) that

Maorhitlei—i|let—1 -] + (@01 Re — y2)hiciler—1| + M Riler—1.| + R4 =0 as. (S.74)

If Ajagr # 0, then (S.74) implies that (|e;—i| — R5)(|et—1.-| — Re) = 0 almost surely,
which is impossible since ¢; is non-degenerate. Thus, A\;ap; = 0 must hold.

If Ay = 0, then it follows from (S.74) that (g1 R2 — Y2)hi1|er-1| + R4 = 0 almost
surely. Taking the expectation conditional on F; o, we have (ap R2 — Y2)hy 1+ Ry =0

almost surely. In view of the positiveness of h,_1, it follows that

(o1 R2 — 72)(Jer-1] — 1) =0 as.

Since &; is non-degenerate and |e; 1| — 1 is independent of ag;Re — 79, this implies
that agi Ry — 72 = 0 almost surely. Note that Ry, = ZfiQ Ailet—i |, where at least
one of g, ..., \g is nonzero. By an argument used earlier, we have P(Ry # 0) > 0.
Consequently, ag; = 79 = 0. However, from the second paragraph in Section 2.1, we

assume «g; = w > 0. The conclusion follows. O

Proof of Theorem 4. Similar to (S.43), we have

n
23 (Ut¢% 8tT t kT|

t=k+1

Si-

Z wir (Etr) etk | + Z Efpe + Z Em + Z Ent (S.75)

t=k+1 t=k+1 t=k+1 t=k+1

%\H

where
Ery =n P (E ) = eIl Epy =1 Pwithe(e0) (6 41| = l€ir]), and
Epy =1 PwnUr(E ) = e (e J(E i r] = lEnr])-

Note that, from (S.39) and (S.42), \/n(6* — 6y) = Ox(1) and \/ﬁ(éjn —0r0) = O5(1). As
a result, by methods similar to (S.44), (S.63) and (S.64), respectively, we can show that

S £ = =100 [0, — 0.0) + brdy @~ 00)] + 031

t=k+1
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and

2 * —0*(1), i=2and3,

t=k+1

where dij, = E(h; e x-|2) and doy = E(h; et 1| 2251 BojOhyj(00)/00) are defined as
n (S.44). This, in conjunction with (S.75) and (S.65), yields the Bahadur representation
of

1 - 1 -
— Wb EIE = —= D (B i
Vi 4 Ve 4
1 n
— —1)
\/ﬁtZI ¢r 67&7’)|5t k7'|
= Fo) | /@, = o) + brdiy /0@ = B) | + 03(1),
and hence
* 1 1 S 1
R*—R= c= Y (we— DY e (err) — Dy h
(r—72)02, "l t
- _11 = |ee] 9l (6o) -
+ 02 (br) (D2 = D10y 'T) S =p R0 b o),
where €1 = (letm1r|s .-, |et-k.-|) and D; = (di, ..., dix) for i = 1 and 2. Thus, we

complete the proof by applying Lindeberg’s central limit theorem and the Cramér-Wold

device. O

Proof of Corollary 1. The proof follows the same lines as that of Theorem 1, while the
corresponding L1, (u) and Lo, (u) are defined with 71; ! replaced by one; consequently, all
the Ay (6)'s and Biy(6)s are defined with all 7;'(6), h;'(6) and ;" replaced by one.
Note that without these denominators, Lemma A.1 cannot be applied as in the proof
of Theorem 1 in some intermediate steps, and additional moment conditions on z; will
be needed. The highest moment condition, E|z;|*™* for some 1y > 0, is required for the
proof of the counterpart of (S.31), where, correspondingly, 7;(v) = gl"t(eﬁn_l/%) I} (s)ds,
with &1, and If(s) defined as in the proof of Theorem 1. The corresponding proof is

straightforward by the Holder inequality. O]

Proof of Corollary 2 and Equation (2.6). Since \/n(6,—0) = O,(1) and \/ﬁ(ém—éfo) =
0,(1), Corollary 2 follows directly from Lemma S.1 and the Taylor expansion.
Moreover, it can be readily shown that the sequence {X,} with X, = u/, +1\/ﬁ(§n =

o) + 2!, H\/ﬁ(ém — 0,9) is uniformly tight, which, combined with Corollary 2, implies
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that 0p(|Qr(Uns1|Fn) — QrWnr1|Fn)]) = 0p(n"Y2). Note that b, # 0 if and only if
Qr(Yni1|Fn) = 0 gzni1 = brhpyy # 0, since h,q = w > 0. If by # 0, then T7I(-) is
differentiable at Q. (y,+1|Fn), and hence

T7Qr Yna1 | F)] = T7HQr (Y| F)]

dT(z ~ _
- [0 s 1) — el ) + 040
T le=QrynsalFa)
e[ 00) + s B 0:0)] + 0,07
2 |b'rhn+1|

Since @T(xn+1|Fn) = Tﬁl[@T(yn-i-lLFn)] and QT($n+1|fn) = Tﬁl[QT(yn+l|Fn)]a we coml-
plete the proof of (2.6). O

Proof of Corollary 3. By methods similar to the proofs of Theorem 2 and Corollary 2,

this corollary follows. n
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