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a b s t r a c t

Some durations such as those of block trades may have the properties of both heavy tails
and extreme values. Tomodel such type of data, we suggest the Fréchet distribution for the
innovations of the autoregressive conditional duration (ACD)model, and hence the Fréchet
ACD model. Some statistical inference tools including the maximum likelihood estimation
and diagnostic tools for model adequacy are derived, and their finite-sample performance
is evaluated by Monte Carlo simulation experiments. The usefulness of the new model is
demonstrated by analyzing the durations of block trades on two stock exchanges.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the autoregressive conditional duration (ACD) model,

xi = ψiεi, ψi = ω +

p
j=1

αjxi−j +

q
j=1

βjψi−j, (1)

where t0 < t1 < · · · < tn < · · · are arrival times, xi = ti − ti−1 is an interval, ω > 0, αj ≥ 0, βj ≥ 0, and the
innovations {εi} are identically and independently distributed (i.i.d.) nonnegative random variables with mean one (Engle
and Russell, 1998). This model has been widely applied to high-frequency and ultra-high-frequency data, which usually
have unequally spaced time intervals, and have become common in financial modeling due to the great improvement of
information technology and the popularity of electronic trading (Engle, 2000). For the innovation εi, Engle and Russell (1998)
considered an exponential distribution and aWeibull distribution, and the corresponding maximum likelihood estimations
(MLE) were also discussed. Note that the hazard rate is a constant for the exponential distribution, and is monotonic for the
Weibull distribution. Grammig and Maurer (2000) introduced a Burr distribution for εi to make the conditional hazards of
the durations {xi} more flexible.

In themeanwhile, many financial time series are heavy-tailed and, when the commonly used generalized autoregressive
conditional heteroscedastic (GARCH) model (Engle, 1982; Bollerslev, 1986) is applied to these sequences, Gaussian
innovations usually produce tails which are thinner than those of the real data; see Mikosch and Starica (2000) and Li and Li
(2005). To improve the efficiency of the Gaussian quasi-MLE for these heavy-tailed time series, some robust approaches have
been discussed for GARCHmodels, e.g. the least absolute deviation estimation in Peng and Yao (2003) and Li and Li (2008a).
Bollerslev (1987) alternatively considered a GARCH model with Student’s t innovations, and the heavy-tailed Student’s t
distribution can help to explain the excess dispersion to some extent as well as to improve the efficiency of the resulting
estimation. For the ACDmodel, Engle and Russell (1998) found that, after accounting for the temporal dependence, both the
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Fig. 1. Illustration on arrival times of block trades with L = 3.

exponential andWeibull distributions failed to explain the excess dispersion in the IBM transaction duration data, and Zhang
et al. (2001) considered a generalized gamma distribution to account for the heavy tails in this dataset. Note that the ACD
model for durations is analogous to theGARCHmodel for returns (Engle and Russell, 1998), and the Fréchet distribution has a
relatively heavier right tail comparedwith other nonnegative distributions including the aforementioned four distributions.
Along the line of Bollerslev (1987), this paper considers the ACD model with εi having the Fréchet distribution, which we
call the Fréchet ACDmodel for simplicity. This newmodel is supposed to provide a more robust estimation for heavy-tailed
durations.

The Fréchet distribution is one of the three types of extreme value distributions, and we may frequently encounter
extreme value problems in modeling durations. As an illustrative example, consider the block trades in a stock market, and
suppose that there are L stocks in this market. For the lth stock with 1 ≤ l ≤ L, denote by 0 = tl0 < tl1 < · · · < tln < · · ·

the arrival times, by {xli} the durations, and by Nl(t) the associated marked point process. Let 0 = s0 < s1 < · · · < sn < · · ·

be the arrival times of the block trades, and {yi} be their durations. See Fig. 1 for an illustration with L = 3. Note that {sj}
is the order statistics of {tli, 1 ≤ l ≤ L, i = 0, 1, . . .}, and y1 = s1 − s0 = min{xl1, 1 ≤ l ≤ L}. For j ≥ 1, without loss of
generality, we assume that sj = t1i1 , i.e. the block trade happens on the first stock; see the example of j = 3 in Fig. 1. Let
il = min{i : tli > sj} and x∗

lil
= tlil − sj for l ≥ 2. As in Engle and Russell (1998), we assume that the marked point processes

Nl(t) evolvewithout after-effects and are conditionally orderly. Then the conditional intensity of point processNl(t) remains
unchanged after sj, implying that the random variables x∗

lil
and xlil = tl,il − tl,il−1 have the samemarginal distribution as well

as the same dependence structure on other durations. Hence, yj+1 = sj+1 − sj = min{x1,i1+1, x∗

2i2
, . . . , x∗

LiL
} has the same

distribution as min{x1,i1+1, x2i2 , . . . , xLiL}, and then it is natural to consider involving an extreme value distribution for the
innovation εi of model (1). Note that among the three extreme value distributions, the Gumbel distribution is two-sided,
while the Weibull distribution and the Fréchet distribution are one-sided (Embrechts et al., 1997). Therefore, with its right
tail heavier than the Weibull distribution, the Fréchet distribution may be of particular interest in modeling the durations
of block trades.

The rest of the paper is structured as follows. Section 2 discusses the Fréchet ACD model and derives some statistical
inference tools including the MLE and diagnostic tools for model adequacy. Section 3 conducts several Monte Carlo
simulations to study the finite-sample performance of these inference tools. Section 4 demonstrates the usefulness of the
Fréchet ACD model by analyzing the durations of block trades on two stock exchanges: the Hong Kong Stock Exchange
(SEHK) and the London Stock Exchange (LSE). The proofs of Theorems 1 and 2 are relegated to the Appendix.

2. Fréchet ACD models

For the autoregressive conditional duration (ACD) model at (1), we consider the Fréchet distribution for the innovation
εi, which has density function of the form

f (x; γ , s,m) =
γ

s


x − m

s

−1−γ

exp


−


x − m

s

−γ

, x ≥ m,

where γ > 0 is the shape parameter, s > 0 is the scale parameter, and m ∈ R is the location parameter. Due to the
non-negativity of the observed durations {xi}, we need to restrict m to zero. Additionally, to ensure the identifiability of
model (1), the constraint E(εt) = 1 is imposed; see, e.g., Engle and Russell (1998). Hence the innovation εi follows the
standardized Fréchet distribution with shape parameter γ , which has mean one and density function of the form

fγ (x) = γ cγ x−1−γ exp{−cγ x−γ
}, x ≥ 0,

where cγ = [Γ (1−γ−1)]−γ withΓ (·)being theGamma function. Analogous to the Student’s t distribution, the standardized
Fréchet distribution has a heavier right tail as the shape parameter γ is smaller, and it has finitemth moment E(εmi ) as long
asm < γ . We denote this model by FACD(p, q) for simplicity.
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2.1. Maximum likelihood estimation

Let α = (α1, . . . , αp)
′,β = (β1, . . . , βq)

′ and θ = (ω,α′,β′)′. Denote by λ = (γ , θ′)′ the parameter vector of the
Fréchet ACD model, and by Λ = R+

× Θ the parameter space, where Θ ⊂ Rp+q+1 is a compact set. The true parameter
vector λ0 = (γ0, θ

′

0)
′ is an interior point ofΛ, and the following conditions hold for each λ ∈ Λ.

Assumption 1. γ > 1, ω > 0, αj ≥ 0 for 1 ≤ j ≤ p, βj ≥ 0 for 1 ≤ j ≤ q, αpβq > 0,
p

j=1 αj +
q

j=1 βj < 1, and the
polynomials

p
j=1 αjxj and 1 −

q
j=1 βjxj have no common root.

Given nonnegative observations x1, . . . , xn, we can iteratively define the functions

ψi(θ) = ω +

p
j=1

αjxi−j +

q
j=1

βjψi−j(θ) (2)

based on Eq. (1), and then the log-likelihood function of the Fréchet ACD model is

Ln(λ) =

n
i=1

li(λ)

=

n
i=1


log fγ


xi

ψi(θ)


− logψi(θ)



=

n
i=1


γ logψi(θ)− cγ


xi

ψi(θ)

−γ


− (1 + γ )

n
i=1

log(xi)+ n log(γ · cγ ).

Note that the above functions all depend onunobservable values of xi with i ≤ 0, and some initial values are hence needed for
x0, x−1, . . . , x1−p andψ0(θ), ψ−1(θ), . . . , ψ1−q(θ).We simply set them to be x̄ = n−1n

i=1 xi, and denote the corresponding
functions ψi(θ), li(λ) and Ln(λ) respectively by ψi(θ),li(λ) andLn(λ).

Thus, the MLE can be defined asλn = (γn,θ′

n)
′
= argmax

λ∈Λ

Ln(λ).
Let

c1(x, γ ) = −
∂ log fγ (x)

∂x
x − 1 = γ (1 − cγ x−γ )

and

c2(x, γ ) =
∂ log fγ (x)

∂γ
= cγ x−γ log(x)− log(x)− c ′

γ x
−γ

+ γ−1
+ c ′

γ /cγ ,

where c ′
γ = ∂cγ /∂γ . It can be verified that E[c1(εi, γ0)] = 0 and E[c2(εi, γ0)] = 0. Denote κ1 = var[c1(εi, γ0)], κ2 =

var[c2(εi, γ0)], κ3 = cov[c1(εi, γ0), c2(εi, γ0)] and

Σ =


κ2 κ3E[ψ−1

i (θ0)∂ψi(θ0)/∂θ
′
]

κ3E[ψ−1
i (θ0)∂ψi(θ0)/∂θ] κ1E{ψ−2

i (θ0)[∂ψi(θ0)/∂θ][∂ψi(θ0)/∂θ
′
]}


.

Theorem 1. Under Assumption 1, it holds thatλn converges to λ0 in almost surely sense as n → ∞.
If we further assume that γ > 2, then the matrixΣ is positive definite and

√
n(λn − λ0)→d N(0,Σ−1) as n → ∞.

Denote by {εi} the residual sequence from the fitted Fréchet ACD model, whereεi = xi/ψi(θn). For the quantities in
the information matrix Σ, κ1, κ2, κ3, E[ψ−1

i (θ0)∂ψi(θ0)/∂θ], and E[ψ−2
i (θ0)(∂ψi(θ0)/∂θ)(∂ψi(θ0)/∂θ

′)], we can estimate
them respectively by

κ1 =
1
n

n
i=1

[c1(εi,γn)]2, κ2 =
1
n

n
i=1

[c2(εi,γn)]2,
κ3 =

1
n

n
i=1

c1(εi,γn)c2(εi,γn),
1
n

n
i=1

1ψi(θn)

∂ψi(θn)

∂θ
and

1
n

n
i=1

1ψ2
i (
θn)

∂ψi(θn)

∂θ

∂ψi(θn)

∂θ′
.
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From the proof of Theorem 1, the above estimators are all consistent, and hence constitute a consistent estimator of the
information matrixΣ . Wemay sometimes be interested in the parameter vector θ only, and it is implied by Theorem 1 that

√
n(θn − θ0)→d N(0,Σ−1

1 )

as n → ∞, where

Σ1 = κ1 · E


1
ψ2

i (θ0)

∂ψi(θ0)

∂θ

∂ψi(θ0)

∂θ′


−
κ2
3

κ2
· E


1
ψi(θ0)

∂ψi(θ0)

∂θ


E


1
ψi(θ0)

∂ψi(θ0)

∂θ′


.

2.2. Diagnostic tools

Residuals from a fitted time series model play an important role in checking the adequacy of the model. In particular,
residual autocorrelations, which are autocorrelations of the residual sequence, were first employed in Box and Pierce
(1970) and Ljung and Box (1978). However, portmanteau tests based on residual autocorrelations usually have no power
in detecting the possible misspecifications of the conditional variance (Li and Li, 2008a). Some improved diagnostic tools
include those based on the squared residual autocorrelations (McLeod and Li, 1983) and those based on the absolute residual
autocorrelations (Li and Li, 2005). This subsection derives the asymptotic distribution of the residual autocorrelations from
the fitted Fréchet ACD model, and hence a portmanteau test for checking the adequacy of this model. It is worth pointing
out that the residuals are nonnegative, and that therefore, residual autocorrelation and absolute residual autocorrelation
coincide.

Without confusion, we denoteψi(θn) andψi(θ0) respectively byψi andψi for simplicity. Consider the residual sequence
{εi} withεi = xi/ψi. Note that n−1n

i=1εi = 1 + op(1). Hence, for a positive integer k, the lag-k residual autocorrelation
can be defined as

rk =

n
i=k+1

(εi − 1)(εi−k − 1)

n
i=1
(εi − 1)2

.

We next consider the asymptotic distributions of the first K residual autocorrelations,R = (r1, . . . ,rK )′, where K is a
predetermined positive integer.

Theorem 2. Under the conditions of Theorem 1, it holds that
√
nR→d N(0,Ω),

as n → ∞, whereΩ = I − σ−4
γ0

H ′Σ−1
1 H, σ 2

γ0
= var(εi),H = (H1, . . . ,HK ) with Hk = −E[ψ−1

i (εi−k − 1)∂ψi/∂θ], andΣ1 is
as defined in Section 2.1.

Letσ 2
γ0

= n−1n
i=1(εi −1)2,H = (H1, . . . ,HK )withHk = −n−1n

i=1
ψ−1

i (εi−k −1)∂ψi/∂θ, and Ω = I−σ−4
γ0
H ′Σ−1

1
H ,

where Σ1 is as defined in the previous subsection. From the proofs of Theorems 1 and 2, we can show that Ω is a consistent
estimator of Ω . Denote the diagonal elements of Ω by Ωkk with 1 ≤ k ≤ K . We then can check the significance ofrk by
comparing its absolute value with 1.96

Ωkk/n, where the significance level is 5%.
To check the significance ofR = (r1, . . . ,rK )′ jointly, we can construct a portmanteau test statistic,

Q (K) = nR′Ω−1R,
and it will be asymptotically distributed as χ2

K , the chi-squared distribution with K degrees of freedom.

3. Simulation experiments

In this section, we conduct three Monte Carlo simulation experiments to evaluate the finite-sample performance of the
proposed inference tools in the previous section.

The first experiment is for the MLEλn in Theorem 1, and the following three data generating processes are employed:
Fréchet ACD(1,1) model: xi = ψiεi, ψi = 0.1 + 0.2xi−1 + 0.6ψi−1;
Fréchet ACD(2,1) model: xi = ψiεi, ψi = 0.1 + 0.1xi−1 + 0.3xi−2 + 0.5ψi−1; and
Fréchet ACD(1,2) model: xi = ψiεi, ψi = 0.1 + 0.2xi−1 + 0.5ψi−1 + 0.1ψi−2.
We consider the shape parameter γ = 1.6 and 5 for the associated standardized Fréchet distribution of εi, corresponding

to a heavy-tailed distribution and a lighter-tailed one respectively, where the case with γ = 1.6 is employed to evaluate
the robustness of the estimating procedure as the asymptotic normality in Theorem 1 requires γ to be greater than two.
The sample size is set to n = 200, 500 or 1000, and there are 1000 replications for each sample size. Tables 1–3 list the bias,
empirical standard deviations (ESDs) and asymptotic standard deviations (ASDs) of theMLEλn = (γn,θ′

n)
′ for the three data
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Table 1
Estimation results of Fréchet ACD(1,1) models with θ = (ω, α, β)′ = (0.1, 0.2, 0.6)′ and γ = 1.6 or 5.

n γ ω α β

γ = 1.6 200 Bias 0.0149 0.0078 0.0060 −0.0203
ESD 0.0947 0.0406 0.0655 0.1175
ASD 0.0892 0.0431 0.0697 0.1081

500 Bias 0.0047 0.0031 0.0024 −0.0070
ESD 0.0623 0.0231 0.0399 0.0674
ASD 0.0561 0.0244 0.0425 0.0626

1000 Bias 0.0020 0.0002 0.0001 0.0003
ESD 0.0410 0.0146 0.0269 0.0434
ASD 0.0396 0.0162 0.0292 0.0421

γ = 5 200 Bias 0.0820 0.0150 −0.0012 −0.0294
ESD 0.5947 0.0481 0.0474 0.1225
ASD 0.2867 0.0461 0.0463 0.1182

500 Bias 0.0172 0.0049 0.0007 −0.0106
ESD 0.1725 0.0258 0.0299 0.0700
ASD 0.1770 0.0255 0.0289 0.0680

1000 Bias 0.0081 0.0027 0.0009 −0.0062
ESD 0.1279 0.0176 0.0209 0.0483
ASD 0.1241 0.0174 0.0203 0.0467

Table 2
Estimation results of Fréchet ACD(2, 1)models with θ = (ω, α1, α2, β)

′
= (0.1, 0.1, 0.3, 0.5)′ and γ = 1.6 or 5.

n γ ω α1 α2 β

γ = 1.6 200 Bias 0.0338 0.0083 0.0081 −0.0194 −0.0166
ESD 0.0858 0.0374 0.0547 0.0904 0.1101
ASD 0.0920 0.0390 0.0551 0.1026 0.1014

500 Bias 0.0011 0.0041 0.0030 −0.0020 −0.0039
ESD 0.0598 0.0216 0.0329 0.0616 0.0632
ASD 0.0566 0.0233 0.0345 0.0675 0.0598

1000 Bias −0.0024 0.0026 0.0024 0.0008 −0.0032
ESD 0.0430 0.0151 0.0224 0.0417 0.0425
ASD 0.0395 0.0158 0.0238 0.0470 0.0411

γ = 5 200 Bias 0.0324 0.0183 0.0058 0.0012 −0.0253
ESD 0.3172 0.0439 0.0467 0.0686 0.0883
ASD 0.2812 0.0427 0.0493 0.0684 0.0888

500 Bias 0.0060 0.0072 0.0008 0.0007 −0.0082
ESD 0.1903 0.0248 0.0304 0.0425 0.0535
ASD 0.1749 0.0240 0.0308 0.0428 0.0533

1000 Bias 0.0061 0.0032 0.0005 −0.0004 −0.0032
ESD 0.1234 0.0161 0.0223 0.0304 0.0370
ASD 0.1235 0.0162 0.0217 0.0303 0.0371

generating processes respectively. It can be seen that almost all biases become smaller when the sample size n increases,
and the biases ofθn for the Fréchet ACD(1,1) model tend to be smaller than those of the other twomodels. For the estimatorθn, the ASDs are close to their corresponding ESDs when the sample size is as small as n = 200, except the estimators of
β1 and β2 for the Fréchet ACD(1,2) model, in which case the ASDs and ESDs both have large values. For the estimator γn,
the discrepancies between its ASDs and ESDs are larger for the Fréchet ACD(1,2) model with larger γ . However, all ASDs
are generally closer to their corresponding ESDs with an increasing sample size n. Note that as implied by the iterative
functions (2), ψi(θ) is a polynomial with respect to the βj, while it is linear with respect to the αj. Hence, it is not surprising
that the estimating procedure will become less stable numerically when there are more parameters, especially more βj’s, in
the model.

The second experiment is for the proposed diagnostic tools in Section 2.2. We first evaluate the sample approximation
for the asymptotic variance of residual autocorrelationsΩ , and the data generating process is

xi = ψiεi, ψi = 0.1 + αxi−1 + βψi−1,

with shape parameter γ = 1.6 or 5 for the associated Fréchet distribution, and (α, β)′ = (0.2, 0.6)′ or (0.4, 0.5)′ which
corresponds to a stronger or weaker persistence of shocks respectively. As in the first experiment, the sample size is set to
n = 200, 500 or 1000, and there are 1000 replications for each sample size. As shown in Table 4, the ASDs of the residual
autocorrelations at lags 2, 4 and 6 are close to their corresponding ESDs when the sample size is as small as n = 200.
Moreover, the discrepancies between ASDs and their corresponding ESDs are smaller when the generated sequence is
lighter-tailed (i.e. γ = 5).

We next check the power of the proposed portmanteau test Q (K) using the data generating process,
xi = ψiεi, ψi = 0.1 + 0.1xi−1 + α2xi−2 + 0.3ψi−1,
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Table 3
Estimation results of Fréchet ACD(1, 2)models with θ = (ω, α, β1, β2)

′
= (0.1, 0.2, 0.5, 0.1)′ and γ = 1.6 or 5.

n γ ω α β1 β2

γ = 1.6 200 Bias 0.0307 0.0079 0.0177 −0.1495 0.1160
ESD 0.1254 0.0425 0.0687 0.1737 0.1400
ASD 0.0886 0.0445 0.0751 0.2663 0.2251

500 Bias 0.0072 0.0060 0.0108 −0.0864 0.0666
ESD 0.1020 0.0242 0.0412 0.1345 0.1073
ASD 0.0559 0.0265 0.0472 0.1801 0.1454

1000 Bias 0.0023 0.0036 0.0059 −0.0469 0.0348
ESD 0.0432 0.0164 0.0280 0.1030 0.0812
ASD 0.0396 0.0180 0.0329 0.1348 0.1069

γ = 5 200 Bias 0.0693 0.0103 0.0150 −0.1434 0.1102
ESD 0.3865 0.0448 0.0494 0.1659 0.1464
ASD 0.2830 0.0470 0.0506 0.2613 0.2312

500 Bias 0.0513 0.0077 0.0083 −0.0844 0.0612
ESD 0.4735 0.0280 0.0316 0.1312 0.1099
ASD 0.1770 0.0282 0.0323 0.1763 0.1525

1000 Bias 0.0109 0.0037 0.0047 −0.0480 0.0360
ESD 0.1220 0.0189 0.0217 0.0998 0.0856
ASD 0.1245 0.0189 0.0229 0.1291 0.1105

Table 4
Empirical standard deviations (ESD) and asymptotic standard deviations (ASD) of residual autocorrelations at lags 2, 4 and 6, for Fréchet ACD(1, 1)models
with θ = (ω, α, β)′ = (0.1, 0.2, 0.6)′ or (0.1, 0.4, 0.5)′ and γ = 1.6 or 5.

n θ = (0.1, 0.2, 0.6)′ θ = (0.1, 0.4, 0.5)′

2 4 6 2 4 6

γ = 1.6 200 ESD 0.0556 0.0517 0.0548 0.0588 0.0577 0.0560
ASD 0.0671 0.0678 0.0681 0.0670 0.0674 0.0678

500 ESD 0.0366 0.0393 0.0405 0.0393 0.0362 0.0381
ASD 0.0436 0.0438 0.0439 0.0436 0.0438 0.0439

1000 ESD 0.0272 0.0275 0.0282 0.0264 0.0276 0.0260
ASD 0.0312 0.0313 0.0313 0.0313 0.0313 0.0313

γ = 5 200 ESD 0.0741 0.0755 0.0747 0.0632 0.0651 0.0659
ASD 0.0664 0.0680 0.0690 0.0674 0.0686 0.0691

500 ESD 0.0420 0.0427 0.0412 0.0418 0.0411 0.0431
ASD 0.0424 0.0431 0.0436 0.0428 0.0435 0.0437

1000 ESD 0.0294 0.0305 0.0299 0.0295 0.0306 0.0302
ASD 0.0300 0.0305 0.0308 0.0303 0.0308 0.0309

Table 5
Rejection rates of test statistic Q (K)with K = 6 and γ = 1.5, 2 or 2.5.

n α2 = 0 α2 = 0.2 α2 = 0.4
1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

200 0.089 0.110 0.127 0.106 0.154 0.231 0.132 0.284 0.451
500 0.077 0.074 0.091 0.118 0.233 0.333 0.185 0.508 0.761

1000 0.056 0.059 0.054 0.155 0.299 0.522 0.268 0.689 0.915

where α2 = 0, 0.2 or 0.4, and εi follows the standardized Fréchet distribution with γ = 1.5, 2 or 2.5. All the other settings
are preserved from the first two experiments. We fit the model of orders (1, 1) to the generated data; hence, the case with
α2 = 0 corresponds to the size and those with α2 > 0 to the power. The rejection rates of test statistic Q (K) with K = 6
are given in Table 5, where the critical value is the upper 5th percentile of the χ2

6 distribution. The test is slightly sensitive,
and the sizes are close to the nominal value of 0.05 when the sample size is n = 1000. While unsurprisingly the powers are
larger as the sample size is larger, they are interestingly observed to have smaller values when the generated data are more
heavy-tailed.

The last experiment compares the MLEs of the exponential ACD model, the Weibull ACD model and the Fréchet ACD
model. The innovations associated with the Weibull ACD model follows the standardized Weibull distribution with mean
of one and density function of the form,

fγ (x) = γ bγ xγ−1 exp{−bγ xγ }, x ≥ 0, (3)

where γ > 0 is the shape parameter, bγ = [Γ (1+ γ−1)]γ , and Γ (·) is the Gamma function. The data generating process is
the Fréchet ACD model,

xi = ψiεi, ψi = 0.1 + 0.2xi−1 + 0.6ψi−1,
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Fig. 2. Boxplots formaximum likelihood estimators of θ by exponential ACD (EACD)models,Weibull ACD (WACD)models and Fréchet ACD (FACD)models.
The data generating process is the Fréchet ACD model with λ = (1.6, 0.1, 0.2, 0.6)′ (left panel) or λ = (2.4, 0.1, 0.2, 0.6)′ (right panel).

with γ = 1.6 or 2.4 for the associated Fréchet distribution. We set the sample size to n = 1000, and generated 1000
replications. Each generated sequence is estimated by the MLEs of the aforementioned three models. Boxplots for the
estimators of θ = (ω, α, β)′ are presented in Fig. 2. While it is not surprising that the Fréchet ACD model has the best
performance, the other two models even have inconsistent estimators for the parameters α and β . This further justifies the
necessity of considering the Fréchet ACD model in real applications.

4. Two empirical examples

4.1. Durations of block trades on the SEHK

In the first empirical example, we consider the durations of block trades on theHong Kong Stock Exchange (SEHK). The 50
stocks comprising the Hang Seng Index (HSI) are taken into account, with trades of 0.5 million Hong Kong dollars or greater
sampled as block trades. The stocks are traded in two regular trading sessions on the SEHK: the morning session from 9:30
to 12:00 and the afternoon session from 13:00 to 16:00. We discarded the observations in the first 30 min of the morning
session and the last 30 min of the afternoon session since they consist of extremely short durations even for block trades.
Moreover, we treat multiple block trades within a second as a single trade; i.e., we ignore zero durations. Finally, each week
is analyzed separately, and intersession durations and overnight durations are ignored.

As is well known in the literature, intraday duration series typically contain strong diurnal patterns. Specifically,
the frequency of transactions is higher near the open and close of the market. A common practice is to first assume a
deterministic function of time of day for the diurnal pattern, and then estimate this function by a semi- or non-parametric
approach; see the cubic spline in Engle and Russell (1998) and Grammig and Maurer (2000), and the local regression
smoothing in Zhang et al. (2001). Then the time-of-day detrended duration is calculated by xi = zi/φ(ti), where ti is the
arrival time of the ith trade, zi = ti − ti−1 is the observed duration, and φ(ti) is the estimated diurnal pattern. We tried the
detrending method in Engle and Russell (1998) on both the morning and afternoon sessions, but it has a poor performance
for our dataset. For simplicity, we estimate φ(ti) by fitting two cubic smoothing splines respectively for the two trading
sessions with the R function smooth.spline. The knots are evenly spaced, and the number of knots are set to be 5 for the
morning session and 6 for the afternoon session so that the intervals between any two consecutive knots are around 30min.

We consider the durations of block trades on the SEHK in the following four weeks of 2014: January 6 to 10 (Week 1),
January 13 to 17 (Week 2), January 20 to 24 (Week 3), and February 10 to 14 (Week 4). Note that the two weeks spanning
from January 27 to February 7 are not included since they each contain a weekday on which SEHK is closed (i.e., January 31
and February 3). During this period, block trades account for around 4% of all trades on a normal trading day.

We first fit the Weibull ACD model of orders (p, q) = (1, 2) to the four diurnally adjusted sequences, respectively. The
distribution of the Weibull innovations is as specified in (3) in the previous section, and this specification applies to all the
Weibull ACDmodels in the sequel. As shown in the upper panel of Fig. 3, outliers above the reference line at the upper-right
corner can be observed in the QQ plots of the standardized residuals from the four fitted Weibull ACD models, suggesting
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Fig. 3. QQ plots of the standardized residuals from all fitted models for the SEHK block trade durations.

Fig. 4. Estimation results of the Fréchet ACDmodel and theWeibull ACDmodel for the SEHK block trade durations (Week 1). They include QQ plots of the
standardized residuals from the fitted models and the residual autocorrelations.

the right tails of the fitted Weibull distributions are not heavy enough for these datasets. This finding is indeed consistent
with the observation in Engle and Russell (1998) where transaction durations data are fitted with the Weibull ACD model.

To reveal more details, we next concentrate on the durations of block trades in Week 1, and apply the proposed Fréchet
ACD model as well as the Weibull ACD model to the diurnally adjusted sequence.

We first fit the data with the Weibull ACD model,

xi = ψiεi, ψi = 0.02940.0000 + 0.09190.0001xi−1 + 0.66140.0113ψi−1 + 0.21850.0096ψi−2, (4)

where εi follows the standardized Weibull distribution with parameter γn = 1.05730.0001, and the subscripts of the
parameter estimates are their associated standard errors. The portmanteau test Q (K) has p-values of 0.2723, 0.5486 and
0.4225 for K = 6, 12 and 18, respectively, and the adequacy of the fitted model is further confirmed by the plot of residual
autocorrelations in Fig. 4 since the autocorrelations slightly exceed the reference values at lag 16 only.

We next consider the Fréchet ACD model. Note that both the right and left tails of the standardized Fréchet distribution
become lighter when the shape parameter γ increases. As a result, this distribution has a very small probability near the
origin (see Fig. 6 for an illustration). This feature may affect the accuracy of its corresponding estimates. To overcome this
problem, this section considers a slightly different standardization of Fréchet distributions. Specifically, we impose the
following two conditions upon a 3-parameter Fréchet distribution: (i) E(εi) = 1; and (ii) Fγ (0) = δ for a predetermined
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Fig. 5. Estimation results of the Fréchet ACDmodel and theWeibull ACDmodel for the LSE block trade durations. They include QQ plots of the standardized
residuals from the fitted models and the residual autocorrelations.

small positive number δ, which is set to be 0.05 in the following. Moreover, in order to obtain a stable estimate, we fix the
shape parameter γ in the estimating procedure.

With the value of γ chosen to be 3.5, the fitted Fréchet ACD model has the form of

xi = ψiεi, ψi = 0.03540.0000 + 0.10090.0001xi−1 + 0.63510.0088ψi−1 + 0.21610.0072ψi−2, (5)

where the portmanteau test statistic Q (K) has p-values of 0.0789, 0.1143 and 0.1253 for K = 6, 12 and 18, respectively.
Residual autocorrelations are all within the boundaries (see Fig. 4), supporting the adequacy of the fitted model.

Lastly, the lower panel of Fig. 3 presents the QQ plots of the standardized residuals from the fitted Fréchet ACDmodels for
Weeks 1–4. It can be seen that the points fall approximately along the reference line, indicating that the Fréchet distribution
fits the right tails better than the Weibull distribution.

4.2. Durations of block trades on the LSE

To further demonstrate the usefulness of the proposed model, in the second example we explore the behavior of the
durations of block trades on the London Stock Exchange (LSE). The block trades of the FTSE 100 index components in the
first five-day trading week of 2015 (i.e., January 5 to 9, 2015) are considered. Trades of 2 million pounds or greater are
sampled as block trades, which account for around 2.2% of all trades during this period. Considering that the normal trading
session of the LSE is from 8:00 to 16:30 without breaks, we discarded the observations in the first and the last 30 min of
this period to avoid extremely short durations. The adjustments to the preliminary data are the same as those in the first
empirical example, except that the number of knots is set to be 16 for the whole session. All the tick-by-tick transactions
data used in this and the previous subsection are downloaded from Bloomberg.

For the durations of block trades on the LSE, we choose the value of γ to be 4, and the fitted Fréchet ACD model has the
form of

xi = ψiεi, ψi = 0.05110.0000 + 0.08180.0000xi−1 + 0.45600.0041ψi−1 + 0.39670.0035ψi−2.

The portmanteau test Q (K) has p-values of 0.8728, 0.8539 and 0.3034 for K = 6, 12 and 18, respectively, and the adequacy
of the fitted model is further confirmed by the plot of residual autocorrelations in Fig. 5.

As a comparison, the fitted Weibull ACD(1,2) model to this dataset is

xi = ψiεi, ψi = 0.04750.0000 + 0.08480.0000xi−1 + 0.43590.0038ψi−1 + 0.43260.0033ψi−2,

with the estimated shape parameter γn = 1.09320.0000. The portmanteau test Q (K) has p-values of 0.8374, 0.8482 and
0.2668 for K = 6, 12 and 18, respectively, and the adequacy of the fitted model is further suggested by the plot of residual
autocorrelations in Fig. 5.

Similar to the first empirical example, the QQ plots of the standardized residuals from the two fittedmodels indicate that
the Fréchet ACD model is preferable to the Weibull ACD model for this dataset (see the left panel of Fig. 5).
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Fig. 6. Density functions of the standardized Fréchet distribution with γ =1.5 (black line), 2 (gray line) and 3 (light gray line).
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Appendix. Proofs of Theorems 1 and 2

Proof of Theorem 1. Our proof is split into three parts: some preliminary results; strong consistency; and asymptotic
normality.

Part I. Some preliminary results
This part attempts to establish some preliminary results below:

sup
θ∈Θ

|ψi(θ)− ψi(θ)| ≤ ζρ i, (6)

sup
θ∈Θ

∂ψi(θ)

∂θ
−
∂ψi(θ)

∂θ

 ≤ ζρ i, and sup
θ∈Θ

∂2ψi(θ)

∂θ∂θ′
−
∂2ψi(θ)

∂θ∂θ′

 ≤ ζρ i, (7)

where 0 < ρ < 1, the random variable ζ is independent of iwith E|ζ | < ∞, andψi(θ) is defined based on the initial values
of x0, . . . , x1−p, ψ0(θ), . . . , ψ1−q(θ).

When p = q = 1, it can be deduced that for i ≥ 2,

ψi(θ) =
ω

1 − β1
+ α1

∞
j=0

β
j
1xi−j−1 =

i−2
j=0

β
j
1(ω + α1xi−j−1)+ β i−1

1 ψ1(θ), (8)

and similarly, ψi(θ) =
i−2

j=0 β
j
1(ω + α1xi−j−1)+ β i−1

1
ψ1(θ). Thereforeψi(θ)− ψi(θ) = β i−1

1 [ψ1(θ)− ψ1(θ)] = β i−1
1 [α1(c − x0)+ β1(c − ψ0(θ))],

where c is the arbitrary starting value for x0 and ψ0(θ).
From Assumption 1, there exist 0 < ω < ω < ∞ and 0 < ρ < 1 such that ω ≤ ω ≤ ω̄, α1 ≤ ρ and β1 ≤ ρ. Then by (8)

we have supθ∈Θ |ψ0(θ)| = ω(1 − ρ)−1
+


∞

j=1 ρ
jx−j, and hence also the result at (6),

sup
θ∈Θ

|ψi(θ)− ψi(θ)| ≤ ρ i sup
θ∈Θ

[|c − x0| + |c − ψ0(θ)|] ≤ ζρ i.

Hence, E supθ∈Θ |ψ0(θ)| = ω(1 − ρ)−1
+


∞

j=1 ρ
jE(x−j) = O(1). Using (8), similarly we can obtain the results at (7).

Analogous to (8), for general p and q, we have

ψi(θ) =
ω

1 −

p
j=1
βj

+

∞
j=0

ι′qB
jιq

p
l=1

αlxi−j−l, (9)



Y. Zheng et al. / Journal of Statistical Planning and Inference 175 (2016) 51–66 61

where ιq = (1, 0, . . . , 0)′ and

B =


β1 · · · βq−1 βq
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 .
By Lemma A.1 of Li and Li (2008b), we have |ι′qB

jιq| ≤ Mρ j for some M > 0 and 0 < ρ < 1. Then the results at (6) and (7)
can also be verified for general p and q.

Part II. Strong consistency
To show the strong consistency ofλn, as in, e.g., Huber (1967), Kukush et al. (2004) and Francq and Zakoian (2004), it is

sufficient to establish the following intermediate results:

(i) For any γ > 0, sup1<γ≤γ ,θ∈Θ n−1
|Ln(λ)− Ln(λ)| → 0 almost surely as n → ∞.

(ii) The estimator of the shape parameterγn is stochastically bounded, i.e. there exist 1 < γ ≤ γ0 ≤ γ such thatγn ∈ [γ , γ ]

with probability one when n is large enough.

(iii) E[l1(λ)] ≤ E[l1(λ0)] for all λ ∈ Λ, and the equality holds if and only if λ = λ0.

(iv) Any λ ≠ λ0 has a neighborhood V (λ) such that

lim sup
n→∞

sup
λ∗∈V (λ),γ∈[γ ,γ ],θ∈Θ

n−1Ln(λ∗) < E[l1(λ0)]

almost surely.

We first prove (i). It holds that 0 < cγ < 1 when γ > 1 and, by (6) and the Taylor series expansion of Ln as a function of
ψi(θ), we have

1
n

Ln(λ)− Ln(λ)
 =

1
n

 n
i=1

γ

ψ∗

i (θ)


1 − cγ


xi

ψ∗

i (θ)

−γ

(ψi(θ)− ψi(θ))


≤
γ ζ

ω

1
n

n
i=1

ρ i

1 + cγ


ψ∗

i (θ)

xi

γ

≤
1
n
ρ(1 − ρn)γ ζ

(1 − ρ)ω
+
γ ζ

ω

1
n


n

i=1

ρ i/γ ζρ
i
+ ψi(θ)

xi

γ
, (10)

where ψ∗

i (θ) is between ψi(θ) and ψi(θ), and then ψ∗

i (θ) ≤ |ψi(θ) − ψi(θ)| + ψi(θ) ≤ ζρ i
+ ψi(θ) with probability one.

Note that ρ i/γ < ρ i,

n
i=1

ρ2i/xi ≤ ω−1
∞
i=1

ρ2iε−1
i and

n
i=1

ρ iψi(θ)/xi ≤ ω−1
∞
i=1

ρ iε−1
i sup

θ∈Θ

ψi(θ),

where E|


∞

i=1 ρ
2iε−1

i | < ∞ and E|


∞

i=1 ρ
iε−1

i supθ∈Θ ψi(θ)| < ∞. As a result, the second term at the last line of (10)
converges to zero almost surely as n → ∞. Thus, we accomplish the proof for (i).

Next we prove (ii). We first show that γn is stochastically bounded from above. Since γ > 1 and 0 < cγ < 1, by
elementary algebra, we can show

−
cγ
2
x−γ

− (1 + γ ) log x < 2 log c−1
γ

and hence, for x ≠ 1,

log fγ (x) = log(γ cγ )+ I(x > 1){−(1 + γ ) log x − cγ x−γ
}

+ I(0 < x < 1)

−

cγ
2
x−γ

+


−

cγ
2
x−γ

− (1 + γ ) log x


≤ log γ + 2 log c−1
γ − (1 + γ )I(x > 1) log x −

cγ
2
I(0 < x < 1)x−γ .
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As a result, we have

1
n
Ln(λ) =

1
n

n
i=1

log fγ


xiψi(θ)


−

1
n

n
i=1

logψi(θ)

≤ −(1 + γ )
1
n

n
i=1

I


xiψi(θ)
> 1


log


xiψi(θ)


−

cγ
2

1
n

n
i=1

I

0 <

xiψi(θ)
< 1


xiψi(θ)

−γ

+ log γ + 2 log c−1
γ −

1
n

n
i=1

logψi(θ), (11)

where

1
n

n
i=1

I

0 <

xiψi(θ)
< 1


xiψi(θ)

−γ

≥


1
n

n
i=1

I
ψi(θ)

xi
> 1

 ψi(θ)

xi

γ
. (12)

Define a function g1(x) = log(x)I(x > 1), and then it holds that |g1(x)− g1(y)| ≤ |x − y|. By (6), we have

1
n

n
i=1

|g1(xi/ψi(θ))− g1(xi/ψi(θ))| ≤
ζ

ω2

1
n

n
i=1

ρ ixi → 0

with probability one. Moreover, by the ergodic theorem, we have

1
n

n
i=1

g1(xi/ψi(θ)) ≥
1
n

n
i=1

inf
θ∈Θ

g1(xi/ψi(θ)) → K1

with probability one, where K1 = E infθ∈Θ g1(xi/ψi(θ)) > 0. Thus, there exists an N1 such that

n−1
n

i=1

g1(xi/ψi(θ)) > 0.5K1 as n > N1. (13)

We define another function g2(x) = (x − 1)I(x > 1), and it holds that I(ψi(θ)/xi > 1)ψi(θ)/xi = g2(ψi(θ)/xi) +

I(ψi(θ)/xi > 1). By a method similar to the proof of Theorem 1 in Li et al. (2015), together with (6) and the fact that
|g2(x)− g2(y)| ≤ |x − y|, it can be verified that

1
n

n
i=1

|I(ψi(θ)/xi > 1)− I(ψi(θ)/xi > 1)| → 0

and

1
n

n
i=1

|g2(ψi(θ)/xi)− g2(ψi(θ)/xi)| ≤
ζ

ω

1
n

n
i=1

ρ iε−1
i → 0

with probability one. By the ergodic theorem again,

1
n

n
i=1

I(ψi(θ)/xi > 1)ψi(θ)/xi ≥
1
n

n
i=1

inf
θ∈Θ

I(ψi(θ)/xi > 1)ψi(θ)/xi → K2

with probability one, where K2 = E infθ∈Θ I(ψi(θ)/xi > 1)ψi(θ)/xi > 1. Hence, there exists an N2 such that

n−1
n

i=1

I(ψi(θ)/xi > 1)ψi(θ)/xi > 1 + 0.5(K2 − 1) as n > N2. (14)

We can similarly handle the term n−1n
i=1 logψi(θ) at (11). This, together with (11)–(14), implies that

sup
γ>C

lim sup
n→∞

sup
θ∈Θ

1
n
Ln(λ) → −∞ almost surely as C → +∞. (15)

We then show thatγn is stochastically bounded from below. Observe that

1
n
Ln(λ) = log(γ cγ )+

γ

n

n
i=1

logψi(θ)−
1 + γ

n

n
i=1

log(xi)−
cγ
n

n
i=1


xiψi(θ)

−γ
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and

−
1
n

n
i=1


xiψi(θ)

−γ

≤ −


1
n

n
i=1

xiψi(θ)

−γ

.

Similarly to the proof of (15), by the ergodic theorem together with (6), we can show that

lim
n→∞

1
n

n
i=1

sup
θ∈Θ

logψi(θ) = E sup
θ∈Θ

logψi(θ) ≤ log

E sup

θ∈Θ

ψi(θ)


and

lim
n→∞

1
n

n
i=1

sup
θ∈Θ

xiψi(θ)
= E sup

θ∈Θ


xi

ψi(θ)


≤

E(xi)
ω

with probability one. Moreover, by the ergodic theorem,

1
n

n
i=1

log(xi) → E[log(εi)] − E[logψi(θ0)]

almost surely. Hence, in view of the fact that γ > 1, 0 < cγ < 1, and log(cγ ) → −∞ as γ → 1, we have

sup
1<γ<δ

lim sup
n→∞

sup
θ∈Θ

1
n
Ln(λ) → −∞ almost surely as δ → 1. (16)

Furthermore,

lim
n→∞

n−1Ln(λ0) = E[l1(λ0)] =


+∞

0
fγ0(x) log fγ0(x)dx − E[logψ1(θ0)] (17)

with probability one, where


+∞

0 fγ (x) log fγ (x)dx = log γ −γ−1 log cγ −γ−1(γ +1)γe−1 is finite for each γ , E[logψ1(θ0)]
is a constant and γe is Euler’s constant. This, together with (15) and (16), leads to the existence of 1 < γ ≤ γ0 ≤ γ such that
P({ω : γn(ω) ∈ [γ , γ ] as n > n0(ω)}) = 1, where n0(ω) is a large number, and depends on the realization ω. The proof for
(ii) is accomplished.

Now we prove (iii). Denotem(θ) = ψ1(θ0)/ψ1(θ), and then m(θ) ∈ F0 is independent of ε1. Since

E

m(θ)fγ (m(θ)ε1)

fγ0(ε1)

F0
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= 1. Therefore by Jensen’s inequality,
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
= 0,

with equality if and only if

fγ0(ε1) = m(θ)fγ (m(θ)ε1)

with probability one. Evidently this holds when λ = λ0. Conversely, if fγ0(ε1) = m(θ)fγ (m(θ)ε1)with probability one, then
E

Pr

fγ0(ε1) ≠ m(θ)fγ (m(θ)ε1) |m(θ)


= 0. By Lemma 6.1.2 of Straumann (2005), we have

{m(θ) ≠ 1} ⊂

Pr{fγ0(ε1) ≠ m(θ)fγ (m(θ)ε1) |m(θ)} > 0


.

Therefore Pr {m(θ) ≠ 1} = 0, i.e. ψ1(θ0) = ψ1(θ) almost surely and it follows that fγ0(ε1) = fγ (ε1) almost surely.
On the one hand, since ψ1(θ0) = ψ1(θ) almost surely, in view of (9), we have

∞
j=0

p
l=1


ι′qB

jιqαl − ι′qB
j
0ιqα0l


x1−j−l =

ω0

1 −

p
j=1
β0j

−
ω

1 −

p
j=1
βj

where ιq = (1, 0, . . . , 0)′ and B0 is the matrix B evaluated at θ = θ0. Suppose θ ≠ θ0, then there exists a constant linear
combination of the x1−j, j ≥ 0, and thus almost surely

x1 − E(x1|F0) = ψ1(θ0)(ε1 − 1) = 0,

which however is impossible because ε1 is non-degenerate. Therefore we have θ = θ0.
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On the other hand, since fγ0(ε1) = fγ (ε1) almost surely and the map (0,∞) × (1,∞) → (0,∞) : (x, γ ) → fγ (x) is
continuous, we have fγ0(x) = fγ (x) for all x ∈ (0,∞). For the standardized Fréchet distribution, γ0 = γ necessarily follows.

Lastly we prove (iv). LetΛ1 = [γ , γ ] ×Θ , where 1 < γ < γ are defined as in (ii). For any λ ∈ Λ1 with λ ≠ λ0 and any
positive integer k, let Vk(λ) be the open ball with center λ and radius 1/k, and let Uk(λ) = Vk(λ)


Λ1. Owing to (i),

lim sup
n→∞

sup
λ∗∈Uk(λ)

n−1Ln(λ∗) ≤ lim sup
n→∞

sup
λ∗∈Uk(λ)

n−1Ln(λ∗)− lim inf
n→∞

sup
λ∈Λ1

n−1
|Ln(λ)− Ln(λ)|

≤ lim sup
n→∞

n−1
n

i=1

sup
λ∗∈Uk(λ)

li(λ∗).

Since E[l+1 (λ)] < ∞, E supλ∗∈Uk(λ)
li(λ∗) ∈ R


{−∞}. We apply the following ergodic theorem to {supλ∗∈Uk(λ)

li(λ∗)}i: if
{Xi} is a stationary and ergodic process such that EX1 ∈ R


{−∞}, then n−1n

i=1 Xi converges almost surely to EX1 when
n → ∞ (see, e.g. the proof of Theorem 2.1 of Francq and Zakoian, 2004). Therefore

lim sup
n→∞

n−1
n

i=1

sup
λ∗∈Uk(λ)

li(λ∗) = E sup
λ∗∈Uk(λ)

l1(λ∗). (18)

By the monotone convergence theorem, when k increases to ∞, E supλ∗∈Uk(λ)
l1(λ∗) decreases to E[l1(λ)]. In view of (iii),

(iv) is proved.
For any ϵ > 0, from (iv) and the finite covering theorem, we have that E[l1(λ0)] − δ ≥ lim supn→∞ supλ∈Λ1,|λ−λ0|≥ϵ

n−1Ln(λ)with probability one for some δ > 0. Moreover, it is implied by (17) that

lim inf
n→∞

n−1Ln(λ0) > E[l1(λ0)] − 0.5δ > E[l1(λ0)] − δ ≥ lim sup
n→∞

sup
λ∈Λ1,|λ−λ0|≥ϵ

n−1Ln(λ)
with probability one. In view of (ii), as a result, there exists a large number n1(ω, ϵ) such that P({ω : |λn(ω)−λ0| < ϵ as n >
n1(ω, ϵ)}) = 1, where n1(ω, ϵ) depends on ϵ and the realization ω. Thus the strong consistency follows.
Part III. Asymptotic normality

We first give the derivatives of the function of li(λ) as follows. Write ψi = ψi(θ). The first derivatives are given by

∂ li
∂γ

=


cγ


xi
ψi

−γ

− 1


log


xi
ψi


− c ′

γ


xi
ψi

−γ

+
1
γ

+
c ′
γ

cγ
,

∂ li
∂θ

= γ


1 − cγ


xi
ψi

−γ


1
ψi

∂ψi

∂θ


,

and the second derivatives are given by,

∂2li
∂γ 2

=


xi
ψi

−γ 
2c ′

γ − cγ log


xi
ψi


log


xi
ψi


− c ′′

γ


−

1
γ 2

+
c ′′
γ

cγ
−

 c ′
γ

cγ

2

,

∂2li
∂θ∂γ

=


1 −


xi
ψi

−γ 
cγ + γ c ′

γ − γ cγ log


xi
ψi


1
ψi

∂ψi

∂θ


,

∂2li
∂θ∂θ′

= γ


1 − cγ


xi
ψi

−γ


1
ψi

∂2ψi

∂θ∂θ′


− γ


1 + (γ − 1)cγ


xi
ψi

−γ


1
ψi

∂ψi

∂θ


1
ψi

∂ψi

∂θ′


,

where c ′
γ = ∂cγ /∂γ and c ′′

γ = ∂2cγ /∂γ 2. We can verify that

E(ε−γ

i ) < ∞, E(log εi) < ∞, E(ε−γ

i log εi) < ∞, E(ε−γ

i (log εi)2) < ∞.

Due to the consistency, there exists a compact setΘ1 ⊂ Θ such that θ0 ∈ Θ1 and each element ofΘ1 is bounded away from
zero. It then can be verified that

E sup
θ∈Θ1

 1
ψi(θ)

∂ψi(θ)

∂θ

2 < ∞, and E sup
θ∈Θ1

 1
ψi(θ)

∂2ψi(θ)

∂θ∂θ′

 < ∞. (19)

Consider a Taylor expansion of the score vector around λ0,

0 = n−1/2
n

i=1

∂

∂λ
li(λn) = n−1/2

n
i=1

∂

∂λ
li(λ0)+


n−1

n
i=1

∂2li(λ∗)

∂λ∂λ′


√
n(λn − λ0),

where the λ∗ are betweenλn and λ0. It suffices to show
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(i) n−1/2n
i=1 ∂

li(λ0)/∂λ →d N(0,Σ),
(ii) n−1

i=1 ∂
2li(λ∗)/∂λ∂λ′

→ Σ in probability, and
(iii) the matrixΣ is positive definite.

We first prove (i). Since Σ = E(∂ li(λ0)/∂λ)(∂ li(λ0)/∂λ
′) < ∞ from (19), and E(∂ li(λ0)/∂λ|Fi−1) = 0, for any

x ∈ R2+p+q, the sequence {(∂ li(λ0)/∂λ
′)x,Fi, i = 1, . . . , n} is a finite variance stationary ergodic martingale difference.

By the central limit theorem and the Cramér–Wold device, we obtain n−1/2n
i=1 ∂ li(λ0)/∂λ →d N(0,Σ). Moreover, by a

method similar to (10), n−1/2n
i=1 |∂li(λ0)/∂λ − ∂li(λ0)/∂λ| → 0 almost surely. This accomplishes the proof for (i).

Now we show (ii). By a method similar to (10) again,

1
n

sup
2<γ≤γ ,θ∈Θ1

 n
i=1

∂2li(λ)
∂λ∂λ′

−
∂2li(λ)
∂λ∂λ′

 → 0 (20)

with probability one. From (19), we further verify that E sup2<γ≤γ ,θ∈Θ1
|∂2li(λ)/∂λ∂λ′

| < ∞. Note that E{∂2li(λ)/∂λ∂λ′
−

E[∂2li(λ)/∂λ∂λ′
]} = 0. By applying Theorem 3.1 of Ling and McAleer (2003), we have

1
n

sup
2<γ≤γ ,θ∈Θ1

 n
i=1

∂2li(λ)
∂λ∂λ′

− E
∂2li(λ)
∂λ∂λ′

 = op(1),

which, together with the consistency ofλn and (20), implies (ii).
Finally we prove (iii). Note that Σ is positive semi-definite. Assume there exists x = (u, v′)′ ≠ 0 with u ∈ R and

v ∈ R1+p+q such that x′Σx = 0. Equivalently, {∂ li(λ0)/∂γ }u + {∂ li(λ0)/∂θ
′
}v = 0 almost surely. The proof is split into the

following three subcases:
(a) u ≠ 0 and v = 0. Then κ2 = var[c2(εi, γ0)] = 0, where c2(x, γ ) = cγ x−γ log(x)− log(x)− c ′

γ x
−γ

+ γ−1
+ c ′

γ /cγ . This
implies c2(εi, γ0) = 0 almost surely, which is however impossible because εi is non-degenerate.

(b) u = 0 and v ≠ 0. Then almost surely
∂ li(λ0)

∂θ′
v = γ0


1 − cγ0ε

−γ0
i

 ∂ψi(θ0)

∂θ′

v
ψi(θ0)

= 0.

First note that E{ψ−2
i (θ0)(∂ψi(θ0)/∂θ)(∂ψi(θ0)/∂θ

′)} is positive definite. This can be proved by contradiction. Suppose
there exists a nonzero vector w ∈ Rp+q+1 such that w′E{ψ−2

i (θ0)(∂ψi(θ0)/∂θ)(∂ψi(θ0)/∂θ
′)}w = 0, then

(∂ψi(θ0)/∂θ
′)w = 0 almost surely, and hence in view of (2) and the stationarity of {∂ψi(θ0)/∂θ}, we have almost surely

0 =
∂ψi(θ0)

∂θ′
w = (1, xi−1, . . . , xi−p, ψi−1(θ0), . . . , ψi−q(θ0))w +

q
j=1

βj
∂ψi−j(θ0)

∂θ′
w

= (1, xi−1, . . . , xi−p, ψi−1(θ0), . . . , ψi−q(θ0))w.

However, the condition that the polynomials
p

j=1 αjxj and 1−
q

j=1 βjxj have no common root stated in Assumption 1
implies that the definition (1) is minimal: there is no (p∗, q∗) such that p∗ < p or q∗ < q and ψi = ω∗

+p∗

j=1 α
∗

j xi−j +
q∗

j=1 β
∗

j ψi−j. Since w ≠ 0, a contradiction results. Thus, E{ψ−2
i (θ0)(∂ψi(θ0)/∂θ)(∂ψi(θ0)/∂θ

′)} must

be positive definite, implying P

ψi(θ0)

−1(∂ψi(θ0)/∂θ
′)v ≠ 0


> 0. Due to the independence of γ0


1 − cγ0ε

−γ0
i


and

ψi(θ0)
−1(∂ψi(θ0)/∂θ

′)v, we have γ0(1 − cγ0ε
−γ0
i ) = 0 with probability one, which is again impossible.

(c) u ≠ 0 and v ≠ 0. Then ψi(θ0)
−1(∂ψi(θ0)/∂θ

′)v = −uγ−1
0 c2(εi, γ0)/


1 − cγ0ε

−γ0
i


almost surely. However,

since the right-hand side of this equation is non-degenerate, it contradicts the independence between εi and
ψ−1

i (θ0)(∂ψi(θ0)/∂θ). ThereforeΣ is positive definite.
This completes the proof of Theorem 1.

Proof of Theorem 2. Denote ψi(θn) and ψi(θ0) respectively by ψi and ψi, and letεi = xi/ψi. LetC = (C1, . . . ,CK )
′ and

C = (C1, . . . , CK )
′, where

Ck =
1
n

n
i=k+1

(εi − 1)(εi−k − 1) and Ck =
1
n

n
i=k+1

(εi − 1)(εi−k − 1).

By (6) in the proof of Theorem 1, the
√
n-consistency ofθn and the ergodic theorem, it follows that

1
n

n
i=1

(εi − 1)2 = σ 2
γ0

+ op(1), (21)

where σ 2
γ0

= var(εi), and thus it suffices to derive the asymptotic distribution ofC .
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By (7) in the proof of Theorem 1 and the Taylor expansion, it holds thatC = C + H ′(θn − θ0)+ op(n−1/2), (22)

where H = (H1, . . . ,HK ) and Hk = −E[ψ−1
i (εi−k − 1)∂ψi/∂θ]. From the proof of Theorem 1, we have

√
n(θn − θ0) = AΣ−1

·
1

√
n

n
i=1


c2(εi, γ0),

c1(εi, γ0)
ψi

∂ψi

∂θ′

′

+ op(1), (23)

where the cj(εi, γ0) is as defined in Section 2.1, and the matrix A = (0, I)with I being the (p + q + 1)-dimensional identity
matrix. Note that E[εic2(εi, γ0)] = 0 and E[εic1(εi, γ0)] = 1. By (22), (23), the central limit theorem and the Cramér–Wold
device, the theorem follows.
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