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Abstract

This supplementary material contains theoretical comparison with the un-

weighted and FHS methods, additional simulation results on the finite-sample

performance of the proposed estimation method in comparison with existing and

unweighted methods and on the random weights in the bootstrapping procedure,

as well as additional results for the empirical analysis. It also provides technical

details for Lemma A.1, Theorems 1–4, Corollaries 1–3 and Equation (2.6).

1 Theoretical comparison with the unweighted and

FHS methods

In this section, we compare the asymptotic efficiency of the proposed estimator pθτn with

that of the unweighted estimator qθτn and that of the FHS estimator rθτn.

To compare the asymptotic efficiency of the proposed estimator pθτn and its un-

weighted counterpart qθτn, we calculate the asymptotic relative efficiency (ARE) of pθτn toqθτn, defined as AREppθτn, qθτnq � p|Σ2|{|Σ1|q1{pp�q�1q, where Σ1 and Σ2 are the asymptotic

covariance matrices of pθτn and qθτn, respectively, and | � | is the determinant of a matrix;

see Serfling (1980). As Σ1 and Σ2 both depend on the GARCH parameters, the innova-

tion distribution and the quantile level in a very complicated way, we will consider the

AREs for specific settings.
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Table S.1: AREppθτn, qθτnq for the GARCHp1, 1q model with α0 � 0.1 and different values

for pα1, β1q, where the innovations tηtu follow the standard normal and Student’s t4.1

and t5 distributions, and τ � 0.01, 0.05, 0.1 and 0.15, based on a generated sequence of

n � 10, 000.

τ β1 0.15 0.45 0.80

α1 0.15 0.45 0.80 0.15 0.45 0.80 0.15

0.01 t4.1 1.39 3.31 5.14 1.28 4.19 35.11 1.79

t5 1.23 1.69 9.77 1.39 3.35 71.09 11.02

Normal 1.06 1.45 9.75 1.07 7.17 57.92 1.53

0.05 t4.1 1.32 8.51 42.83 2.58 4.74 21.07 1.89

t5 1.79 2.22 9.15 1.19 10.11 23.54 1.85

Normal 1.04 1.63 4.42 1.09 3.46 35.54 1.43

0.10 t4.1 2.55 4.06 5.70 1.29 4.11 28.85 3.46

t5 1.15 2.36 17.13 1.48 12.04 80.63 1.77

Normal 1.06 1.43 7.33 1.08 4.61 105.47 1.42

0.15 t4.1 2.25 2.23 6.43 1.41 2.28 21.16 1.45

t5 1.66 6.17 36.80 2.00 3.85 69.58 2.40

Normal 1.05 1.72 9.69 1.07 2.19 92.47 1.35

We generate a sequence with n � 10, 000 from the GARCH(1, 1) model,

xt �
a
htηt, ht � α0 � α1x

2
t�1 � β1ht�1, (S.1)

where α0 � 0.1, and the innovations tηtu follow the standard normal and standardized

Student’s t5 and t4.1 distributions with unit variance. To calculate Σ1 and Σ2, we substi-

tute the matrices involved in them by corresponding sample-average estimates and use

theoretical values for bτ , fpbτ q, κ1 and κ2, since both fp�q and τ are known. We con-

sider different values for pα1, β1q, and the results are given in Table S.1. It can be seen

that AREppθτn, qθτnq ¡ 1 for all cases considered; i.e., the proposed weighted estimator is

asymptotically more efficient than the unweighted estimator.

Likewise, we can compute the ARE of the proposed estimator pθτn to the FHS es-

timator rθτn, and the results are reported in Table S.2. It can be seen that the FHS

estimator rθτn is asymptotically more efficient, i.e., AREppθτn, rθτnq   1, when tηtu follow

the Student’s t5 distribution, while the proposed estimator pθτn can be asymptotically

more efficient, i.e., AREppθτn, rθτnq ¡ 1, when tηtu become more heavy-tailed. This can

be explained in part by the efficiency gain of the quantile regression estimation and the
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Table S.2: AREppθτn, rθτnq for the GARCHp1, 1q model with α0 � 0.1 and different values

for pα1, β1q, where the innovations tηtu follow the Student’s t4.1, t4.5 and t5 distributions,

and τ � 0.01, 0.05, 0.1 and 0.15, based on a generated sequence of n � 10, 000.

τ β1 0.15 0.45 0.80

α1 0.15 0.45 0.80 0.15 0.45 0.80 0.15

0.01 t4.1 1.32 1.26 1.24 0.85 0.80 0.77 0.30

t4.5 0.54 0.52 0.52 0.38 0.37 0.35 0.14

t5 0.40 0.39 0.38 0.30 0.27 0.26 0.11

0.05 t4.1 2.47 2.35 2.27 1.45 1.32 1.27 0.41

t4.5 1.02 0.99 0.97 0.71 0.67 0.62 0.24

t5 0.75 0.72 0.71 0.53 0.50 0.48 0.20

0.10 t4.1 2.75 2.61 2.53 1.58 1.40 1.38 0.48

t4.5 1.14 1.10 1.08 0.76 0.71 0.69 0.26

t5 0.81 0.80 0.77 0.59 0.54 0.52 0.21

0.15 t4.1 2.62 2.49 2.41 1.47 1.37 1.33 0.45

t4.5 1.07 1.05 1.02 0.73 0.68 0.66 0.25

t5 0.77 0.74 0.73 0.55 0.50 0.48 0.19

efficiency loss of the Gaussian QMLE, as the data become more heavy-tailed. In addi-

tion, for a given parameter vector and innovation distribution, it can be observed that

the ARE is generally the largest when τ � 0.05 and 0.1.

2 Additional simulation results

2.1 Finite-sample comparison of conditional quantile estima-

tion performance with existing methods

In this subsection, we focus on three data generating processes as follows.

• Model 1 (Global GARCH process with larger volatility):

i.e., model (S.1) with pα0, α1, β1q � p0.1, 0.8, 0.15q;

• Model 2 (Global GARCH process with more persistent effect of shocks):

i.e., model (S.1) with pα0, α1, β1q � p0.1, 0.15, 0.8q;
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• Model 3 (Quantile process which contains the GARCH process as a special case):

xt � Φ�1pUtq
gffe α0

1 � β1

� rα11IpUt ¥ 0.5q � α12IpUt   0.5qs
8̧

j�1

βj�1
1 x2

t�j,

where tUtu are i.i.d. uniform over p0, 1q, Φp�q is the distribution function of the

standard normal distribution, and pα0, α11, α12, β1q � p0.1, 0.8, 0.15, 0.15q.

Note that for model (S.1) with standard normal innovations tηtu, the conditional quantile

function is

Qτ pxt|Ft�1q � Φ�1pτq
gffe α0

1 � β1

� α1

8̧

j�1

βj�1
1 x2

t�j,

which is a special case of Model 3 with α11 � α12 � α1. However, when α11 � α12,

Model 3 allows not only the scale Qτ,η � Φ�1pτq of the conditional quantile Qτ pxt|Ft�1q
to change with τ , but also its shape, since

Qτ pxt|Ft�1q �
"

Φ�1pτq
b

α0

1�β1
� α11

°8
j�1 β

j�1
1 x2

t�j, if τ ¥ 0.5

Φ�1pτq
b

α0

1�β1
� α12

°8
j�1 β

j�1
1 x2

t�j, if τ   0.5
.

We first consider the global GARCH processes, i.e., Models 1 and 2, with the innova-

tions tηtu following the standard normal or standardized Student’s t5 distribution. We

estimate the conditional quantiles at τ � 0.05 using six estimation methods: the pro-

posed hybrid method, the FHS method, and the four other methods discussed in Section

6 of the paper. We call the estimates of Qτ pxt|Ft�1q for 1 ¤ t ¤ n the in-sample forecasts,

and that of Qτ pxn�1|Fnq the out-of-sample forecast. Three sample sizes, n � 200, 500

and 1000, are considered, and 1000 replications are generated for each sample size. For

each setting, we compute the bias and mean squared error (MSE) of the estimates by

averaging individual values over all time points and all samples. The results for Models

1 and 2 are reported in Tables S.3 and S.4, respectively.

Before comparing the specific methods in details, we list several general observations

from Tables S.3 and S.4: (1) a smaller in-sample bias or MSE is usually associated with a

smaller out-of-sample bias or MSE; (2) for all methods except RiskM, the absolute value

of the in-sample bias and in-sample MSE generally decrease as n increases, while the out-

of-sample performance is less stable; (3) the RiskM method performs significantly poorer

than the other methods in terms of both the bias and MSE in most cases. Therefore, in

the following comparison, we will leave the RiskM method aside.
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Table S.3: Bias (�10) and MSE for in-sample and out-of-sample conditional quantile

estimates obtained by six methods at τ � 0.05 for Model 1 with normal or Student’s

t5-distributed innovations.

Normal distribution Student’s t5 distribution

Bias MSE Bias MSE

n In Out In Out In Out In Out

200 Hybrid -0.028 -0.020 0.121 0.088 -0.231 -0.094 0.194 0.175

FHS -0.271 -0.275 0.075 0.057 -0.509 -0.474 0.139 0.107

XK1 0.293 0.130 0.390 0.275 0.131 0.115 0.472 0.417

XK2 0.300 0.134 0.368 0.319 0.137 0.066 0.475 0.638

CAViaR 0.165 0.060 0.162 0.147 -0.060 -0.035 0.291 0.270

RiskM -1.266 -1.572 1.633 1.261 -1.491 -1.818 1.338 1.324

500 Hybrid -0.017 0.004 0.064 0.046 -0.079 -0.070 0.092 0.049

FHS -0.108 -0.099 0.041 0.029 -0.198 -0.167 0.073 0.028

XK1 0.201 0.205 0.354 0.139 0.132 0.077 0.430 0.134

XK2 0.205 0.219 0.358 0.137 0.148 0.060 0.447 0.134

CAViaR 0.059 0.043 0.128 0.066 0.009 0.014 0.273 0.070

RiskM -1.591 -1.585 2.282 1.467 -1.615 -1.745 1.603 1.162

1000 Hybrid -0.001 -0.007 0.028 0.023 -0.040 -0.047 0.048 0.032

FHS -0.045 -0.054 0.013 0.010 -0.105 -0.231 0.032 0.061

XK1 0.153 0.090 0.279 0.173 0.127 0.557 0.414 12.911

XK2 0.152 0.110 0.271 0.147 0.130 0.500 0.422 10.190

CAViaR 0.037 0.026 0.075 0.039 0.001 0.057 0.198 0.205

RiskM -1.566 -1.700 1.951 1.472 -1.637 -1.492 1.931 2.897

We first compare the bias for different methods. For both models, the proposed

hybrid method has the smallest bias when tηtu are normal, while the CAViaR method

has the smallest bias when tηtu are Student’s t5-distributed. This may be explained

by the greater efficiency of the Gaussian QMLE, which is employed in Step E1, for

normal innovations than the Student’s t5-distributed innovations. It is also clear that

the FHS method has much larger biases than the proposed method and the CAViaR

method for Model 1, and it has much larger biases than all quantile regression based

methods for Model 2. It is worth pointing out that the generally smaller biases of the

quantile regression based methods reflect their greater flexibility in capturing the specific

conditional quantile structure.
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Table S.4: Bias (�10) and MSE for in-sample and out-of-sample conditional quantile

estimates obtained by six methods at τ � 0.05 for Model 2 with normal or Student’s

t5-distributed innovations.

Normal distribution Student’s t5 distribution

Bias MSE Bias MSE

n In Out In Out In Out In Out

200 Hybrid -0.193 -0.268 0.193 0.207 -0.593 -0.726 0.401 0.461

FHS -0.685 -0.755 0.114 0.120 -1.194 -1.352 0.262 0.278

XK1 -0.103 -0.112 0.392 0.471 -0.417 -0.533 0.741 0.866

XK2 -0.075 -0.012 0.350 0.422 -0.333 -0.360 0.660 0.835

CAViaR 0.129 0.218 0.157 0.194 -0.143 -0.079 0.317 0.365

RiskM 0.466 -0.061 0.150 0.142 -0.460 -1.017 0.270 0.272

500 Hybrid -0.027 0.034 0.078 0.082 -0.166 -0.105 0.145 0.166

FHS -0.253 -0.218 0.045 0.048 -0.442 -0.458 0.090 0.086

XK1 -0.061 0.071 0.231 0.266 -0.166 -0.102 0.435 0.561

XK2 -0.017 0.085 0.173 0.191 -0.129 -0.076 0.342 0.613

CAViaR 0.099 0.181 0.069 0.078 0.006 0.110 0.131 0.156

RiskM 0.249 0.167 0.132 0.128 -0.580 -0.581 0.236 0.207

1000 Hybrid 0.002 -0.006 0.038 0.041 -0.084 -0.172 0.077 0.132

FHS -0.092 -0.097 0.021 0.021 -0.216 -0.276 0.048 0.094

XK1 -0.068 -0.020 0.146 0.155 -0.156 -0.348 0.361 1.334

XK2 -0.020 0.010 0.097 0.103 -0.100 -0.298 0.259 1.254

CAViaR 0.066 0.073 0.034 0.038 -0.001 -0.001 0.092 0.085

RiskM 0.175 0.090 0.129 0.128 -0.627 -0.597 0.247 0.287

It is also noteworthy that the XK methods perform poorly for Model 1, but have fairly

small bias for Model 2. This is caused by the sieve approximation ht � γ0 �
°m
j�1 γjx

2
t�j

in the XK methods, where an unnecessarily large order m can introduce too much noise.

Notice that a larger n needs a larger m, and smaller α1 and β1 favor smaller m. As

the magnitude of β1 has a greater impact on the choice of m than α1, the problem of

choosing an excessively large m is more severe in Model 1.

For the MSE, the FHS method is the best method in most cases, which not surpris-

ing since when the true model is the GARCH model, the FHS method is expected to

be generally more efficient than any quantile regression based method. The second best

method in terms of the MSE is the proposed hybrid method for Model 1, and is the
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CAViaR method for Model 2. This is also as expected for the reason that, compared

with CAViaR, the proposed hybrid method relies on an initial estimation that reduces

efficiency, but uses weights to improve efficiency. As a result, the efficiency gain from

the weights will be more pronounced when the conditional variances thtu have larger

variations, namely the case of Model 1. In addition, it is noteworthy that the pro-

posed procedure takes much less computation time than CAViaR. For instance, for our

1000 replications of Model 1 with normal innovations and n �1000, CAViaR takes 15.6

minutes, but the proposed procedure takes only 2.8 minutes.

Finally, we consider Model 3, which is a quantile process and possesses different

shapes for τ ¡ 0.5 and τ   0.5. Thus, the conditional quantile structure is misspecified

if a GARCHp1, 1q model is assumed. We estimate the conditional quantiles of the 1000

replications generated from Model 3 using exactly the same estimation methods as for

Table S.5: Bias (�10) and MSE (�10) for in-sample and out-of-sample conditional

quantile estimates obtained by six methods at τ � 0.05 for Model 3.

Bias MSE

n In Out In Out

200 Hybrid 0.020 -0.017 0.197 0.474

FHS -0.497 -0.677 0.453 0.664

XK1 0.085 0.197 0.287 1.074

XK2 0.087 0.172 0.280 0.877

CAViaR 0.067 0.045 0.180 0.261

RiskM -1.620 -1.811 1.161 0.976

500 Hybrid 0.014 0.027 0.080 0.071

FHS -0.366 -0.327 0.246 0.231

XK1 0.027 -0.021 0.100 0.214

XK2 0.030 0.000 0.099 0.214

CAViaR 0.025 0.014 0.077 0.082

RiskM -1.590 -1.570 0.864 0.699

1000 Hybrid 0.001 -0.025 0.035 0.026

FHS -0.326 -0.340 0.207 0.162

XK1 0.008 -0.010 0.065 0.036

XK2 0.011 -0.003 0.071 0.038

CAViaR 0.008 -0.008 0.038 0.028

RiskM -1.546 -1.538 0.825 0.786
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Models 1 and 2. As shown in Table S.5, the comparative performance of the methods

is quite different from that in Tables S.3 and S.4. The FHS method is worse than

all the quantile regression based methods in terms of both the bias and MSE. The

proposed method, together with the CAViaR method which has comparable performance,

is superior to the other methods. This suggests that the proposed hybrid method indeed

enjoys greater flexibility, and hence greater robustness, than the FHS method when the

data have a more complex conditional quantile structure which cannot be captured by

the global GARCH model.

2.2 Finite-sample comparison of efficiency with the unweighted

estimator

To compare the efficiency of pθτn and qθτn in finite samples, we generate the data from

the GARCH(1, 1) model in (S.1) with standard normal or standardized Student’s t5-

distributed innovations, using pα0, α1, β1q � p0.4, 0.2, 0.2q and pα0, α1, β1q � p0.4, 0.2, 0.6q.
The sample size is n � 2000, and two quantile levels, τ � 0.05 and 0.1, are considered.

Figure S.1 provides the box plots for the two estimators based on 1000 replications. It

shows that the interquartile range of the weighted estimator pθτn is smaller than that

of the unweighted counterpart qθτn under all settings; the latter also suffers from more

severe outliers. The efficiency gains from the weights seem larger for the Student’s t5

cases. Moreover, for the unweighted estimator qθτn, the sample median slightly deviates

from the true value θτ0 especially when the innovations are Student’s t5-distributed. The

results suggest that the weighted estimator is more efficient in finite samples.

2.3 Performance of the mixed bootstrapping procedure for more

choices of random weights

In the last two experiments in Section 5, due to the limit of space, we only reported

the results for standard exponential random weights. In this subsection, we provide the

corresponding results for other choices of random weights.

In the second experiment in Section 5, we considered the residual QACF rk,τ and the

bootstrapping approximation of its asymptotic distribution. The data were generated

from the GARCH(1, 1) model in (S.1) with pα0, α1, β1q � p0.1, 0.15, 0.8q and tηtu follow-

ing the standard normal or standardized Student’s t5 distributions with unit variance.
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Figure S.1: Box plots for the weighted estimator pθτn (white boxes) and the unweighted estimator qθτn (grey boxes), at τ � 0.05 or 0.1, for two

models with normal or Student’s t5-distributed innovations. Model (a): pα0, α1, β1q � p0.4, 0.2, 0.2q; Model (b): pα0, α1, β1q � p0.4, 0.2, 0.6q.
The thick black line in the center of the box indicates the sample median, and the thin red line indicates the value of the corresponding

element of the true parameter vector θτ0. The notations α0, α1 and β1 represent the corresponding elements of pθτn and qθτn.
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Table S.6: Bias (�100), ESD (�100) and ASD (�100) for the residual QACF rk,τ at τ � 0.05 or 0.1 and k � 2, 4 or 6, for normal or Student’s

t5-distributed innovations, where ASDi corresponds to random weight Wi for i � 1, . . . , 4.

Normal distribution Student’s t5 distribution

n k Bias ESD ASD1 ASD2 ASD3 ASD4 Bias ESD ASD1 ASD2 ASD3 ASD4

τ � 0.05

500 2 1.27 4.88 6.72 6.33 6.50 6.52 0.78 4.36 5.91 5.71 5.75 5.82

4 0.90 4.88 6.83 6.44 6.62 6.63 0.69 4.67 5.94 5.73 5.79 5.84

6 1.04 4.91 6.81 6.46 6.62 6.63 0.37 4.75 6.03 5.83 5.87 5.93

1000 2 0.48 3.24 4.05 3.90 3.97 3.97 0.30 3.13 3.57 3.53 3.53 3.55

4 0.50 3.34 4.09 3.94 4.01 4.02 0.35 3.13 3.54 3.48 3.49 3.51

6 0.43 3.29 4.13 3.99 4.06 4.06 0.18 3.35 3.66 3.61 3.62 3.64

2000 2 0.29 2.23 2.59 2.53 2.56 2.56 0.28 2.15 2.30 2.29 2.29 2.30

4 0.15 2.26 2.62 2.56 2.59 2.59 0.10 2.26 2.31 2.30 2.30 2.30

6 0.16 2.25 2.63 2.57 2.60 2.60 0.15 2.20 2.32 2.31 2.31 2.31

τ � 0.1

500 2 0.67 4.35 5.34 5.22 5.27 5.28 0.69 4.32 4.82 4.87 4.83 4.85

4 0.47 4.59 5.43 5.31 5.36 5.38 0.42 4.31 4.84 4.87 4.85 4.86

6 0.61 4.64 5.44 5.33 5.37 5.39 0.08 4.52 4.90 4.93 4.90 4.92

1000 2 0.36 3.13 3.44 3.41 3.42 3.43 0.25 3.14 3.26 3.28 3.26 3.28

4 0.15 3.19 3.51 3.47 3.49 3.49 0.30 3.01 3.17 3.19 3.18 3.18

6 0.30 3.16 3.54 3.51 3.52 3.53 -0.01 3.20 3.29 3.30 3.29 3.30

2000 2 0.20 2.23 2.33 2.32 2.32 2.33 0.09 2.21 2.23 2.24 2.23 2.24

4 0.02 2.14 2.36 2.35 2.36 2.36 0.10 2.19 2.21 2.21 2.20 2.21

6 0.14 2.19 2.38 2.37 2.38 2.37 0.04 2.18 2.23 2.23 2.23 2.23
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Table S.7: Rejection rate (%) of the test statistic QpKq for K � 6 at the 5% significance

level, for normal or Student’s t5-distributed innovations and d � 0, 0.3 or 0.6, where Qi

denotes the test statistic based on random weight Wi for i � 1, . . . , 4.

Normal distribution Student’s t5 distribution

n d Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

τ � 0.05

500 0.0 2.8 2.0 2.1 2.0 1.9 1.8 2.1 1.4

0.3 4.8 3.3 4.2 3.6 3.8 2.7 3.3 2.9

0.6 7.4 6.9 6.7 6.8 7.8 7.2 8.4 7.3

1000 0.0 3.3 2.9 3.4 3.3 3.0 3.2 3.4 3.0

0.3 7.2 6.5 6.6 6.5 10.6 9.8 10.7 9.9

0.6 21.6 21.4 21.8 21.4 29.4 29.6 29.5 29.5

2000 0.0 4.5 4.4 4.4 4.4 5.3 4.7 5.2 4.8

0.3 16.1 15.7 15.4 15.9 27.9 26.5 27.4 26.9

0.6 55.2 54.8 54.7 55.0 69.8 70.6 69.8 70.6

τ � 0.1

500 0.0 3.4 2.9 3.1 3.2 3.4 3.7 3.7 3.2

0.3 6.9 6.0 6.8 6.4 6.5 5.9 6.2 5.9

0.6 27.0 25.1 26.7 25.8 21.0 20.1 20.1 20.1

1000 0.0 4.0 3.7 3.9 4.4 4.3 4.2 4.3 3.9

0.3 15.7 15.8 15.5 15.4 16.3 15.7 16.5 16.0

0.6 60.9 61.3 61.0 60.7 46.8 47.2 46.6 46.9

2000 0.0 4.9 4.4 4.5 4.5 4.3 4.2 4.2 4.2

0.3 36.5 35.5 36.0 36.3 34.3 34.2 33.8 33.4

0.6 92.5 93.3 92.9 92.8 83.2 83.1 82.9 83.1

Three sample sizes, n � 500, 1000 and 2000, and two quantile levels, τ � 0.05 and 0.1,

were considered, with 1000 replications for each sample size. Table S.6 reports the results

for four distributions for the random weights tωtu: the standard exponential distribution

(W1); the Rademacher distribution (W2), which takes the values 0 or 2, each with proba-

bility 0.5 (Li et al., 2014); Mammen’s two-point distribution (W3), which takes the value

p�?5 � 3q{2 with probability p?5 � 1q{2?5 and the value p?5 � 3q{2 with probability

1�p?5� 1q{2?5 (Mammen, 1993); and a mixture of the standard exponential distribu-

tion and the Rademacher distribution (W4) with mixing probability 0.5. We can observe

that the choice of random weights has little influence on the bootstrap approximations,

and our other findings are similar to those in Section 5.

11



In the third experiment in Section 5, we evaluated the empirical size and power of

the proposed test statistic QpKq. The data generating process was

xt �
a
htηt, ht � 0.4 � 0.2x2

t�1 � dx2
t�4 � 0.2ht�1,

with tηtu following the same distributions as in the previous experiment, and the depar-

ture d � 0, 0.3 or 0.6. We conducted the estimation assuming a GARCH(1, 1) model;

thus, d � 0 corresponds to the size of the test, and d � 0 corresponds to the power.

Table S.7 reports the results for the four random weights distributions considered in

the previous experiment. Again, the performance is insensitive to the choice of random

weights, and our other findings are also similar to those reported in Section 5.

3 Additional results for the empirical analysis

3.1 Case-by-case comparison with the FHS method

To further illustrate the superiority of the proposed method over the FHS method in the

empirical analysis, we conduct a case-by-case comparison of the two methods based on

the results reported in Table 4 of the paper.

As the CC and DQ tests are complementary to each other, we focus on the minimum

of the two p-values to evaluate the backtesting performance. We categorize the 18 cases

reported in Table 4 in the paper (i.e., six quantile levels for three stock market indexes)

into three groups and employ the following criteria for each group:

• Category-0: If for both methods, the minimum p-value is less than 0.05 (i.e., at

least one p-value is less than 0.05), then both methods are equally poor, and hence

we do not compare them for this case.

• Category-1: If for both methods, the minimum p-value is larger than 0.2 (i.e.,

both p-values are larger than 0.2), then both methods are equally good in terms of

backtesting, and the method with the smaller empirical coverage error is better.

• Category-2: For all other cases, the method with the larger minimum p-value is

better; i.e., the backtesting result determines which method is better.

Table S.8 summarizes the empirical coverage error, minimum p-values, the winner

and the corresponding category of each case, which shows that the proposed hybrid

12



Table S.8: Empirical coverage error (%), minimum p-value of the CC and DQ tests,

the better method (H, Hybrid; F, FHS) and corresponding category for all the 18 cases

considered in the paper.

ECE Minimum p-value Better method

Hybrid FHS Hybrid FHS (category)

S&P 500

L1.0 -0.02 0.04 0.000 0.082 F (2)

L2.5 -0.48 -0.36 0.001 0.005 -

L5.0 -0.90 -1.15 0.017 0.016 -

U5.0 0.54 0.84 0.245 0.244 H (1)

U2.5 0.30 0.42 0.356 0.222 H (1)

U1.0 0.08 0.33 0.275 0.342 H (1)

Dow 30

L1.0 -0.14 0.16 0.063 0.115 F (2)

L2.5 -0.54 -0.24 0.000 0.000 -

L5.0 -0.72 -0.78 0.000 0.027 -

U5.0 0.84 1.21 0.273 0.064 H (2)

U2.5 0.11 0.24 0.568 0.806 H (1)

U1.0 -0.28 0.39 0.418 0.221 H (1)

HSI

L1.0 0.11 -0.02 0.393 0.425 F (1)

L2.5 -0.04 0.14 0.362 0.290 H (1)

L5.0 -0.69 -0.69 0.421 0.159 H (2)

U5.0 0.14 -0.23 0.766 0.635 H (1)

U2.5 0.04 0.35 0.477 0.631 H (1)

U1.0 -0.17 0.26 0.048 0.492 F (2)

method is better for 10 cases, while the FHS method is better for 4 cases. Therefore, we

may conclude that the proposed method achieves better performance overall.

3.2 Performance of the proposed method after quantile rear-

rangements

We have also re-calculated both the backtesting and empirical coverage results for the

proposed hybrid method after conducting the quantile rearrangement in Chernozhukov

et al. (2010). We find that all empirical coverage errors do not change at all from the
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results in Table 4 in the paper, after the percentage points are rounded down to two

decimal places. Moreover, the p-values of the CC and DQ tests change very little; see

Table S.9 for the p-values of the tests for the proposed method before and after the

quantile rearrangement for all the 18 cases considered in the paper.

Table S.9: p-values of the CC and DQ tests for the proposed method before and after

the quantile rearrangement for all the 18 cases considered in the paper.

Before rearrangement After rearrangement

τ S&P 500 Dow 30 HSI S&P 500 Dow 30 HSI

L1.0 CC 0.031 0.228 0.746 0.031 0.228 0.746

DQ 0.000 0.063 0.393 0.000 0.064 0.397

L2.5 CC 0.007 0.028 0.362 0.007 0.028 0.362

DQ 0.001 0.000 0.571 0.001 0.000 0.570

L5.0 CC 0.017 0.212 0.421 0.017 0.212 0.421

DQ 0.017 0.000 0.556 0.017 0.000 0.558

U5.0 CC 0.544 0.273 0.866 0.544 0.273 0.866

DQ 0.245 0.281 0.766 0.245 0.282 0.763

U2.5 CC 0.356 0.568 0.995 0.356 0.568 0.995

DQ 0.585 0.656 0.477 0.585 0.655 0.471

U1.0 CC 0.275 0.418 0.640 0.275 0.418 0.640

DQ 0.384 0.905 0.048 0.384 0.906 0.054

4 Technical details

This section gives detailed proofs of Lemma A.1, Theorems 1–4, Corollaries 1–3 and

Equation (2.6). A preliminary Lemma S.1 is also included, which is used to prove the

asymptotic negligibility of the effect of the initial values tx2
0, . . . , x

2
1�q, h0, . . . , h1�pu.

Throughout the proofs, C is a generic positive constant which may take different

values at its different occurrences, and CpMq is such a constant whose value depends

on M . We denote by } � } the norm of a matrix or column vector, defined as }A} �a
trpAA1q �

b°
i,j |aij|2. In addition, let ztpθq � p1, x2

t�1, . . . , x
2
t�q, ht�1pθq, . . . , ht�ppθqq1,rztpθq � p1, x2

t�1, . . . , x
2
t�q,

rht�1pθq, . . . ,rht�ppθqq1, and, for simplicity, write zt � ztpθ0q,
z̆t � rztpθ0q, and rzt � rztprθnq, where rθn is the Gaussian QMLE of model (1.1). In the proofs

of Theorems 2 and 4, the notations E�, O�
p p1q and o�pp1q correspond to the bootstrap
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probability space.

Lemma S.1. Under Assumption 1,

sup
θPΘ

|rhtpθq � htpθq| ¤ Cρtζ and sup
θPΘ

�����BrhtpθqBθ � Bhtpθq
Bθ

����� ¤ Cρtζ,

where C ¡ 0 and 0   ρ   1 are constants, and ζ is a random variable independent of t

with E|ζ|δ0   8 for some δ0 ¡ 0.

Proof of Lemma S.1. The lemma can be proved by a method similar to that for Equa-

tions (6) and (7) in the proof of Theorem 1 in Zheng et al. (2016).

Proof of Lemma A.1. We first prove (i). For any θ � pα0, α1, . . . , αq, β1, . . . , βpq1 P Θ

and γ ¡ 1, define

Upγ, θq � tθ� � pα�0 , α�1 , . . . , α�q , β�1 , . . . , β�p q1 P Θ : max
1¤j¤p

β�j
βj

¤ γu.

Claim (i) follows from a more general result: for any κ ¡ 0, there is γ ¡ 1 such that

E

�
sup
θPΘ

sup
θ�PUpγ,θq

htpθ�q
htpθq

�κ
  8. (S.2)

Notice that for any θ, the set Upγ, θq only imposes an upper bound on the β�j ’s, while

the condition }θ1 � θ2} ¤ c restricts the distance between θ1 and θ2.

We shall prove (S.2). Note that the functions htpθq, as defined recursively in (2.2),

can be written in the form of

htpθq � c0pθq �
8̧

j�1

cjpθqx2
t�j,

and the series converges with probability one for all θ P Θ; see, e.g., Berkes et al. (2003).

Moreover, c0pθq � α0{p1� β1 � � � � � βpq ¥ C1 � w{p1� pwq ¡ 0 for all θ P Θ, and from

Lemma 3.1 in Berkes et al. (2003), it holds that

sup
θPΘ

cjpθq ¤ C2ρ
j
1, j ¥ 0, (S.3)

where ρ1 � ρ
1{p
0 P p0, 1q, and

sup
θPΘ

sup
θ�PUpγ,θq

cjpθ�q
cjpθq ¤ C3γ

j, j ¥ 0, (S.4)

for some constants C2, C3 ¡ 0. Using (S.4), we have

sup
θPΘ

sup
θ�PUpγ,θq

htpθ�q
htpθq ¤ C2

C1

� C3 sup
θPΘ

°8
j�1 γ

jcjpθqx2
t�j

C1 �
°8
j�1 cjpθqx2

t�j

,
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and then it suffices to show that for any κ ¥ 1,�����sup
θPΘ

°8
j�1 γ

jcjpθqx2
t�j

C1 �
°8
j�1 cjpθqx2

t�j

�����
κ

  8,

where } � }κ denotes the Lκ norm, i.e., }X}κ � pE|X|κq1{κ. Note that there is δ0 ¡ 0 such

that E|x2
0|δ0   8. Thus, for any κ ¥ 1 and δ1 P p1�δ0{κ, 1q, by (S.3) and the Minkowski

inequality, we have�����sup
θPΘ

°8
j�1 γ

jcjpθqx2
t�j

C1 �
°8
j�1 cjpθqx2

t�j

�����
κ

¤
�����sup
θPΘ

8̧

j�1

γjcjpθqx2
t�j

C1�δ1
1 rcjpθqx2

t�jsδ1

�����
κ

¤ C
�p1�δ1q
1

����� 8̧

j�1

γjpC2ρ
j
1x

2
t�jq1�δ1

�����
κ

¤ C
8̧

j�1

pγρ1�δ1
1 qj �E|x2

0|p1�δ1qκ
�1{κ   8,

if γ is close enough to 1. Therefore, (S.2) holds, and so does (i).

From the proof of Theorem 2.2 in Francq and Zakoian (2004), under Assumption 1,

for any κ ¡ 0,

E sup
θPΘ

���� 1

htpθq
Bhtpθq
Bθ

����κ   8, E sup
θPΘ

���� 1

htpθq
B2htpθq
BθBθ1

����κ   8 and

E sup
θPΘ

���� 1

htpθq
B3htpθq
BθiBθkBθ`

����κ   8,

where 1 ¤ i, k, ` ¤ p�q�1; see also Lemma 3.6 in Berkes and Horváth (2004). Combining

these with (i), we immediately obtain (ii)-(iv).

Proof of Theorem 1. Let Lnpθq �
°n
t�1
rh�1
t ρτ pyt�θ1rztq and L̆npθq �

°n
t�1
rh�1
t ρτ pyt�θ1z̆tq.

Notice that for x � 0,

ρτ px� yq � ρτ pxq � �yψτ pxq �
» y

0

rIpx ¤ sq � Ipx ¤ 0qsds, (S.5)

where ψτ pxq � τ � Ipx   0q; see Knight (1998). Then, for any fixed u P Rp�q�1,

Lnpθτ0 � n�1{2uq � L̆npθτ0q � �L1npuq � L2npuq, (S.6)

where

L1npuq �
ņ

t�1

ψτ pĕt,τ qrh�1
t

�pθτ0 � n�1{2uq1rzt � θ1τ0z̆t
�
,

L2npuq �
ņ

t�1

rh�1
t

» pθτ0�n�1{2uq1rzt�θ1τ0z̆t

0

rIpĕt,τ ¤ sq � Ipĕt,τ ¤ 0qs ds,
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and ĕt,τ � yt� θ1τ0z̆t. Let upjq be the pj� q� 1q-th element of u, and denote β
pjq
τ0 � bτβ0j,

for j � 1, . . . , p. It can be verified that

pθτ0 � n�1{2uq1rzt � θ1τ0z̆t � ξ1ntprθnq � ξ2ntprθnq � ξ3ntprθnq, (S.7)

where

ξ1ntpθq � n�1{2u1zt �
p̧

j�1

β
pjq
τ0

Bht�jpθ0q
Bθ1 pθ � θ0q,

ξ2ntpθq � 1?
n

p̧

j�1

upjqrht�jpθq � ht�js �
p̧

j�1

β
pjq
τ0

�
ht�jpθq � ht�j � Bht�jpθ0q

Bθ1 pθ � θ0q
�
,

ξ3ntpθq � 1?
n

p̧

j�1

upjqrrht�jpθq � ht�jpθqs

�
p̧

j�1

β
pjq
τ0

!
rrht�jpθq � ht�jpθqs � rrht�jpθ0q � ht�js

)
.

For any M ¡ 0, denote Θn � ΘnpMq � tθ P Θ : }θ � θ0} ¤ n�1{2Mu. Using the Taylor

expansion, it holds that

sup
θPΘn

|ξ2ntpθq| ¤ M

n

p̧

j�1

|upjq| sup
θPΘn

����Bht�jpθqBθ
����� M2

2n

p̧

j�1

|βpjqτ0 | sup
θPΘn

����B2ht�jpθq
BθBθ1

���� , (S.8)

and by Lemma S.1,

sup
θPΘn

|ξ3ntpθq|

¤ 1?
n

p̧

j�1

�
|upjq| sup

θPΘ
|rht�jpθq � ht�jpθq| �M |βpjqτ0 | sup

θPΘ

�����Brht�jpθqBθ � Bht�jpθq
Bθ

�����
�

¤ n�1{2CpMqρtζ. (S.9)

Moreover,

ĕt,τ � pεt � bτ qht � at, where at �
p̧

j�1

β
pjq
τ0 rht�j � rht�jpθ0qs P F0. (S.10)

We first consider L1npuq, which can be decomposed into four parts,

L1npuq �
ņ

t�1

A1ntprθnq � ņ

t�1

A2ntprθnq � ņ

t�1

A3ntprθnq � ņ

t�1

A4ntprθnq, (S.11)

where

A1ntpθq � ψτ pĕt,τ qrh�1
t pθqξ3ntpθq � ψτ pĕt,τ qrrh�1

t pθq � h�1
t pθqsrξ1ntpθq � ξ2ntpθqs,

A2ntpθq � rψτ pĕt,τ q � ψτ pεt � bτ qsh�1
t pθqrξ1ntpθq � ξ2ntpθqs,

17



A3ntpθq � ψτ pεt � bτ qh�1
t pθqξ2ntpθq and A4ntpθq � ψτ pεt � bτ qh�1

t pθqξ1ntpθq.

Note that infθPΘ htpθq ¥ w and infθPΘ
rhtpθq ¥ w. By Lemma S.1, (S.8) and (S.9), we can

show that

sup
θPΘn

����� ņ
t�1

A1ntpθq
����� ¤ 1

w

ņ

t�1

sup
θPΘn

|ξ3ntpθq| � Cζ

w2

ņ

t�1

ρt sup
θPΘn

p|ξ1ntpθq| � |ξ2ntpθq|q

� opp1q, (S.12)

which, together with the fact that
?
nprθn � θ0q � Opp1q, implies that

ņ

t�1

A1ntprθnq � opp1q. (S.13)

Note that by Lemma S.1 and Assumption 2, we have

|F pbτ q � F pbτ � h�1
t atq| ¤ sup

xPR
fpxq

p̧

j�1

|βpjqτ0 |
w

|ht�jpθ0q � rht�jpθ0q| ¤ Cρtζ.

It then follows from (S.10) that

E|ψτ pĕt,τ q � ψτ pεt � bτ q| � E|F pbτ q � F pbτ � h�1
t atq|

� Er|F pbτ q � F pbτ � h�1
t atq|IpCρtζ ¤ ρt{2qs

� Er|F pbτ q � F pbτ � h�1
t atq|IpCρtζ ¡ ρt{2qs

¤ ρt{2 � PrpCρtζ ¡ ρt{2q ¤ ρt{2 � Cρδ0t{2, (S.14)

where we used the Markov inequality and the fact that E|ζ|δ0   8. Moreover,

}h�1
t zt} ¤

?
p� q � 1

w
, (S.15)

sup
θ1,θ2PΘn

����ξ1ntpθ2q
htpθ1q

���� ¤ |h�1
t u1zt|?
n

sup
θPΘn

ht
htpθq�

M

w
?
n

p̧

j�1

|βpjqτ0 | sup
θPΘn

���� 1

ht�jpθq
Bht�jpθ0q

Bθ
���� , (S.16)

and by the Taylor expansion,

sup
θ1,θ2PΘn

����ξ2ntpθ2q
htpθ1q

���� ¤ M

wn

p̧

j�1

|upjq| sup
θ1,θ2PΘn

���� 1

ht�jpθ1q
Bht�jpθ2q

Bθ
����

� M2

2wn

p̧

j�1

|βpjqτ0 | sup
θ1,θ2PΘn

���� 1

ht�jpθ1q
B2ht�jpθ2q
BθBθ1

���� . (S.17)

As a result, by the Hölder inequality, Lemma A.1 and (S.14)-(S.17), we have

E sup
θPΘn

����� ņ
t�1

A2ntpθq
����� ¤ ņ

t�1

rE|ψτ pĕt,τ q � ψτ pεt � bτ q|s1{2
�
E sup

θPΘn

� |ξ1ntpθq| � |ξ2ntpθq|
htpθq


2
�1{2

� op1q,
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which, together with the fact that
?
nprθn � θ0q � Opp1q, implies that

ņ

t�1

A2ntprθnq � opp1q. (S.18)

Applying the Taylor expansion to h�1
t pθq and ξ2ntpθq respectively, we have

h�1
t pθqξ2ntpθq � ξ4ntpθq � ξ5ntpθq, (S.19)

where

ξ4ntpθq � 1?
n

p̧

j�1

upjq

ht

Bht�jpθ0q
Bθ1 pθ � θ0q � 1

2
pθ � θ0q1

p̧

j�1

β
pjq
τ0

ht

B2ht�jpθ0q
BθBθ1 pθ � θ0q,

ξ5ntpθq � �ξ2ntpθq
h2
t pθ�1 q

Bhtpθ�1 q
Bθ1 pθ � θ0q � pθ � θ0q1

2
?
n

p̧

j�1

upjq

ht

B2ht�jpθ�2 q
BθBθ1 pθ � θ0q

� 1

6

p̧

j�1

p�q�1¸
i,k,`�1

β
pjq
τ0

ht

B3ht�jpθ�2 q
BθiBθkBθ` pθi � θ0iqpθk � θ0kqpθ` � θ0`q,

with θ�1 and θ�2 both between θ and θ0. Then, it follows from Lemma A.1, the ergodic

theorem and
?
nprθn � θ0q � Opp1q that

ņ

t�1

ψτ pεt � bτ qξ4ntprθnq � opp1q (S.20)

and

E sup
θPΘn

����� ņ
t�1

ψτ pεt � bτ qξ5ntpθq
����� ¤ ņ

t�1

E sup
θPΘn

|ξ5ntpθq| � Opn�1{2q, (S.21)

which implies

ņ

t�1

A3ntprθnq � opp1q. (S.22)

By a method similar to that for
°n
t�1A3ntprθnq, we can show that

ņ

t�1

ψτ pεt � bτ qrh�1
t prθnq � h�1

t sξ1ntprθnq � opp1q,

which implies

ņ

t�1

A4ntprθnq � ņ

t�1

ψτ pεt � bτ qh�1
t ξ1ntprθnq � opp1q � u1T1n � T2n � opp1q, (S.23)

where

T1n � 1?
n

ņ

t�1

ψτ pεt�bτ q zt
ht

and T2n �
?
nprθn�θ0q1 1?

n

ņ

t�1

ψτ pεt�bτ q
p̧

j�1

β
pjq
τ0

ht

Bht�jpθ0q
Bθ .
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Combining (S.11), (S.13), (S.18), (S.22), and (S.23), we have

L1npuq � u1T1n � T2n � opp1q. (S.24)

Next we consider L2npuq. For simplicity, denote I�t psq � Ipĕt,τ ¤ sq � Ipĕt,τ ¤ 0q.
From (S.7), we have the decomposition

L2npuq �
ņ

t�1

B1ntprθnq � ņ

t�1

B2ntprθnq � ņ

t�1

B3ntprθnq � ņ

t�1

B4ntprθnq, (S.25)

where

B1ntpθq � rh�1
t pθq

» ξ1ntpθq�ξ2ntpθq�ξ3ntpθq

ξ1ntpθq�ξ2ntpθq

I�t psqds� rrh�1
t pθq � h�1

t pθqs
» ξ1ntpθq�ξ2ntpθq

0

I�t psqds,

B2ntpθq � h�1
t pθq

» ξ1ntpθq�ξ2ntpθq

ξ1ntpθq

I�t psqds,

B3ntpθq � rh�1
t pθq � h�1

t s
» ξ1ntpθq

0

I�t psqds, and B4ntpθq � h�1
t

» ξ1ntpθq

0

I�t psqds.

By a method similar to that for (S.13), we can show that

sup
θPΘn

����� ņ
t�1

B1ntpθq
����� ¤ ņ

t�1

sup
θPΘn

�
|ξ3ntpθq|rhtpθq �

����� 1rhtpθq � 1

htpθq

����� p|ξ1ntpθq| � |ξ2ntpθq|q
�

� opp1q, (S.26)

which, together with the fact that
?
nprθn � θ0q � Opp1q, implies

ņ

t�1

B1ntprθnq � opp1q. (S.27)

From (S.10), (S.16), (S.17), Assumption 2 and the Hölder inequality, we have

E sup
θPΘn

����� ņ
t�1

B2ntpθq
�����

¤ E
ņ

t�1

sup
θPΘn

|h�1
t pθqξ2ntpθq|I

�
|ĕt,τ | ¤ sup

θPΘn

p|ξ1ntpθq| � |ξ2ntpθq|q



¤
c

2 sup
xPR

fpxq
ņ

t�1

�
E sup

θPΘn

����ξ2ntpθq
htpθq

����2
�1{2 �

E sup
θPΘn

p|ξ1ntpθq| � |ξ2ntpθq|q
ht

�1{2

� op1q,

which, combined with the fact that
?
nprθn � θ0q � Opp1q, yields

ņ

t�1

B2ntprθnq � opp1q. (S.28)
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Similarly, it follows from (S.10), (S.16), Assumption 2 and the Hölder inequality that

E sup
θPΘn

����� ņ
t�1

B3ntpθq
����� ¤ E

ņ

t�1

sup
θPΘn

��rh�1
t pθq � h�1

t sξ1ntpθq
�� I �|ĕt,τ | ¤ sup

θPΘn

|ξ1ntpθq|


� op1q,

and then
ņ

t�1

B3ntprθnq � opp1q. (S.29)

Finally, for
°n
t�1B4ntprθnq, denote

B�
4ntpθq � h�1

t

» ξ1ntpθq

0

�
F pbτ � h�1

t at � h�1
t sq � F pbτ � h�1

t atq
�
ds,

and we first show that
ņ

t�1

B4ntprθnq � ņ

t�1

B�
4ntprθnq � opp1q. (S.30)

For any v P Rp�q�1, let ηtpvq � h�1
t

³ξ1ntpθ0�n�1{2vq

0
I�t psqds, and denote

Snpvq �
ņ

t�1

�
B4ntpθ0 � n�1{2vq �B�

4ntpθ0 � n�1{2vq� � ņ

t�1

tηtpvq � Erηtpvq|Ft�1su .

For any fixed v such that }v} ¤M , by (S.16), Lemma A.1 and Assumption 2, we have

Eη2
t pvq ¤ E

#
|ξ1ntpθ0 � n�1{2vq|

h2
t

» ξ1ntpθ0�n�1{2vq

0

rF pbτ � at
ht
� s

ht
q � F pbτ � at

ht
qsds

+
¤ 1

2
sup
xPR

fpxqE|h�1
t ξ1ntpθ0 � n�1{2vq|3 ¤ n�3{2C, (S.31)

implying that

ES2
npvq ¤

ņ

t�1

Eη2
t pvq � op1q. (S.32)

Note that

h�1
t sup

}v1�v2}¤δ

|ξ1ntpθ0�n�1{2v1q� ξ1ntpθ0�n�1{2v2q| ¤ δ

w
?
n

p̧

j�1

|βpjqτ0 |
���� 1

ht�j

Bht�jpθ0q
Bθ

���� .
Then, for any v1, v2 P Rp�q�1 such that }v1}, }v2} ¤M , in view of (S.10), (S.16), Lemma

A.1 and Assumption 2, we have

E sup
}v1�v2}¤δ

|ηtpv1q � ηtpv2q|

� E

�
h�1
t sup

}v1�v2}¤δ

�����
» ξ1ntpθ0�n�1{2v1q

ξ1ntpθ0�n�1{2v2q

I�t psqds
�����
�

¤ E

�
h�1
t sup

}v1�v2}¤δ

|ξ1ntpθ0 � n�1{2v1q � ξ1ntpθ0 � n�1{2v2q|I
�|ĕt,τ | ¤ sup

θPΘn

|ξ1ntpθq|
��

¤ 2δ

w
?
n

sup
xPR

fpxqE
�

sup
θPΘn

|ξ1ntpθq|
ht

p̧

j�1

|βpjqτ0 |
���� 1

ht�j

Bht�jpθ0q
Bθ

����
�
¤ n�1δC,
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and hence

E sup
}v1�v2}¤δ

|Snpv1q � Snpv2q| ¤ 2
ņ

t�1

E sup
}v1�v2}¤δ

|ηtpv1q � ηtpv2q| ¤ 2δC,

which, together with (S.32) and the finite covering theorem, implies sup}v}¤M |Snpvq| �
opp1q, and then (S.30) holds.

By elementary calculation and the Taylor expansion, we have

ņ

t�1

B�
4ntpθq �

ņ

t�1

h�1
t

» ξ1ntpθq

0

fpbτ � h�1
t atqh�1

t sds�R1npθq

� 1

2
fpbτ q

ņ

t�1

h�2
t ξ2

1ntpθq �R2npθq �R1npθq, (S.33)

where

R1npθq � 1

2

ņ

t�1

h�3
t

» ξ1ntpθq

0

9fpb�τ,tpsqqs2ds,

with b�τ,tpsq lying between bτ � h�1
t at and bτ � h�1

t at � h�1
t s, and

R2npθq � 1

2

ņ

t�1

h�2
t ξ2

1ntpθqrfpbτ � h�1
t atq � fpbτ qs.

Note that

sup
θPΘn

|R1npθq| ¤ 1

6
sup
xPR

| 9fpxq|
ņ

t�1

sup
θPΘn

����ξ1ntpθq
ht

����3 ,
and by Lemma S.1,

sup
θPΘn

|R2npθq| ¤ 1

2
C sup

xPR
| 9fpxq|ζ

ņ

t�1

ρt sup
θPΘn

����ξ1ntpθq
ht

����2 .
Then, by (S.16), Lemma A.1 and Assumption 2, we have

R1nprθnq � opp1q and R2nprθnq � opp1q.

Hence, by (S.25), (S.27)-(S.30) and (S.33), together with the ergodic theorem, we have

L2npuq � 1

2
fpbτ q

ņ

t�1

h�2
t ξ2

1ntprθnq � opp1q

� 1

2
fpbτ qu1Ω2u� bτfpbτ qu1Γ2

?
nprθn � θ0q � T3n � opp1q, (S.34)

where

T3n � 1

2
fpbτ qprθn � θ0q1

ņ

t�1

p̧

j1�1

p̧

j2�1

β
pj1q
τ0 β

pj2q
τ0

1

h2
t

Bht�j1pθ0q
Bθ

Bht�j2pθ0q
Bθ1 prθn � θ0q.
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Combining (S.6), (S.24) and (S.34) yields that

Lnpθτ0 � n�1{2uq � L̆npθτ0q � � u1
�
T1n � bτfpbτ qΓ2

?
nprθn � θ0q

�
� 1

2
fpbτ qu1Ω2u

� T2n � T3n � opp1q,

where

?
nprθn � θ0q � �J

�1

?
n

ņ

t�1

1 � |εt|
ht

Bhtpθ0q
Bθ � opp1q; (S.35)

see Francq and Zakoian (2004). By the central limit theorem and Corollary 2 in Knight

(1998), together with the convexity of Lnp�q, we have

?
nppθτn � θτ0q � Ω�1

2

fpbτ qT1n � bτΩ
�1
2 Γ2

?
nprθn � θ0q � opp1q Ñd Np0,Σ1q, (S.36)

where T1n � n�1{2
°n
t�1 ψτ pεt � bτ qzt{ht; see also Lemma 2.2 of Davis et al. (1992). The

proof is complete.

Proof of Theorem 2. Let L�
npθq �

°n
t�1 ωt

rh�1
t ρτ pyt�θ1rz�t q and L̆�

npθq �
°n
t�1 ωt

rh�1
t ρτ pyt�

θ1z̆tq. For any fixed u P Rp�q�1, similar to (S.6), it holds that

L�
npθτ0 � n�1{2uq � L̆�

npθτ0q � �L�
1npuq � L�

2npuq, (S.37)

where

L�
1npuq �

ņ

t�1

ωtψτ pĕt,τ qrh�1
t

�pθτ0 � n�1{2uq1rz�t � θ1τ0z̆t
�
,

L�
2npuq �

ņ

t�1

ωtrh�1
t

» pθτ0�n�1{2uq1rz�t �θ
1
τ0z̆t

0

rIpĕt,τ ¤ sq � Ipĕt,τ ¤ 0qs ds,

and

pθτ0 � n�1{2uq1rz�t � θ1τ0z̆t � ξ1ntprθ�nq � ξ2ntprθ�nq � ξ3ntprθ�nq.
From the proof of Theorem 1, we have rJ � J � opp1q, which together with (3.4) implies

?
nprθ�n � rθnq � �J

�1

?
n

ņ

t�1

pωt � 1q
�

1 � |yt|
ht



1

ht

Bhtpθ0q
Bθ � o�pp1q, (S.38)

and

?
nprθ�n � θ0q �

?
nprθ�n � rθnq � ?

nprθn � θ0q � O�
p p1q. (S.39)
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Without any confusion, we redefine the functions Aint with 1 ¤ i ¤ 4 from the proof

of Theorem 1 as follows,

A1ntpθ1, θ2q � ψτ pĕt,τ qrh�1
t pθ1qξ3ntpθ2q � ψτ pĕt,τ qrrh�1

t pθ1q � h�1
t pθ1qsrξ1ntpθ2q � ξ2ntpθ2qs,

A2ntpθ1, θ2q � rψτ pĕt,τ q � ψτ pεt � bτ qsh�1
t pθ1qrξ1ntpθ2q � ξ2ntpθ2qs,

A3ntpθ1, θ2q � ψτ pεt � bτ qh�1
t pθ1qξ2ntpθ2q, and A4ntpθ1, θ2q � ψτ pεt � bτ qh�1

t pθ1qξ1ntpθ2q,

as well as Bint with 1 ¤ i ¤ 3 as follows,

B1ntpθ1, θ2q � rh�1
t pθ1q

» ξ1ntpθ2q�ξ2ntpθ2q�ξ3ntpθ2q

ξ1ntpθ2q�ξ2ntpθ2q

I�t psqds

� rrh�1
t pθ1q � h�1

t pθ1qs
» ξ1ntpθ2q�ξ2ntpθ2q

0

I�t psqds,

B2ntpθ1, θ2q � h�1
t pθ1q

» ξ1ntpθ2q�ξ2ntpθ2q

ξ1ntpθ2q

I�t psqds, and

B3ntpθ1, θ2q � rh�1
t pθ1q � h�1

t s
» ξ1ntpθ2q

0

I�t psqds,

while the definition of B4ntp�q is the same as in the proof of Theorem 1.

By methods similar to (S.13), (S.18), (S.22) and (S.23) respectively, together with

Assumption 2, Lemma S.1, (S.8), (S.9) and (S.38), we can show that

ņ

t�1

ωtAintprθn, rθ�nq � o�pp1q, 1 ¤ i ¤ 3,

and

ņ

t�1

ωtA4ntprθn, rθ�nq � ņ

t�1

ωtψτ pεt � bτ qh�1
t ξ1ntprθ�nq � o�pp1q � u1T �

1n � T �
2n � o�pp1q,

where T �
1n � n�1{2

°n
t�1 ωtψτ pεt � bτ qzt{ht and

T �
2n �

?
nprθ�n � θ0q1 1?

n

ņ

t�1

ωtψτ pεt � bτ q
p̧

j�1

β
pjq
τ0

ht

Bht�jpθ0q
Bθ ,

where β
pjq
τ0 � bτβ0j, j � 1, . . . , p, is defined as in the proof of Theorem 1. As a result,

L�
1npuq �

ņ

t�1

ωtA1ntprθn, rθ�nq � ņ

t�1

ωtA2ntprθn, rθ�nq � ņ

t�1

ωtA3ntprθn, rθ�nq � ņ

t�1

ωtA4ntprθn, rθ�nq
� u1T �

1n � T �
2n � o�pp1q. (S.40)

Moreover, by methods similar to (S.27)-(S.29), we can verify that

ņ

t�1

pωt � 1qBintprθn, rθ�nq � o�pp1q, 1 ¤ i ¤ 3, and
ņ

t�1

pωt � 1qB4ntprθ�nq � o�pp1q,
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which implies

L�
2npuq �

ņ

t�1

B1ntprθn, rθ�nq � ņ

t�1

B2ntprθn, rθ�nq � ņ

t�1

B3ntprθn, rθ�nq � ņ

t�1

B4ntprθ�nq � o�pp1q,

and hence, similar to the proof of (S.34), it can be further verified that

L�
2npuq �

1

2
fpbτ qu1Ω2u� bτfpbτ qu1Γ2

?
nprθ�n � θ0q � T �

3n � o�pp1q, (S.41)

where

T �
3n �

1

2
fpbτ qprθ�n � θ0q1

ņ

t�1

p̧

j1�1

p̧

j2�1

β
pj1q
τ0 β

pj2q
τ0

1

h2
t

Bht�j1pθ0q
Bθ

Bht�j2pθ0q
Bθ1 prθ�n � θ0q.

Therefore, combining (S.37), (S.40) and (S.41), we have

L�
npθτ0 � n�1{2uq � L̆�

npθτ0q � � u1
�
T �

1n � bτfpbτ qΓ2

?
nprθ�n � θ0q

�
� 1

2
fpbτ qu1Ω2u

� T �
2n � T �

3n � o�pp1q,

where T �
1n � n�1{2

°n
t�1 ωtψτ pεt � bτ qzt{ht.

Denote Xt � n�1{2pωt � 1qψτ pεt � bτ qzt{ht, and then T �
1n � T1n �

°n
t�1Xt. For any

constant vector c P Rp�q�1, let µt � E�pc1Xtq and σ2
n �

°n
t�1E

�pc1XtX
1
tcq. Then, µt � 0,

and by (S.15) we have�
ņ

t�1

E�|c1Xt � µt|2�δ
� 1

2�δ

� 1?
n

�
ņ

t�1

����ψτ pεt � bτ qc
1zt
ht

����2�δ
� 1

2�δ

pE�|ωt � 1|2�δq 1
2�δ

� opp1q,

as long as 0   δ ¤ κ0, since E�|ωt|2�κ0   8 from the assumptions of this theorem.

Moreover, by the ergodic theorem, σ2
n � c1n�1

°n
t�1rψτ pεt�bτ qs2h�2

t ztz
1
tc � τp1�τqc1Ω2c�

opp1q. Thus, we can show that the Liapounov’s condition,
°n
t�1E

�|c1Xt � µt|2�δ �
oppσ2�δ

n q, holds for 0   δ ¤ κ0. This, together with the Cramér-Wold device and the

Lindeberg’s central limit theorem, implies that conditional on Fn,

T �
1n � T1n �

ņ

t�1

Xt Ñd Np0, τp1 � τqΩ2q

in probability as nÑ 8.

Since L�
np�q is convex, by Corollary 2 of Knight (1998), it holds that

?
nppθ�τn � θτ0q � Ω�1

2

fpbτ qT
�
1n � bτΩ

�1
2 Γ2

?
nprθ�n � θ0q � o�pp1q, (S.42)
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which, in conjunction with (S.36), yields the Bahadur representation of the corrected

bootstrap estimator pθ�τn,

?
nppθ�τn� pθτnq � Ω�1

2

fpbτ q pT
�
1n � T1nq � bτΩ

�1
2 Γ2J

�1

?
n

ņ

t�1

pωt� 1q1 � |εt|
ht

Bhtpθ0q
Bθ � o�pp1q.

Denote X:
t � n�1{2pωt � 1qdt, with dt � pψτ pεt � bτ qz1t{ht, p1 � |εt|qh�1

t Bhtpθ0q{Bθ1q1.
Note that by (S.15) and E|εt|2�ν0   8 for ν0 ¡ 0, we have E|dt|2�ν0   8. Then, for

0   δ ¤ minpκ0, ν0q, we can similarly verify the Liapounov’s condition,
°n
t�1E

�|c1X:
t �

µ:t |2�δ � oppσ:2�δn q, where µ:t � E�pc1X:
t q and σ:2n � °n

t�1E
�pc1X:

tX
:1
t cq. Applying the

Lindeberg’s central limit theorem and the Cramér-Wold device, we accomplish the proof

of the theorem.

Proof of Theorem 3. Observe that

1?
n

ņ

t�k�1

ψτ ppεt,τ q|pεt�k,τ |
� 1?

n

ņ

t�k�1

ψτ pεt,τ q|εt�k,τ | �
ņ

t�k�1

E1nt �
ņ

t�k�1

E2nt �
ņ

t�k�1

E3nt, (S.43)

where

E1nt � n�1{2rψτ ppεt,τ q � ψτ pεt,τ qs|εt�k,τ |, E2nt � n�1{2ψτ pεt,τ qp|pεt�k,τ | � |εt�k,τ |q, and

E3nt � n�1{2rψτ ppεt,τ q � ψτ pεt,τ qsp|pεt�k,τ | � |εt�k,τ |q.

To derive the asymptotic result for the quantity on the left-hand side of (S.43), we shall

begin by proving that

ņ

t�k�1

E1nt � �fpbτ q
�
d11k

?
nppθτn � θτ0q � bτd

1
2k

?
nprθn � θ0q

�
� opp1q, (S.44)

where d1k � Eph�1
t |εt�k,τ |ztq and d2k � Eph�1

t |εt�k,τ |
°p
j�1 β0jBht�jpθ0q{Bθq. For any

u, v P Rp�q�1, define

rbtpu, vq � pθτ0 � n�1{2uq1rztpθ0 � n�1{2vqh�1
t .

Since
?
nppθτn � θτ0q � Opp1q,

?
nprθn � θ0q � Opp1q, and

ņ

t�k�1

E1nt � 1?
n

ņ

t�k�1

�
Ipεt   bτ q � Ipεt   pθ1τnrzth�1

t q
�
|εt�k,τ |,

to prove (S.44), it suffices to show that for any M ¡ 0,

sup
}u},}v}¤M

����� 1?
n

ņ

t�k�1

φtpu, vq � fpbτ q pd11ku� bτd
1
2kvq

����� � opp1q, (S.45)
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where φtpu, vq � tIpεt   bτ q � Irεt   rbtpu, vqsu|εt�k,τ |.
Let Snpu, vq � n�1{2

°n
t�k�1tφtpu, vq �Erφtpu, vq|Ft�1su, and we shall first show that

sup
}u},}v}¤M

|Snpu, vq| � opp1q. (S.46)

For any u, v P Rp�q�1, define

btpu, vq � pθτ0 � n�1{2uq1ztpθ0 � n�1{2vqh�1
t .

Note that for any ui, vi P Rp�q�1, i � 1, 2, since

btpu1, v1q � btpu2, v2q

�
p̧

j�1

β
pjq
τ0 � n�1{2u

pjq
1

ht
rht�jpθ0 � n�1{2v1q � ht�jpθ0 � n�1{2v2qs

� 1?
n

p̧

j�1

u
pjq
1 � u

pjq
2

ht
rht�jpθ0 � n�1{2v2q � ht�js � h�1

t z1tpu1 � u2q?
n

,

by the Taylor expansion and (S.15), where β
pjq
τ0 � bτβ0j for j � 1, . . . , p, we can readily

show that if }ui}, }vi} ¤M , then

|btpu1, v1q � btpu2, v2q|

¤CpMq?
n

��
}v1 � v2} � }u1 � u2}?

n


 p̧

j�1

sup
θPΘn

���� 1

ht�j

Bht�jpθq
Bθ

����� }u1 � u2}
�
. (S.47)

For any u, v P Rp�q�1 such that }u}, }v} ¤ M , by the Hölder inequality and the fact

that E|εt|2�ν0   8 for ν0 ¡ 0, we have

ņ

t�k�1

Eφ2
t pu, vq ¤

ņ

t�k�1

!
E
���Ipεt   bτ q � Irεt   rbtpu, vqs���) ν0

2�ν0
�
E|εt�k,τ |2�ν0

� 2
2�ν0

� C
ņ

t�k�1

�
E
���F prbtpu, vqq � F pbτ q

���� ν0
2�ν0

¤ C

" ņ

t�k�1

�
E
���F prbtpu, vqq � F pbtpu, vqq

���� ν0
2�ν0

�
ņ

t�k�1

rE |F pbtpu, vqq � F pbτ q|s
ν0

2�ν0

*
, (S.48)

where the last inequality follows from the fact that px � yqa ¤ xa � ya for any x, y ¥ 0

and 0   a   1. Note that by Lemma S.1, we have

sup
}u},}v}¤M

|rbtpu, vq � btpu, vq| ¤
p̧

j�1

|βpjqτ0 | � n�1{2M

w
sup
θPΘ

|rht�jpθq � ht�jpθq|

¤ CpMqρtζ. (S.49)
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Then, by Assumption 2 and a method similar to that for (S.14), we can show that

E
���F prbtpu, vqq � F pbtpu, vqq

��� ¤ ρt{2 � CpMqρδ0t{2. (S.50)

Moreover, since bτ � btp0, 0q, it follows from (S.47), Lemma A.1 and Assumption 2 that

E|F pbtpu, vqq � F pbτ q| ¤ sup
xPR

fpxqE|btpu, vq � bτ | ¤ n�1{2CpMq. (S.51)

In view of (S.48), (S.50) and (S.51), for any u, v P Rp�q�1 with }u}, }v} ¤M ,

ES2
npu, vq ¤

1

n

ņ

t�k�1

Eφ2
t pu, vq � op1q. (S.52)

For any δ ¡ 0, let Upδq be the set of all four-tuples pu1, u2, v1, v2q of column vectors

in Rp�q�1 such that }ui}, }vi} ¤M , i � 1, 2, and }u1 � u2}, }v1 � v2} ¤ δ, and denote by

υ an element of Upδq. Moreover, for simplicity, denote rbti � rbtpui, viq and bti � btpui, viq
for i � 1, 2. Let r∆t � supυPUpδq |rbt1 �rbt2| and ∆t � supυPUpδq |bt1 � bt2|. Notice that

sup
υPUpδq

|φtpu1, v1q � φtpu2, v2q| ¤ sup
υPUpδq

��Ipεt   rbt2q � Ipεt   rbt1q��|εt�k,τ |
¤ I

�|εt �rbt2|   r∆t

�|εt�k,τ |.
Then, applying the Hölder inequality, together with E|εt|2�ν0   8 for ν0 ¡ 0 and the

fact that px� yqa ¤ xa � ya for any x, y ¥ 0 and 0   a   1, we have

E sup
υPUpδq

|φtpu1, v1q � φtpu2, v2q|

¤
�
E
��F�rbt2 � r∆t

�� F
�rbt2 � r∆t

����1{2

pEε2
t�k,τ q1{2

¤ C

"�
E
��F�rbt2 � r∆t

�� F
�rbt2 � ∆t

����1{2

�
�
E
��F�rbt2 � r∆t

�� F
�rbt2 � ∆t

����1{2

�
�
E
��F�rbt2 � ∆t

�� F
�rbt2 � ∆t

����1{2
*
. (S.53)

Since |r∆t�∆t| ¤ supυPUpδq
��prbt1 �rbt2q� pbt1 � bt2q

�� ¤ 2 sup}u},}v}¤M |rbtpu, vq� btpu, vq|, by

(S.49) and a method similar to that for (S.14), we can verify that

E
��F�rbt2 � r∆t

�� F
�rbt2 � ∆t

��� ¤ ρt{2 � CpMqρδ0t{2. (S.54)

Furthermore, it follows from Assumption 2, (S.47) and Lemma A.1 that

E
��F�rbt2 � ∆t

�� F
�rbt2 � ∆t

��� ¤ 2 sup
xPR

fpxqEp∆tq ¤ n�1{2δCpMq. (S.55)
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As a result of (S.53)-(S.55), we have

E sup
υPUpδq

|Snpu1, v1q�Snpu2, v2q| ¤ 2?
n

ņ

t�k�1

E sup
υPUpδq

|φtpu1, v1q�φtpu2, v2q| ¤ δCpMq,

which, together with (S.52) and the finite covering theorem, implies (S.46).

Since Erφtpu, vq|Ft�1s � rF pbτ q � F prbtpu, vqqs|εt�k,τ |, to prove (S.45), it remains to

show that

sup
}u},}v}¤M

����� 1?
n

ņ

t�k�1

�
F pbτ q � F prbtpu, vqq�|εt�k,τ | � fpbτ q pd11ku� bτd

1
2kvq

����� � opp1q. (S.56)

By (S.49), Assumption 2 and a method similar to that for (S.14), we can show that

E

�
sup

}u},}v}¤M

���F prbtpu, vqq � F pbtpu, vqq
��� 
2

¤ ρt � CpMqρδ0t{2,

which, in conjunction with the Hölder inequality and E|εt|2�ν0   8 for ν0 ¡ 0, yields

E sup
}u},}v}¤M

����� 1?
n

ņ

t�k�1

�
F prbtpu, vqq � F pbtpu, vqq

�|εt�k,τ |
�����

¤ 1?
n

ņ

t�k�1

�
E

�
sup

}u},}v}¤M

���F pbtpu, vqq � F prbtpu, vqq��� 
2�1{2

pEε2
t�k,τ q1{2 � op1q,

and hence,

sup
}u},}v}¤M

����� 1?
n

ņ

t�k�1

�
F pbtpu, vqq � F prbtpu, vqq�|εt�k,τ |

����� � opp1q. (S.57)

Note that by the Taylor expansion,

bτ � btpu, vq � �h
�1
t z1tu?
n

� v1?
n

p̧

j�1

β
pjq
τ0

ht

Bht�jpθ0q
Bθ �Rtpu, vq,

where

Rtpu, vq � v1

n

p̧

j�1

upjq

ht

Bht�jpθ0q
Bθ � v1

2n

p̧

j�1

β
pjq
τ0 � n�1{2upjq

ht

B2ht�jpθ�q
BθBθ1 v,

with θ� between θ0 and θ0 � n�1{2v. Then, by (S.47), Assumption 2, Lemma A.1 and

the ergodic theorem, we can show that

sup
}u},}v}¤M

����� 1?
n

ņ

t�k�1

�
F pbτ q � F pbtpu, vqq

�|εt�k,τ | � fpbτ q pd11ku� bτd
1
2kvq

�����
¤ fpbτ q sup

}u},}v}¤M

����� 1?
n

ņ

t�k�1

rbτ � btpu, vqs|εt�k,τ | � d11ku� bτd
1
2kv

�����
� 1

2
sup
xPR

| 9fpxq| 1?
n

ņ

t�k�1

sup
}u},}v}¤M

|bτ � btpu, vq|2|εt�k,τ |

� opp1q.
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This together with (S.57) implies (S.56), and therefore, (S.44) holds.

Next, we consider
°n
t�k�1 E2nt. Observe that

εt,τ � pεt,τ � ζ1ntppθτn, rθnq � ζ2ntppθτn, rθnq,
where

ζ1ntpθτ , θq � yt � θ1τ0zt
ht

� yt � θ1τztpθq
htpθq and ζ2ntpθτ , θq � yt � θ1τztpθq

htpθq � yt � θ1τrztpθqrhtpθq .

Then, similar to the decompositions in (S.6), (S.11) and (S.25), by using the identity in

(S.5), it can be verified that

ņ

t�k�1

E2nt �
n�ķ

t�1

Z1ntppθτn, rθnq � n�ķ

t�1

Z2ntppθτn, rθnq � n�ķ

t�1

Z3ntppθτn, rθnq, (S.58)

where

Z1ntpθτ , θq � ψτ pεt�k,τ q?
n

"
� ζ2ntpθτ , θqr1 � 2Ipεt   bτ qs � 2

» ζ1ntpθτ ,θq�ζ2ntpθτ ,θq

ζ1ntpθτ ,θq

Itpsqds
*
,

Z2ntpθτ , θq � �ψτ pεt�k,τ q?
n

ζ1ntpθτ , θqr1 � 2Ipεt   bτ qs, and

Z3ntpθτ , θq � 2ψτ pεt�k,τ q?
n

» ζ1ntpθτ ,θq

0

Itpsqds,

with Itpsq � Ipεt,τ ¤ sq � Ipεt,τ ¤ 0q. For any M ¡ 0, let Θτn � ΘτnpMq � tθτ :

}θτ � θτ0} ¤ n�1{2M, θτ{bτ P Θu. Note that ζ2ntpθτ , θq � rh�1
t pθqθ1τ rrztpθq � ztpθqs �

rh�1
t pθq�rh�1

t pθqsryt� θ1τztpθqs. Then, similar to (S.9), (S.12) and (S.26), by Lemma S.1,

it can be shown that

sup
θτPΘτn, θPΘn

|ζ2ntpθτ , θq| ¤ 1

w

p̧

j�1

sup
θτPΘτn

|βpjqτ | sup
θPΘ

|rht�jpθq � ht�jpθq|

� 1

w2
sup
θPΘ

|rhtpθq � htpθq| sup
θτPΘτn, θPΘn

|yt � θ1τztpθq|

¤ CpMqρtζ
�

1 � sup
θτPΘτn, θPΘn

|yt � θ1τztpθq|
�
.

Consequently, it follows from Lemma A.1 that

sup
θτPΘτn, θPΘn

�����n�ķ
t�1

Z1ntpθτ , θq
����� ¤ 3?

n

n�ķ

t�1

sup
θτPΘτn, θPΘn

|ζ2ntpθτ , θq| � opp1q,

which, together with
?
nppθτn � θτ0q � Opp1q and

?
nprθn � θ0q � Opp1q, yields

n�ķ

t�1

Z1ntppθτn, rθnq � opp1q. (S.59)
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Applying the second-order Taylor expansion to h�1
t pθq, and the first and second-order

Taylor expansions to θ1τztpθq respectively, similar to (S.19), it can be verified that

ζ1ntpθτ , θq � ζ3ntpθτ , θq � ζ4ntpθτ , θq, (S.60)

where

ζ3ntpθτ , θq �pθτ � θτ0q1 zt
ht
� pθ � θ0q1

p̧

j�1

β
pjq
τ0

ht

Bht�jpθ0q
Bθ � pθ � θ0q1 εt � bτ

ht

Bhtpθ0q
Bθ ,

ζ4ntpθτ , θq �pθ � θ0q1
p̧

j�1

β
pjq
τ � β

pjq
τ0

ht

Bht�jpθ�2 q
Bθ � pθ � θ0q1

2

p̧

j�1

β
�pjq
τ2

ht

B2ht�jpθ�2 q
BθBθ1 pθ � θ0q

� pθ � θ0q1
ht

Bhtpθ0q
Bθ

�
z1tpθ�1 q
ht

pθτ � θτ0q �
p̧

j�1

β
�pjq
τ1

ht

Bht�jpθ�1 q
Bθ1 pθ � θ0q

�
� yt � θ1τztpθq

htpθ�3 q
pθ � θ0q1

2

�
2

h2
t pθ�3 q

Bhtpθ�3 q
Bθ

Bhtpθ�3 q
Bθ1 � 1

htpθ�3 q
B2htpθ�3 q
BθBθ1

�
pθ � θ0q,

with θ�1 , θ
�
2 and θ�3 all lying between θ0 and θ, and β

�pjq
τ1 and β

�pjq
τ2 both between β

pjq
τ0

and β
pjq
τ . Then, similar to (S.20) and (S.21), by Lemma A.1 and the ergodic theorem,

together with
?
nppθτn � θτ0q � Opp1q and

?
nprθn � θ0q � Opp1q, it can be shown that

1?
n

n�ķ

t�1

ψτ pεt�k,τ qζ3ntppθτn, rθnqr1 � 2Ipεt   bτ qs � opp1q,

and

E sup
θτPΘτn, θPΘn

����� 1?
n

n�ķ

t�1

ψτ pεt�k,τ qζ4ntpθτ , θqr1 � 2Ipεt   bτ qs
�����

¤ 1?
n

n�ķ

t�1

E sup
θτPΘτn, θPΘn

|ζ4ntpθτ , θq| � Opn�1{2q,

which implies

n�ķ

t�1

Z2ntppθτn, rθnq � opp1q. (S.61)

Similarly, using the Taylor expansion in (S.60), together with Lemma A.1 and Assump-

tion 2, we can show that

E sup
θτPΘτn, θPΘn

�����n�ķ
t�1

Z3ntpθτ , θq
�����

¤ 2?
n
E

n�ķ

t�1

sup
θτPΘτn, θPΘn

|ζ1ntpθτ , θq|I
�
|εt � bτ | ¤ sup

θτPΘτn, θPΘn

|ζ1ntpθτ , θq|



¤ 4 supxPR fpxq?
n

n�ķ

t�1

E

�
sup

θτPΘτn, θPΘn

|ζ1ntpθτ , θq|

2

� Opn�1{2q,
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and as a result,

n�ķ

t�1

Z3ntppθτn, rθnq � opp1q. (S.62)

Combining (S.58), (S.59), (S.61) and (S.62), we have

ņ

t�k�1

E2nt � opp1q. (S.63)

Now we consider
°n
t�k�1 E3nt. Similar to the proof of (S.44), for any u, v P Rp�q�1,

define ϕtpu, vq � tIpεt   bτ q�Irεt   rbtpu, vqsu r|rεt�k,τ pu, vq| � |εt�k,τ |s, where rεt,τ pu, vq ��
yt � pθτ0 � n�1{2uq1rztpθ0 � n�1{2vq�rh�1

t pθ0 � n�1{2vq. Then, for any M ¡ 0, we can

readily verify that

sup
}u},}v}¤M

����� 1?
n

ņ

t�k�1

tϕtpu, vq � Erϕtpu, vq|Ft�1su
����� � opp1q

and

sup
}u},}v}¤M

����� 1?
n

ņ

t�k�1

Erϕtpu, vq|Ft�1s
����� � opp1q,

which yields

ņ

t�k�1

E3nt � opp1q. (S.64)

Therefore, combining (S.43), (S.44), (S.63) and (S.64), we have

1?
n

ņ

t�k�1

ψτ ppεt,τ q|pεt�k,τ | � 1?
n

ņ

t�k�1

ψτ pεt,τ q|εt�k,τ |

� fpbτ q
�
d11k

?
nppθτn � θτ0q � bτd

1
2k

?
nprθn � θ0q

�
� opp1q.

(S.65)

Finally, by the law of large numbers and a proof similar to that for (S.58), we can

show that

|pµa,τ � µa,τ | �
����� 1n

ņ

t�1

p|pεt,τ | � |εt,τ |q
������ opp1q ¤ 1

n

ņ

t�1

|pεt,τ � εt,τ | � opp1q � opp1q,

and then,

pσ2
a,τ �

1

n

ņ

t�1

p|pεt,τ | � pµa,τ q2 � 1

n

ņ

t�1

pε2
t,τ � µ2

a,τ � opp1q

� 1

n

ņ

t�1

ppε2
t,τ � ε2

t,τ q � σ2
a,τ � opp1q

� σ2
a,τ � opp1q,
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which, together with (S.65), (S.35) and (S.36), yields

rk,τ � 1b
pτ � τ 2qσ2

a,τ

� 1

n

ņ

t�k�1

"
ψτ pεt,τ q

�
|εt�k,τ | � d11kΩ

�1
2

zt
ht




� bτfpbτ q
�
d12k � d11kΩ

�1
2 Γ2

�
J�1 1 � |εt|

ht

Bhtpθ0q
Bθ

*
� oppn�1{2q. (S.66)

Consequently, for R � pr1,τ , . . . , rK,τ q1, we have

R � 1b
pτ � τ 2qσ2

a,τ

� 1

n

ņ

t�k�1

"
ψτ pεt,τ q

�
εt�1 �D1Ω�1

2

zt
ht




� bτfpbτ q
�
D2 �D1Ω�1

2 Γ2

�
J�1 1 � |εt|

ht

Bhtpθ0q
Bθ

*
� oppn�1{2q, (S.67)

where εt�1 � p|εt�1,τ |, . . . , |εt�K,τ |q1 and Di � pdi1, . . . , diKq1 for i � 1 and 2. Applying

the central limit theorem and the Cramér-Wold device, we have
?
nRÑd Np0,Σ4q.

To prove this theorem, it remains to show that Σ4 is positive definite. Note that

Σ4 is the covariance matrix of pτ � τ 2q�1{2σ�1
a,τ ps1tV1t � s2tV2tq, where s1t � ψτ pεt,τ q,

s2t � 1 � |εt|,

V1t � εt�1 �D1Ω�1
2

zt
ht

and V2t � bτfpbτ q
�
D2 �D1Ω�1

2 Γ2

�
J�1 1

ht

Bhtpθ0q
Bθ .

Suppose that Σ4 is singular. Then, there exists λ P RK such that λ � 0 and

s1tλ
1V1t � s2tλ

1V2t � 0 a.s. (S.68)

Since s1t � ψτ pεt,τ q � τ � Ipεt � bτ   0q � 0 for τ P p0, 1q, (S.68) can be written as

λ1V1t � �s2t

s1t

λ1V2t a.s.

Note that s1t and s2t are independent of Ft�1, and V1t and V2t are measurable with

respect to Ft�1. Taking the expectation conditional on Ft�1 on both sides, we have

λ1V1t � cλ1V2t a.s.,

where

c � �E
�
s2t

s1t



� E

� |εt| � 1

τ � Ipεt � bτ   0q
�
.

As a result, (S.68) implies that

pcs1t � s2tqλ1V2t � 0 a.s. (S.69)
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Define the pp� q � 1q � 1 constant vector

µ � bτfpbτ qJ�1
�
D2 �D1Ω�1

2 Γ2

�1
λ.

Then, λ1V2t � µ1h�1
t rBhtpθ0q{Bθs, and (S.69) can be written as

pcs1t � s2tqµ
1

ht

Bhtpθ0q
Bθ � 0 a.s. (S.70)

Suppose that µ � 0. Then, it follows from (S.68) that

λ1V1t � 0 a.s. (S.71)

By a method similar to that for the proof of Theorem 8.2 in Francq and Zakoian (2010),

we can show that (S.71) is impossible; we will prove this result at the end of the proof

of this theorem.

Suppose that µ � 0. From the proof of Theorem 2.2 in Francq and Zakoian (2004),

by Assumption 1(iii), the matrix J must be positive definite: i.e., for µ � 0, we have

P

"
µ1

ht

Bhtpθ0q
Bθ � 0

*
¡ 0.

This, together with (S.70) and the independence of cs1t � s2t and µ1h�1
t rBhtpθ0q{Bθs,

implies that

cs1t � s2t � 0 a.s.

That is, |εt| � 1 � cτ � cIpεt   bτ q almost surely, which is impossible due to the almost

everywhere positiveness and differentiability of the density fp�q on a fixed small interval

around bτ . Therefore, Σ4 is nonsingular.

Finally, we prove that (S.71) is impossible. Suppose that (S.71) holds. Denote

λ � pλ1, . . . , λKq1 and define the pp� q � 1q � 1 constant vector

γ � pγ1, . . . , γp�q�1q1 � Ω�1
2 D1

1λ.

Then, (S.71) can be written as

λ1εt�1 � γ1
zt
ht

� 0 a.s. (S.72)

Note that γ � 0. Otherwise, λ1εt�1=0 almost surely, which implies that there exists

j P t1, . . . , Ku such that λj � 0 and |εt�j,τ | � �λ�1
j

°K
i�1,i�j λi|εt�i,τ |. By the indepen-

dence of |εt�1,τ |, . . . , |εt�K,τ |, we then have that |εt,τ | is degenerate, which is true if and

only if εt is degenerate. This contradicts Assumption 1(ii). Thus, γ � 0.
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By (S.72) and the positiveness of ht, we have

htλ
1εt�1 � γ1zt � 0 a.s. (S.73)

For notational simplicity, we denote by R1, R2, . . . random variables measurable with

respect to Ft�2. Then we have ht � α01ht�1|εt�1| � R1, λ1εt�1 � λ1|εt�1,τ | � R2, and

γ1zt � γ2|yt�1| �R3. As a result, it follows from (S.73) that

λ1α01ht�1|εt�1||εt�1,τ | � pα01R2 � γ2qht�1|εt�1| � λ1R1|εt�1,τ | �R4 � 0 a.s. (S.74)

If λ1α01 � 0, then (S.74) implies that p|εt�1| � R5qp|εt�1,τ | � R6q � 0 almost surely,

which is impossible since εt is non-degenerate. Thus, λ1α01 � 0 must hold.

If λ1 � 0, then it follows from (S.74) that pα01R2 � γ2qht�1|εt�1| � R4 � 0 almost

surely. Taking the expectation conditional on Ft�2, we have pα01R2 � γ2qht�1 � R4 � 0

almost surely. In view of the positiveness of ht�1, it follows that

pα01R2 � γ2qp|εt�1| � 1q � 0 a.s.

Since εt is non-degenerate and |εt�1| � 1 is independent of α01R2 � γ2, this implies

that α01R2 � γ2 � 0 almost surely. Note that R2 � °K
i�2 λi|εt�i,τ |, where at least

one of λ2, . . . , λK is nonzero. By an argument used earlier, we have P pR2 � 0q ¡ 0.

Consequently, α01 � γ2 � 0. However, from the second paragraph in Section 2.1, we

assume α01 ¥ w ¡ 0. The conclusion follows.

Proof of Theorem 4. Similar to (S.43), we have

1?
n

ņ

t�k�1

ωtψτ ppε�t,τ q|pε�t�k,τ |
� 1?

n

ņ

t�k�1

ωtψτ pεt,τ q|εt�k,τ | �
ņ

t�k�1

E�1nt �
ņ

t�k�1

E�2nt �
ņ

t�k�1

E�3nt, (S.75)

where

E�1nt � n�1{2ωtrψτ ppε�t,τ q � ψτ pεt,τ qs|εt�k,τ |, E�2nt � n�1{2ωtψτ pεt,τ qp|pε�t�k,τ | � |εt�k,τ |q, and

E�3nt � n�1{2ωtrψτ ppε�t,τ q � ψτ pεt,τ qsp|pε�t�k,τ | � |εt�k,τ |q.

Note that, from (S.39) and (S.42),
?
nprθ�n � θ0q � O�

p p1q and
?
nppθ�τn � θτ0q � O�

p p1q. As

a result, by methods similar to (S.44), (S.63) and (S.64), respectively, we can show that

ņ

t�k�1

E�1nt � �fpbτ q
�
d11k

?
nppθ�τn � θτ0q � bτd

1
2k

?
nprθ�n � θ0q

�
� o�pp1q,
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and

ņ

t�k�1

E�int � o�pp1q, i � 2 and 3,

where d1k � Eph�1
t |εt�k,τ |ztq and d2k � Eph�1

t |εt�k,τ |
°p
j�1 β0jBht�jpθ0q{Bθq are defined as

in (S.44). This, in conjunction with (S.75) and (S.65), yields the Bahadur representation

of

1?
n

ņ

t�k�1

ωtψτ ppε�t,τ q|pε�t�k,τ | � 1?
n

ņ

t�k�1

ψτ ppεt,τ q|pεt�k,τ |
� 1?

n

ņ

t�k�1

pωt � 1qψτ pεt,τ q|εt�k,τ |

� fpbτ q
�
d11k

?
nppθ�τn � pθτnq � bτd

1
2k

?
nprθ�n � rθnq�� o�pp1q,

and hence

R� �R � 1b
pτ � τ 2qσ2

a,τ

� 1

n

ņ

t�k�1

pωt � 1q
"
ψτ pεt,τ q

�
εt�1 �D1Ω�1

2

zt
ht




� bτfpbτ q
�
D2 �D1Ω�1

2 Γ2

�
J�1 1 � |εt|

ht

Bhtpθ0q
Bθ

*
� o�ppn�1{2q,

where εt�1 � p|εt�1,τ |, . . . , |εt�K,τ |q1 and Di � pdi1, . . . , diKq1 for i � 1 and 2. Thus, we

complete the proof by applying Lindeberg’s central limit theorem and the Cramér-Wold

device.

Proof of Corollary 1. The proof follows the same lines as that of Theorem 1, while the

corresponding L1npuq and L2npuq are defined with rh�1
t replaced by one; consequently, all

the Aintpθq’s and Bintpθq’s are defined with all rh�1
t pθq, h�1

t pθq and h�1
t replaced by one.

Note that without these denominators, Lemma A.1 cannot be applied as in the proof

of Theorem 1 in some intermediate steps, and additional moment conditions on xt will

be needed. The highest moment condition, E|xt|4�ι0 for some ι0 ¡ 0, is required for the

proof of the counterpart of (S.31), where, correspondingly, ηtpvq �
³ξ1ntpθ0�n�1{2vq

0
I�t psqds,

with ξ1nt and I�t psq defined as in the proof of Theorem 1. The corresponding proof is

straightforward by the Hölder inequality.

Proof of Corollary 2 and Equation (2.6). Since
?
nprθn�θ0q � Opp1q and

?
nppθτn�θτ0q �

Opp1q, Corollary 2 follows directly from Lemma S.1 and the Taylor expansion.

Moreover, it can be readily shown that the sequence tXnu with Xn � u1n�1

?
nprθn �

θ0q � z1n�1

?
nppθτn � θτ0q is uniformly tight, which, combined with Corollary 2, implies
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that opp| pQτ pyn�1|Fnq � Qτ pyn�1|Fnq|q � oppn�1{2q. Note that bτ � 0 if and only if

Qτ pyn�1|Fnq � θ1τ0zn�1 � bτhn�1 � 0, since hn�1 ¥ w ¡ 0. If bτ � 0, then T�1p�q is

differentiable at Qτ pyn�1|Fnq, and hence

T�1r pQτ pyn�1|Fnqs � T�1rQτ pyn�1|Fnqs

� dT�1pxq
dx

����
x�Qτ pyn�1|Fnq

� pQτ pyn�1|Fnq �Qτ pyn�1|Fnq
�
� oppn�1{2q

� 1

2
a|bτhn�1|

�
u1n�1prθn � θ0q � z1n�1ppθτn � θτ0q

�
� oppn�1{2q.

Since pQτ pxn�1|Fnq � T�1r pQτ pyn�1|Fnqs and Qτ pxn�1|Fnq � T�1rQτ pyn�1|Fnqs, we com-

plete the proof of (2.6).

Proof of Corollary 3. By methods similar to the proofs of Theorem 2 and Corollary 2,

this corollary follows.
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