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Least absolute deviations estimation for
nonstationary vector autoregressive time series
models with pure unit roots*

Yao Zheng�, Jianhong Wu, Wai Keung Li and Guodong Li

This paper derives the asymptotic distribution of the
least absolute deviations estimator for nonstationary vec-
tor autoregressive time series models with pure unit roots
under mild conditions. As this distribution has a compli-
cated form, many commonly used bootstrap techniques can-
not be directly applied. To tackle this problem, we propose
a novel hybrid bootstrap method by combining the clas-
sical wild bootstrap and the method in [17]. We establish
the asymptotic validity of the proposed method and further
apply it to construct three bootstrapping panel unit root
tests. Monte Carlo experiments support the validity of our
inference procedure in finite samples. The usefulness of the
proposed panel unit root tests is demonstrated via analyses
of real economic and financial data sets.
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1. INTRODUCTION

[20, 21] first considered tests for unit root hypothesis in
panels. One of their motivations is to increase the power
since unit root tests in univariate time series usually lack
power in small samples. As these tests assume independence
along the cross-sectional dimension, they belong to the so-
called first generation tests. However, when cross-sectional
dependence is present, these tests usually exhibit large size
distortions [28]. As a result, many second generation panel
unit root tests have recently been proposed to handle dif-
ferent kinds of cross-sectional dependence. [7] discussed the
interdependence of individual errors and considered the gen-
eralized least squares estimation in constructing the panel
unit root tests. [2] introduced spatial dependence into panel
unit root tests, and [1] considered common factors for the
cross-sectional dependence when the number of individuals
is large; see also, e.g., [34], [6] and [30]. As one of many ways
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to introduce cross-sectional dependence, the general nonsta-
tionary vector autoregressive (AR) time series model with
pure unit roots is considered in this paper.

There is plenty of empirical evidence that financial time
series are usually heavy-tailed [27, 26]. The least absolute
deviations (LAD) estimation has many advantages over the
ordinary least squares (OLS) approach. It requires less strin-
gent moment conditions and is robust to heavy-tailed data
[32, 22, 36]. [16] first studied the LAD-based unit root tests
for univariate time series, and [23] discussed the LAD esti-
mation for unit root AR processes with generalized autore-
gressive conditional heteroscedastic (GARCH) errors. This
paper considers the LAD estimation for nonstationary vec-
tor AR models with pure unit roots. The technical condi-
tions on the error term are weaker than those commonly
used in two aspects. First, it permits a constant, possibly
nonzero, conditional median of the error term. While the
error term of nonstationary time series models with unit
roots necessarily has a zero mean, the LAD technique ad-
ditionally requires a zero median for it. Fortunately, owing
to a redundant parameter in the vector AR model discussed
in this paper, we can avoid the restrictive assumption that
both the mean and the median are zero. Second, we allow
the error term to be conditional heteroscedastic, which is an
important feature of financial time series; see [11] and [5].
These two relaxations introduce no more difficulties into the
technical proofs, but will affect the subsequent bootstrap
mechanism.

In contrast to the OLS method, the LAD estimator in this
paper has a complicated asymptotic distribution, which can
be difficult to approximate even in simple cases; see Sec-
tion 2 for more details. Therefore, it is naturally desirable
to use the bootstrap method; see [10]. The most commonly
used bootstrap method for unit root tests is to resample
the residuals [7, 31], but it may not work well in presence
of conditional heteroscedasticity since the time order will
be destroyed by the resampling operation. [30] considered a
block-wise bootstrap for the panel unit root tests, yet it may
be challenging to select the block size. [29] showed by sim-
ulation that the block-wise bootstrap does not seem to be
particularly powerful in unit root tests for univariate time
series. Although Wu’s [1986] wild bootstrap can be an ap-
pealing method since the time order is kept, it may not
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be good enough for the LAD estimator and cannot be di-
rectly applied to the asymptotic distribution in this paper;
see Section 3 for more details. [17] proposed a bootstrap
method (henceforth called the JYW method) by perturbing
the minimand of the objective function, which was applied
to the LAD-based ANOVA analysis by [9]. [8] extended this
method to the estimating equations when the objective func-
tion is derivable. Note that there is no need to generate the
bootstrapped sequences in this method, so it is especially at-
tractive when the time series or error sequence has too many
constraints to be bootstrapped; see also [37]. A drawback of
this method is that it may not be able to approximate dis-
tributions more complicated than normality; see Corollary
3.1 in Section 3 for more details. This may be the reason
why the JYW method has not attracted much attention
in this area. To approximate the asymptotic distribution of
the LAD estimator for nonstationary vector AR models with
pure unit roots, in Section 3 we propose a novel bootstrap
method, which is a hybrid version of the wild bootstrap and
the JYW method.

There are two sources of cross-sectional dependence in
vector AR models: structural dependence and interdepen-
dence of individual errors. In Section 4, we consider the in-
terdependence of individual errors in nonstationary vector
AR models with pure unit roots as in [7], and we then pro-
pose three bootstrapping panel unit root tests by applying
the methods in Sections 2 and 3. Monte Carlo simulations
and real data applications are presented in Sections 5 and 6,
respectively. Section 7 concludes with a brief discussion. All
technical proofs are relegated to the appendix. Throughout
the paper, op(1) denotes a series of random variables (vec-
tors) converging to zero in probability, Op(1) denotes a series
of random variables (vectors) that are bounded in probabil-
ity, D = D[0, 1] denotes the space of functions on [0, 1],
which is defined and equipped with the Shorokhod topol-
ogy [4], and ⇒ denotes weak convergence on D. In addition,
the notations o∗p(1) and O

∗
p(1) are used for the bootstrapped

space.

2. LEAST ABSOLUTE DEVIATIONS
ESTIMATION

The vector AR model can be equivalently written as the
following error correction model,

(1) ∆yt = µ+Φyt−1 +

p∑
j=1

Ψj∆yt−j + et, 1 ≤ t ≤ T,

where yt = (y1,t, ..., yN,t)
T, et = (e1,t, ..., eN,t)

T, ∆yt = yt−
yt−1, µ is an N -dimensional vector of parameters, Φ and
Ψj are N × N matrices of parameters, and et is the error
term with E(et) = 0; see Chapter 18 of [15].

Assumption 2.1. All the roots of the polynomial det(IN −∑p
j=1 Ψjz

j) = 0 lie outside the unit circle, where IN is the
N -dimensional identity matrix and det(A) is the determi-
nant of the matrix A.

Assumption 2.1 is necessary for {yt} to be either station-
ary or stationary after differencing, i.e., I(0) or I(1). Let
r = rank(Φ) be the rank of the matrix Φ. Then {yt} is
cointegrated with r linearly independent cointegrating vec-
tors if 0 < r < N , whereas it is not cointegrated but has
pure unit roots if r = 0 (i.e., Φ = 0); see [12]. Note that this
paper is focused on statistical inference for the latter case,
i.e., {yt} has pure unit roots.

From model (1), when Φ = 0, we have yt = (1 −∑p
j=1 Ψj)

−1µ · t +
∑t

j=1 ut + y0, where ut = (IN −∑p
j=1 ΨjB

j)−1et is a stationary N -dimensional time series;
see the proof of Lemma A.1. This shows that when µ ̸= 0,
{yt} has an extra linear trend. Note that asymptotic theory
derived under a linear trend will be very different from those
without it; see [33]. Throughout this paper, we consider {yt}
without a linear trend. Thus, concisely, we assume that {yt}
follows model (1) with µ = 0 and Φ = 0.

Let µ = (µ1, ..., µN )T, Φ = (ϕ1, ..., ϕN )T, and Ψj =
(Ψ1,j , ...,ΨN,j)

T for 1 ≤ j ≤ p. Denote the parameter vector
of model (1) by θ = (θT

1 , ...,θ
T

N )T, where θi = (ϕT
i , µi, ψ

T
i )

T

and ψi = (ΨT
i,1, ...,Ψ

T
i,p)

T for 1 ≤ i ≤ N . These notations
are used for both the parameters and their true values be-
low without confusion. For {yt} generated by model (1) with
µ = 0, Φ = 0, and initial value y0 = 0, we consider the LAD
estimation,

θ̂ = (θ̂
T

1 , ..., θ̂
T

N )T

= argmin

T∑
t=p+2

∥∆yt − µ− Φyt−1 −
p∑

j=1

Ψj∆yt−j∥1,

where ∥x∥1 =
∑N

i=1 |xi| for an N -dimensional vector x =
(x1, ..., xN )T. Equivalently, we can perform the above opti-
mization separately for each 1 ≤ i ≤ N , i.e.,

θ̂i = (ϕ̂T

i , µ̂i, ψ̂
T

i )
T

= argmin

T∑
t=p+2

|∆yi,t − µi − ϕT

i yt−1 −
p∑

j=1

ΨT

i,j∆yt−j |.

While these estimators all depend on the sample size T , we
suppress the subscript T for simplicity.

Assumption 2.2. The error sequence {et} is a strictly
stationary and ergodic martingale difference sequence with
E(et) = 0, E(ete

T
t ) = Σe <∞, and max1≤j≤N E|ej,t|2+δ <

∞ for a δ > 0.

Apparently, the parameter vector µ is redundant from
the viewpoint of estimation. However, it is used to absorb
the conditional median of the error term et. This allows us
to avoid the stringent condition that both the mean and the
median of et are zero. Let the conditional median of et be
m = (m1, ...,mN )T, i.e., P (ei,t > mi|Ft−1) = 0.5 for 1 ≤ i ≤
N , where Ft is the σ-field generated by {et, et−1, ...}. Let
εt = (ε1,t, ..., εN,t)

T = et − m, and let fi,t(x), 1 ≤ i ≤ N ,
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be the density of εi,t conditional on Ft−1. The following
condition is needed for the LAD technique.

Assumption 2.3. For all 1 ≤ i ≤ N , there exists a small
value π > 0 such that fi,t(x) is bounded and continuous on
(−π, π) with probability one, uniformly for all t.

Assumptions 2.2 and 2.3 include two important cases.
The first one is that {et} are independent and identically
distributed (i.i.d.) with continuous marginal densities at
the median. The second is that {et} follow a multivariate
GARCH model such that et conditional on Ft−1 has a nor-
mal distribution with mean zero and time-varying variance
σ2

t ; for the forms of σ2
t under different multivariate GARCH

models, see Chapter 11 of [13]. As mentioned in Section 1,
the commonly used bootstrap techniques may not work well
for both cases; see also Corollary 3.1 in Section 3.

Let Σe = E(ete
T
t ), Σs = E[sgn(εt) sgn(εt)

T], zt =
(∆yT

t−1, ...,∆yT
t−p)

T, z̄t = (1, zT
t )

T, Σz = E(ztz
T
t ), Σε,ez =

E[sgn(εt)
T ⊗ (etz

T
t )], and

Ω =

 Σe E[et sgn(εt)
T] Σε,ez

E[sgn(εt)e
T
t ] Σs 0

ΣT
ε,ez 0 Σs ⊗ Σz

 ,

where 0 is a zero matrix, and ⊗ represents the Kronecker
product. It can be shown that, under Assumptions 2.1 and
2.2, the matrices, Σe, Σs, Σz and Ω, are all positive defi-
nite. Let B(τ) = [BT

1 (τ), ...,B
T

N+2(τ)]
T be a (pN2 + 2N)-

dimensional Brownian motion with covariance matrix τΩ,
where the first two components are N -dimensional, and the
other N components are (pN)-dimensional.

Theorem 2.1. For all 1 ≤ i ≤ N , under Assumptions 2.1–
2.3, it holds that T ϕ̂i√

T (µ̂i −mi)√
T (ψ̂i − ψi)

⇒ 0.5Γ−1
i

 Υg(B)

B
(i)
2 (1)

Bi+2(1)

 ,

where ψi is the corresponding true parameter vec-
tor, Υ = (IN − Ψ1 − · · · − Ψp)

−1, g(B) =∫ 1

0
B1(τ)dB

(i)
2 (τ), B

(i)
2 (τ) is the ith element of

B2(τ), Γ11,i = E[fi,t(0)]Υ
∫ 1

0
B1(τ)B

T
1 (τ)dτΥ

T,

Γ12,i = Υ
∫ 1

0
B1(τ)dτE[fi,t(0)z̄

T
t ], and

Γi =

(
Γ11,i Γ12,i

ΓT
12,i E[fi,t(0)z̄tz̄

T
t ]

)
.

Let Φ̂, µ̂ and Ψ̂j , 1 ≤ j ≤ p, be the corresponding compo-

nents of the estimator θ̂. The above theorem implies that the
estimator µ̂ actually provides information about the median
m. The asymptotic distributions of the θ̂i’s may depend on
each other, although they can be estimated separately.

Similar to univariate AR processes with unit roots, we
may also consider the case without the intercept (i.e., the

parameter vector µ in model (1) is suppressed) and the case
with a linear trend (i.e., there is one more term c · t with
c = (c1, ..., cN )T). It can be shown that the estimators will
be biased for the first case, unless both the mean and the
median of et are zero. The asymptotic results for the second
case can be derived similarly and hence are omitted here.

If the errors {et} are i.i.d., then each density fi,t(0) will
be a constant independent of t, and we may denote it by
fi(0). As a result,

T Φ̂ ⇒ 0.5f−1ΛT

BΥ
−1,

√
T (µ̂−m) ⇒ 0.5f−1

[
B2(1)− ΛT

B

∫ 1

0

B1(τ)dτ

]
,

and

√
T{vec[(Ψ̂1, ..., Ψ̂p)

T]− vec[(Ψ1, ...,Ψp)
T]}

⇒ N{0, 0.25(f−1 ⊗ Σ−1
z )(Σs ⊗ Σz)(f

−1 ⊗ Σ−1
z )},

where

ΛB =

[∫ 1

0

B1(τ)B
T

1 (τ)dτ −
∫ 1

0

B1(τ)dτ

∫ 1

0

BT

1 (τ)dτ

]−1

[∫ 1

0

B1(τ)dB
T

2 (τ)−
∫ 1

0

B1(τ)dτB
T

2 (1)

]
is a random matrix, f = diag{f1(0), ..., fN (0)} is an N ×N
diagonal matrix, and vec(A) is the vectorization of the ma-
trixA. The first two asymptotic distributions above are com-
plicated, and to approximate the asymptotic distribution in
Theorem 2.1, bootstrapping techniques may be desirable.

To obtain the estimates θ̂, we can rewrite model (1) into a
linear regression form, and then use any standard program,
such as lad in MATLAB, rq in the QUANTREG package of
R, etc., for the optimization.

3. HYBRID BOOTSTRAP
APPROXIMATION

To approximate the asymptotic distributions in the previ-
ous section, we introduce a hybrid bootstrap method which
combines the wild bootstrap and the JYW method.

The first step is to construct the bootstrapped sequence
as in the wild bootstrap. Let {ê1, . . . , êT } be the residual
sequence of model (1) fitted by the LAD method, i.e.,

êt = ∆yt − Φ̂yt−1 −
p∑

j=1

Ψ̂j∆yt−j

for p + 2 ≤ t ≤ T , and êt = 0 for 1 ≤ t ≤ p + 1, where
Φ̂ and Ψ̂j are the components of θ̂ defined in the previous
section. Note that µ̂ is not involved in the calculation of
the residuals since it is an estimator of the median m. Let
{ωt} be a sequence of i.i.d. positive random variables with
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Eω2+δ
t <∞ for a δ > 0 and both mean and variance equal to

one. Then the new residual sequence {e∗t } can be generated
by e∗t = (ωt − 1)êt, 1 ≤ t ≤ T . Construct the bootstrapped
sequence by

(2) y∗
t = y∗

t−1 +

p∑
j=1

Ψ̂j∆y∗
t−j + e∗t ,

where the initial values of y∗
t for 1 ≤ t ≤ p + 1 can be set

to zero. By Theorem 18.2 in [4] and the Beveridge-Nelson
representation in the proof of Lemma A.1, we can show that,
conditional on y1, . . . ,yT ,

(3)
1√
T
y∗
[Tτ ] =

1√
T

· Υ̂
[Tτ ]∑
t=1

e∗t +RT (τ) ⇒ ΥB∗
1(τ),

where [Tτ ] is the integer part of Tτ , Υ̂ = (I −
Ψ̂1 − · · · − Ψ̂p)

−1, the remainder term RT (τ) satisfies
sup0≤τ≤1 ∥RT (τ)∥1 = o∗p(1), and B∗

1(τ) is an N -dimensional
Brownian motion with covariance matrix τΣe. Note that
B∗

1(τ) has the same covariance matrix as B1(τ).
The second step is to approximate the asymptotic distri-

bution in Theorem 2.1 by the JYW method. Consider two
auxiliary estimators as follows,

θ̂
∗
1 = argmin

T∑
t=p+2

∥∆yt − µ− Φy∗
t−1 −

p∑
i=1

Ψi∆yt−i∥1

and

θ̂
∗
2 = argmin

T∑
t=p+2

ωt∥∆yt − µ− Φy∗
t−1 −

p∑
i=1

Ψi∆yt−i∥1,

where θ̂
∗
j = (θ̂

∗T

1,j , . . . , θ̂
∗T

N,j)
T and θ̂

∗
i,j = (ϕ̂∗T

i,j , µ̂
∗
i,j , ψ̂

∗T
i,j )

T

with j = 1 and 2. The next theorem shows that the quan-

tity θ̂
∗
2 − θ̂

∗
1 can be used to approximate the asymptotic

distribution of θ̂.
Let B∗(τ) = [B∗T

1 (τ), . . . ,B∗T

N+2(τ)]
T be a (pN2 + 2N)-

dimensional Brownian motion with covariance matrix τΩ,
where the first two components are N -dimensional, and the
other N components are (pN)-dimensional.

Theorem 3.1. For 1 ≤ i ≤ N , under Assumptions 2.1–2.3,
it holds that, conditional on y1, . . . ,yT , T (ϕ̂∗i,2 − ϕ̂∗i,1)√

T (µ̂∗
i,2 − µ̂∗

i,1)√
T (ψ̂∗

i,2 − ψ̂∗
i,1)

⇒ 0.5(Γ∗
i )

−1

 Υg(B∗)

B
∗(i)
2 (1)

B∗
i+2(1)

 ,

in probability, where g(B∗) =
∫ 1

0
B∗

1(τ)dB
∗(i)
2 (τ),

Γ∗
i =

(
Γ∗
11,i Γ∗

12,i

Γ∗T
12,i E[fi,t(0)z̄tz̄

T
t ]

)
,

Γ∗
11,i = E[fi,t(0)]Υ

∫ 1

0
B∗

1(τ)B
∗T
1 (τ)dτΥT, Γ∗

12,i =

Υ
∫ 1

0
B∗

1(τ)dτE[fi,t(0)z̄
T
t ], B

∗(i)
2 (τ) is the ith element

of B∗
2(τ), and Ω, fi(x) and Υ are defined as in Theorem

2.1.

Combining Theorems 2.1 and 3.1, we establish the
asymptotic validity of the proposed hybrid bootstrap
method. Note that, in the above procedure, the boot-
strapped sequence {y∗

t } is only used to generate B∗
1(τ); see

the proof of Theorem 3.1. From (3), we can alternatively

generate this sequence by y∗
t = Υ̂

∑t
j=1 e

∗
j , and they are

equivalent asymptotically.
The wild bootstrap method may not work well by itself

since the asymptotic distribution of the LAD estimator de-
pends on two important quantities of the error term: the me-
dian and the density at the median. It is very hard to main-
tain both of them at the same time for the bootstrapped
residual sequence.

One may also consider using the JYW method to approx-
imate the asymptotic distribution in the previous section,

i.e., using the quantity θ̂
∗
− θ̂ to approximate the distribu-

tion of θ̂, where

θ̂
∗
= argmin

T∑
t=p+2

ωt∥∆yt − µ− Φyt−1 −
p∑

i=1

Ψi∆yt−i∥1;

see [17]. The following result is a direct consequence of the
proofs of Theorems 2.1 and 3.1, and we state it without
proof.

Corollary 3.1. For the simplest case, i.e., N = 1, p = 0,
m = 0 and {et} are i.i.d., if Assumptions 2.1–2.3 hold,
then, conditional on y1, . . . ,yT ,(

T (Φ̂∗ − Φ̂)√
T (µ̂∗ − µ̂)

)
⇒ N

{
0,

1

4f2(0)
· Ω−1

JYW

}
in probability, where f(·) is the density of et, θ̂

∗
=

(Φ̂∗, µ̂∗)T, θ̂ = (Φ̂, µ̂)T, and

ΩJYW = lim
T→∞

(
T−2

∑
y2
t−1 T−3/2

∑
yt−1

T−3/2
∑

yt−1 1

)
.

This shows that the limiting distribution is normal, so
the JYW method by itself fails to work here.

To compute the estimates θ̂
∗
1 and θ̂

∗
2, we can rewrite the

corresponding models into a linear regression form, and then
use a standard program to obtain their values as in the
previous section.

4. APPLICATIONS TO PANEL UNIT ROOT
TESTS

4.1 Three panel unit root tests

In this section, we construct three bootstrapping panel
unit root tests by applying the methods in Sections 2 and

4 Y. Zheng et al.



3. Two of them are for heterogeneous unit roots, and one is
for homogeneous unit roots.

We first introduce the tests for heterogeneous unit roots.
Consider the following special case of model (1),

∆yi,t = µi + ϕiyi,t−1 +

pi∑
j=1

ψi,j∆yi,t−j + ei,t,(4)

for 1 ≤ i ≤ N and 1 ≤ t ≤ T , where et = (e1,t, . . . , eN,t)
T is

defined as in Section 2, and the parameters ϕi may take
different values; see [7]. Comparing this with model (1),
the interdependence of the individual errors et is kept,
while the structural dependence is ignored; i.e., each in-
dividual time series depends on its past values only. Note
that model (4) can be written as model (1) by letting
Φ = diag{ϕ1, . . . , ϕN}, Ψj = diag{ψ1,j , . . . , ψN,j} and
p = max{p1, . . . , pN}. We redefine the parameter vectors
Φ = (ϕ1, . . . , ϕN )T and ψi = (ψi,1, . . . , ψi,pi

)T for 1 ≤ i ≤ N
in this section.

The hypotheses for the tests for heterogeneous unit roots
can be formalized as

HHE
0 : ϕ1 = · · · = ϕN = 0

vs HHE
1 : at least one ϕi is less than zero.

Consider the LAD estimation of model (4),

θ̂i = argmin

T∑
t=pi+2

|∆yi,t − ϕiyi,t−1 − µi −
pi∑
j=1

ψi,j∆yi,t−j |,

for 1 ≤ i ≤ N , where ϕ̂i are the estimated unit roots. Let
Φ̂ = (ϕ̂1, . . . , ϕ̂N )T. A simple F -type test statistics can be
constructed as

FHE1 = T 2Φ̂TΦ̂ = T 2
N∑
i=1

ϕ̂2i ,

and we reject the null hypothesis if the value of FHE1 is too
large.

Note that the ϕ̂i’s may have different variances and may
be correlated with each other. To take this into account, we
first find a matrix that standardizes the estimator Φ̂ as for
the OLS-based unit root tests [7]. When the errors {et} are
i.i.d., we have

ϕ̂i =
1

2fi(0)Bi

T∑
t=pi+2

(yi,t−1 −Aiz̄i,t) sgn(ei,t) + op(T
−1),

for 1 ≤ i ≤ N , where fi(0) = fi,t(0) is independent of t,
z̄i,t = (1,∆yi,t−1, . . . ,∆yi,t−pi

)T,

Ai =

T∑
t=pi+2

yi,t−1z̄
T

i,t

(
T∑

t=pi+2

z̄i,tz̄
T

i,t

)−1

,

and

Bi =

T∑
t=pi+2

y2i,t−1

−
T∑

t=pi+2

yi,t−1z̄
T

i,t

(
T∑

t=pi+2

z̄i,tz̄
T

i,t

)−1 T∑
t=pi+2

yi,t−1z̄i,t;

see the proof of Theorem 4.1 for details. Note that it may
be difficult to obtain consistent estimators of the densities
f1(0), . . . , fN (0) especially when the number of individuals
N is large. Fortunately, as they do not affect the correlation
structure of Φ̂, we can ignore their differences and define the
(i, j)th element of the standardizing matrix v̂ar(Φ̂) by

v̂ar(Φ̂)(i,j) =
Σ̂s(i,j)

BiBj

T∑
t=p+2

(yi,t−1 −Aiz̄i,t)(yj,t−1 −Aj z̄j,t),

where p = max{p1, . . . , pN}, Σ̂s = T−1
∑T

t=p+2 sgn(êt −
µ̂) sgn(êt − µ̂)T is a consistent estimator of Σs, and Σ̂s(i,j)

is the (i, j)th element of Σ̂s. This leads to another F -type
test statistic

FHE2 = Φ̂T[v̂ar(Φ̂)]−1Φ̂.

Theorem 4.1 will show that the test statistic FHE2 is valid
for the general case, although the standardizing matrix is
derived for a simple case. Moreover, v̂ar(Φ̂) = Op(T

−2) un-

der HHE
0 , while v̂ar(Φ̂) = Op(T

−1) under HHE
1 , and hence

the test FHE1 is supposed to be more powerful as T is larger;
see also [23].

In the literature of panel unit root tests, the test for ho-
mogeneous unit roots is usually employed to improve the
power. Consider the model

∆yi,t = µi + ϕyi,t−1 +

pi∑
j=1

ψi,j∆yi,t−j + ei,t,(5)

for 1 ≤ i ≤ N and 1 ≤ t ≤ T , where all individual time series
share the same unit root parameter ϕ. The hypotheses are

HHO
0 : ϕ = 0 vs HHO

1 : ϕ < 0,

and the corresponding LAD estimator is

θ̃ = argmin

N∑
i=1

T∑
t=pi+2

|∆yi,t−ϕyi,t−1−µi−
pi∑
j=1

ψi,j∆yi,t−j |.

The estimated coefficient ϕ̃ can be directly used to construct
the test, resulting in the third test statistic

FHO = T ϕ̃.

We next state the asymptotic null distributions of the three
panel unit root test statistics.

LAD estimation for nonstationary VAR models 5



For 1 ≤ i ≤ N , denote φi = (1 −
∑pi

j=1 ψi,j)
−1,

zi,t = (∆yi,t−1, . . . ,∆yi,t−pi
)T, z̄i,t = (1, zT

i,t)
T, µP (i) =

E[fi,t(0)z̄i,t], and ΣP (i) = E[fi,t(0)z̄i,tz̄
T
i,t]. Let

ΩP =

(
Ω11,P Ω12,P

ΩT

12,P Ω22,P

)
,

where

Ω11,P =

(
Σe E[et sgn(εt)

T]
E[sgn(εt)e

T
t ] Σs

)
,

Ω12,P =

(
E[sgn(ε1,t)etz

T
1,t] · · · E[sgn(ε1,t)etz

T
1,t]

0 · · · 0

)
,

Ω22,P = Σs(1,1)E(z1,tz
T
1,t) · · · Σs(1,N)E(z1,tz

T

N,t)
...

. . .
...

Σs(N,1)E(zN,tz
T
1,t) · · · Σs(N,N)E(zN,tz

T

N,t)

 ,

Σs(i,j) is the (i, j)th element of the matrix Σs =
E[sgn(εt) sgn(εt)

T] and Σe = E(ete
T
t ). Let W(τ) =

[WT
1 (τ), . . . ,W

T

N+2(τ)]
T be a (2N +

∑N
i=1 pi)-dimensional

Brownian motion with covariance matrix τΩP , where
W1(τ) and W2(τ) are N -dimensional and W2+i(τ) is pi-
dimensional for 1 ≤ i ≤ N . Let

ΛW =

∫ 1

0

W1(τ)W
T

1 (τ)dτ −
∫ 1

0

W1(τ)dτ

∫ 1

0

WT

1 (τ)dτ,

and ζW = [ζW(1), . . . , ζW(N)]T, where

ζUW(i) =

∫ 1

0

W
(i)
1 (τ)dW

(i)
2 (τ)

− µT

P (i)Σ
−1
P (i)[W

(i)
2 (1),WT

i+2(1)]
T

∫ 1

0

W
(i)
1 (τ)dτ,

ζLW(i) =2φi{
∫ 1

0

[W
(i)
1 (τ)]2dτE[fi,t(0)]

− [

∫ 1

0

W
(i)
1 (τ)dτ ]2µT

P (i)Σ
−1
P (i)µP (i)},

ζW(i) = ζUW(i)/ζLW(i), and W
(i)
j (τ) is the ith element of

Wj(τ) with j = 1 and 2.

Theorem 4.1. Under HHE
0 or HHO

0 , if Assumptions 2.1–
2.3 hold, then,

FHE1 ⇒ ζT

WζW, FHE2 ⇒ ζT

WΣ−1

ϕ̂
ζW,

and

FHO ⇒ ζUHO/ζ
L
HO,

where

ζUHO =

N∑
i=1

φi{
∫ 1

0

W
(i)
1 (τ)dW

(i)
2 (τ)

− µT

P (i)Σ
−1
P (i)[W

(i)
2 (1),WT

i+2(1)]
T

∫ 1

0

W
(i)
1 (τ)dτ},

ζLHO =2

N∑
i=1

φ2
i {
∫ 1

0

[W
(i)
1 (τ)]2dτE[fi,t(0)]

− [

∫ 1

0

W
(i)
1 (τ)dτ ]2µT

P (i)Σ
−1
P (i)µP (i)},

the (i, j)th element of the matrix Σϕ̂ is Σϕ̂(i,j) =

Σs(i,j)ΛW(i,j)/[φiφjΛW(i,i)ΛW(j,j)].

The asymptotic distributions in the above theorem are
too complicated to use in practice. The hybrid bootstrap
method in Section 3 offers a convenient way to approximate
the corresponding critical values and p-values.

4.2 Bootstrap approximation

We first apply the hybrid bootstrap method to approxi-
mate the critical values and p-values of the two test statistics
for heterogeneous unit roots, FHE1 and FHE2.

Let y∗
t = (y∗1,t, . . . , y

∗
N,t)

T and y∗i,t = φ̂i

∑t
j=1(ωj − 1)êi,j ,

where φ̂i = (1 −
∑pi

j=1 ψ̂i,j)
−1, {ωt} is an i.i.d. positive se-

quence defined as in Section 3, and êi,t = ∆yi,t − ϕ̂iyi,t−1 −∑pi

j=1 ψ̂i,j∆yi,t−j for t ≥ pi + 2 and is zero otherwise. Let

θ̂
∗
i,1 = argmin

T∑
t=pi+2

|∆yi,t − ϕiy
∗
i,t−1 − µi

−
pi∑
j=1

ψi,j∆yi,t−j − ϕ̂iyi,t−1|

for 1 ≤ i ≤ N , and

θ̂
∗
i,2 = argmin

T∑
t=pi+2

ωt|∆yi,t − ϕiy
∗
i,t−1 − µi−

pi∑
j=1

ψi,j∆yi,t−j − ϕ̂iyi,t−1|

for 1 ≤ i ≤ N , and we denote by ϕ̂∗i,1 and ϕ̂∗i,2 the corre-
sponding estimated unit roots.

For 1 ≤ i, j ≤ N , let A∗
i =∑T

t=pi+2 y
∗
i,t−1z̄

T
i,t(
∑T

t=pi+2 z̄i,tz̄
T
i,t)

−1,

B∗
i =

T∑
t=pi+2

y∗2i,t−1

−
T∑

t=pi+2

y∗i,t−1z̄
T

i,t

(
T∑

t=pi+2

z̄i,tz̄
T

i,t

)−1 T∑
t=pi+2

y∗i,t−1z̄i,t,
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and

v̂ar(Φ̂)∗(i,j) =
Σ̂s(i,j)

B∗
iB

∗
j

T∑
t=p+2

(y∗i,t−1 −A∗
i z̄i,t)(y

∗
j,t−1 −A∗

j z̄j,t),

where Σ̂s(i,j) = T−1
∑T

t=p+2 sgn(êi,t− µ̂i) sgn(êj,t− µ̂j) with
p = max{p1, . . . , pN}. Consider

F ∗
HE1 = T 2(Φ̂∗

2 − Φ̂∗
1)

T(Φ̂∗
2 − Φ̂∗

1)

and

F ∗
HE2 = (Φ̂∗

2 − Φ̂∗
1)

T[v̂ar(Φ̂)∗]−1(Φ̂∗
2 − Φ̂∗

1),

where Φ̂∗
1 = (ϕ̂∗1,1, . . . , ϕ̂

∗
N,1)

T, Φ̂∗
2 = (ϕ̂∗1,2, . . . , ϕ̂

∗
N,2)

T, and

the (i, j)th element of v̂ar(Φ̂)∗ is v̂ar(Φ̂)∗(i,j). It may be ex-
pected that the conditional distributions of F ∗

HE1 and F ∗
HE2

are the same as the distributions of FHE1 and FHE2 respec-
tively in the asymptotic sense.

We next consider the bootstrap approximation for the
test statistic for homogeneous unit roots, FHO. Let y∗

t =
(y∗1,t, . . . , y

∗
N,t)

T and y∗i,t = φ̃i

∑t
j=1(ωj − 1)ẽi,j , where

φ̃i = (1 −
∑pi

j=1 ψ̃i,j)
−1 and ẽi,t = ∆yi,t − ϕ̃yi,t−1 −∑pi

j=1 ψ̃i,j∆yi,t−j for t > pi + 2 and is zero otherwise. Con-
sider

θ̃1 = argmin

N∑
i=1

T∑
t=pi+2

|∆yi,t − ϕy∗i,t−1 − µi

−
pi∑
j=1

ψi,j∆yi,t−j − ϕ̃yi,t−1|

and

θ̃2 = argmin

N∑
i=1

T∑
t=pi+2

ωt|∆yi,t − ϕy∗i,t−1 − µi

−
pi∑
j=1

ψi,j∆yi,t−j − ϕ̃yi,t−1|.

Let

F ∗
HO = T (ϕ̃∗2 − ϕ̃∗1),

where ϕ̃∗1 and ϕ̃∗2 are the estimated unit roots in θ̃1 and

θ̃2 respectively. Let W∗(τ) = [W∗T
1 (τ), . . . ,W∗T

N+2(τ)]
T be

a (2N +
∑N

i=1 pi)-dimensional Brownian motion with co-
variance matrix τΩP , where W∗

1(τ) and W∗
2(τ) are N -

dimensional and W∗
2+i(τ) is pi-dimensional for 1 ≤ i ≤ N .

Let

Λ∗
W =

∫ 1

0

W∗
1(τ)W

∗T

1 (τ)dτ −
∫ 1

0

W∗
1(τ)dτ

∫ 1

0

W∗T

1 (τ)dτ

and ζ∗W = [ζ∗W(1), . . . , ζ∗W(N)]T, where

ζ∗UW (i) =

∫ 1

0

W
∗(i)
1 (τ)dW

∗(i)
2 (τ)

− µT

P (i)Σ
−1
P (i)[W

∗(i)
2 (1),W∗T

i+2(1)]
T

∫ 1

0

W
∗(i)
1 (τ)dτ,

ζ∗LW (i) =2φi{
∫ 1

0

[W
∗(i)
1 (τ)]2dτE[fi,t(0)]

− [

∫ 1

0

W
∗(i)
1 (τ)dτ ]2µT

P (i)Σ
−1
P (i)µP (i)},

ζ∗W(i) = ζ∗UW (i)/ζ∗LW (i), and W
∗(i)
j (τ) is the ith element of

W∗
j (τ) with j = 1 and 2.

Theorem 4.2. Under Assumptions 2.1–2.3, conditional on
y1, . . . ,yT , if H

HE
0 or HHE

1 holds, then,

F ∗
HE1 ⇒ ζ∗T

Wζ∗W and F ∗
HE2 ⇒ ζ∗T

WΣ∗−1

ϕ̂
ζ∗W

in probability, and if HHO
0 or HHO

1 holds, then

F ∗
HO ⇒ ζ∗UHO/ζ

∗L
HO

in probability, where

ζ∗UHO =

N∑
i=1

φi{
∫ 1

0

W
∗(i)
1 (τ)dW

∗(i)
2 (τ)

− µT

P (i)Σ
−1
P (i)[W

∗(i)
2 (1),W∗T

i+2(1)]
T

∫ 1

0

W
∗(i)
1 (τ)dτ},

ζ∗LHO =2

N∑
i=1

φ2
i {
∫ 1

0

[W
∗(i)
1 (τ)]2dτE[fi,t(0)]

− [

∫ 1

0

W
∗(i)
1 (τ)dτ ]2µT

P (i)Σ
−1
P (i)µP (i)},

the (i, j)th element of the matrix Σ∗
ϕ̂
is

Σ∗
ϕ̂(i,j)

= Σs(i,j)Λ
∗
W(i,j)/[φiφjΛ

∗
W(i,i)Λ

∗
W(j,j)].

The above theorem establishes the asymptotic validity
of the corresponding bootstrapping procedure for the panel
unit root tests.

There are two types of bootstrapping unit root tests for
univariate time series: residual-based and difference-based
tests; see [31] and [29]. The three test statistics in this sec-
tion are residual-based. We can construct the corresponding
difference-based tests by deleting ϕ̂iyi,t−1 (or ϕ̃iyi,t−1) from

the objective functions of θ̂
∗
i,1 and θ̂

∗
i,2 (or θ̃1 and θ̃2), and

the same asymptotic distribution is expected under HHE
0 or

HHO
0 .

5. SIMULATION STUDIES

We conduct three simulation experiments to examine the
finite-sample performance of the proposed hybrid bootstrap
method and bootstrapping panel unit root tests. All sim-
ulation results are based on 1000 replications, with 1000
bootstrapped sequences for each replication.
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In the first simulation experiment, we examine the per-
formance of the hybrid bootstrap method in Section 3, and
the data generating process is

∆yt = µ+Φyt−1 + et,

where

µ =

(
µ1

µ2

)
= 0 and Φ =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
= 0.

The error terms {et} are either i.i.d. random vectors

et =

(
0.2 0
0.3 0.3

)(
χ2
1 − 1
χ2
4 − 4

)
or generated from a vector GARCH process,

(6) et = V
1/2
t εt, Vt = 0.1Σ + 0.7et−1e

T

t−1 + 0.2Vt−1,

where χ2
1 and χ2

4 are independent chi-squared distributed
random variables with one and four degrees of freedom re-
spectively, {εt} are i.i.d. N -dimensional standard normal
random vectors with N = 2, and

Σ =

(
0.08 0.12
0.12 0.90

)
.

Note that {et} have the same unconditional covariance Σ
for both cases, and the distribution of et is skewed with
median (−0.1059,−0.1912)T in the i.i.d. case. We consider
three perturbing distributions of {ωt} in this experiment: (i)
the standard exponential distribution, (ii) a two-point dis-
tribution, which takes the value 0 or 2, each with probabil-
ity 0.5, (iii) the log-normal distribution with its logarithm
following the normal distribution with mean and variance
being −0.5 log(2) and log(2) respectively. The two-point dis-
tribution was employed by [38] and [24] for bootstrapping
approximations, while the exponential and log-normal dis-
tributions are commonly used for nonnegative continuous
random variables with both mean and variance equal to one.
We consider three series lengths, T = 50, 100 and 200, and
the hybrid bootstrap method in Section 3 is applied to cal-
culate the 95% confidence intervals of the parameters for
each replication. The empirical coverages are listed in Table
1, and it can be observed that the log-normal distribution
outperforms the other two distributions.

The second experiment focuses on the bootstrapping
panel unit root tests in Section 4. The data generating pro-
cess is

∆yi,t = µi + ϕiyi,t−1 + ei,t, 1 ≤ i ≤ N,

where µi = 0 and ϕi = 0 correspond to the size, while ϕi =
−0.05 and −0.10 correspond to the power. The error term
et = (e1,t, . . . , eN,t)

T follows the vector GARCH process in
(6), and the matrix Σ is generated as in [7]:

Table 1. Empirical coverage rate of the bootstrapped 95%
confidence intervals with sample size T = 50, 100 and 200.

Skewed i.i.d. errors Vector GARCH errors
50 100 200 50 100 200

µ1 0.948 0.952 0.934 0.871 0.924 0.947
µ2 0.916 0.930 0.941 0.877 0.914 0.927
ϕ1,1 0.972 0.944 0.900 0.896 0.879 0.908
ϕ1,2 0.987 0.968 0.949 0.974 0.952 0.945
ϕ2,1 0.974 0.963 0.954 0.969 0.959 0.953
ϕ2,2 0.905 0.901 0.880 0.890 0.893 0.896
µ1 0.956 0.938 0.923 0.885 0.927 0.937
µ2 0.913 0.928 0.934 0.899 0.917 0.929
ϕ1,1 0.937 0.905 0.860 0.899 0.879 0.904
ϕ1,2 0.977 0.951 0.939 0.968 0.943 0.956
ϕ2,1 0.955 0.943 0.937 0.967 0.957 0.947
ϕ2,2 0.887 0.884 0.880 0.893 0.893 0.887
µ1 0.951 0.947 0.952 0.860 0.909 0.941
µ2 0.909 0.937 0.959 0.863 0.920 0.923
ϕ1,1 0.965 0.942 0.928 0.880 0.884 0.907
ϕ1,2 0.990 0.978 0.965 0.975 0.975 0.950
ϕ2,1 0.974 0.967 0.966 0.977 0.970 0.950
ϕ2,2 0.901 0.907 0.910 0.893 0.905 0.907

(i) Generate an N × N matrix U whose entries are inde-
pendent, following U [0, 1], the uniform distribution on
[0, 1], and then construct an orthogonal matrix H =
U(U ′U)−1/2.

(ii) Generate N eigenvalues η1, . . . , ηN , where η1 =
0.1, ηN = 1 and ηi are independent U [0.1, 1] for i =
2, . . . , N − 1.

(iii) Let Σ = H diag{η1, . . . , ηN}H ′.

The resulting vector GARCH processes have different un-
derlying structures for different replications. The number of
individuals is N = 2, and we consider three series lengths,
T = 100, 200 and 300. The three perturbing distributions for
the hybrid bootstrap method in the first experiment are em-
ployed. Table 2 presents the empirical sizes and powers of the
three proposed panel unit root tests, F ∗

HE1, F
∗
HE2 and F ∗

HO,
at the significance levels of 1%, 5% and 10%. From this ta-
ble, we have five findings: (i) the empirical sizes are all close
to the corresponding nominal values even when the series
length is as small as T = 100; (ii) the empirical powers in-
crease quickly as the series length increases from T = 100 to
300; (iii) the test for homogeneous unit roots, F ∗

HO, is more
powerful than those for heterogeneous unit roots, F ∗

HE1 and
F ∗
HE2; (iv) the test F ∗

HE2 is slightly better than F ∗
HE1 for

most cases with shorter length T = 100 and smaller de-
parture ϕi = 0.05, and otherwise F ∗

HE1 is better; and (v)
there is no significant difference among the three perturbing
distributions.

The third experiment aims to compare the tests proposed
in Section 4 with the OLS-based tests, F ∗

OT and t∗OT , in [7].
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Table 2. Empirical size and power of the panel unit root tests, F ∗
HE1, F

∗
HE2 and F ∗

HO, with three perturbing distributions.

T = 100 T = 200 T = 300
Test ϕ 1% 5% 10% 1% 5% 10% 1% 5% 10%

Exponential distribution
F ∗
HE1 0.0 0.009 0.046 0.094 0.010 0.045 0.096 0.010 0.055 0.097

-0.05 0.096 0.324 0.519 0.403 0.838 0.931 0.818 0.982 0.999
-0.10 0.332 0.744 0.914 0.917 0.989 0.996 0.997 0.999 1.000

F ∗
HE2 0.0 0.011 0.052 0.103 0.012 0.056 0.094 0.011 0.047 0.118

-0.05 0.093 0.372 0.553 0.358 0.741 0.885 0.655 0.922 0.977
-0.10 0.254 0.686 0.841 0.775 0.958 0.983 0.961 0.996 0.998

F ∗
HO 0.0 0.011 0.050 0.091 0.009 0.046 0.095 0.009 0.051 0.097

-0.05 0.192 0.595 0.780 0.703 0.949 0.983 0.954 0.995 1.000
-0.10 0.562 0.920 0.970 0.973 0.992 0.996 0.998 1.000 1.000

Two-point distribution
F ∗
HE1 0.0 0.007 0.046 0.108 0.011 0.051 0.097 0.010 0.053 0.094

-0.05 0.069 0.323 0.578 0.420 0.859 0.950 0.818 0.984 0.995
-0.10 0.340 0.775 0.903 0.922 0.992 0.997 0.999 1.000 1.000

F ∗
HE2 0.0 0.011 0.045 0.104 0.009 0.049 0.093 0.011 0.058 0.098

-0.05 0.060 0.329 0.528 0.371 0.754 0.887 0.656 0.913 0.970
-0.10 0.252 0.664 0.821 0.751 0.953 0.989 0.959 0.999 0.999

F ∗
HO 0.0 0.009 0.049 0.105 0.009 0.048 0.098 0.009 0.044 0.097

-0.05 0.169 0.599 0.797 0.726 0.956 0.990 0.941 0.995 0.997
-0.10 0.601 0.902 0.958 0.973 0.994 0.998 1.000 1.000 1.000

Log-normal distribution
F ∗
HE1 0.0 0.010 0.054 0.100 0.010 0.042 0.094 0.009 0.045 0.097

-0.05 0.068 0.322 0.545 0.388 0.828 0.935 0.797 0.981 0.998
-0.10 0.295 0.744 0.899 0.917 0.998 0.998 1.000 1.000 1.000

F ∗
HE2 0.0 0.010 0.050 0.114 0.008 0.055 0.097 0.010 0.054 0.092

-0.05 0.101 0.388 0.576 0.371 0.759 0.907 0.660 0.913 0.969
-0.10 0.294 0.704 0.850 0.778 0.969 0.994 0.956 0.996 1.000

F ∗
HO 0.0 0.010 0.055 0.108 0.008 0.048 0.095 0.008 0.051 0.107

-0.05 0.169 0.589 0.779 0.676 0.945 0.982 0.936 0.996 0.998
-0.10 0.569 0.919 0.973 0.979 0.997 0.998 0.998 1.000 1.000

The data generating process is

∆yi,t = µi + ϕiyi,t−1 + ψi∆yi,t−1 + ei,t, 1 ≤ i ≤ N,

where µi = 0, the ϕi’s are i.i.d. following U [−c0, 0], and the
ψi’s are i.i.d. following U [0.2, 0.4]. The constant c0 is zero
for the size and 0.1, 0.2, 0.4 or 0.6 for the power. The errors
{et} are either i.i.d. normal random vectors with covariance
matrix Σ or generated from the vector GARCH process in
(6), where the matrix Σ is defined as in the previous ex-
periment. We consider three combinations of the number of
individuals and the series length, (N,T ) = (2, 100), (2, 200)
and (5, 100), and use the log-normal perturbing distribution
for {ωt}. Tables 3 and 4 report the rejection rates for the
case of i.i.d. errors and for the case of vector GARCH er-
rors, respectively, at the significance levels of 5% and 10%.
It can be observed that the OLS-based tests have distorted
sizes for the vector GARCH error case, while the empirical
sizes of the proposed tests are close to the nominal rates for
both cases. This is not surprising since the OLS-based boot-
strapping tests in [7] are based on resampling the residuals,

which are expected to handle the conditional heteroscedas-
ticity poorly. Furthermore, the proposed tests are more pow-
erful than the OLS-based tests, even for the case of i.i.d.
errors. Note that F ∗

HE1 and F ∗
HO are actually coefficient

statistics while the two OLS-based tests are t-statistics, and
the coefficient statistics are usually more powerful; see [23].
Another possible reason might be the powerfulness of the
JYW method; see [8]. Finally, compared with the two tests
for heterogeneous unit roots, the test F ∗

HO is powerful for
small values of c0, and it is also noteworthy that the values
of the ϕi’s are closer to each other in such cases.

Lastly, we briefly report the computation time of the pro-
posed procedure. All recorded time is for running our Matlab
programs on a laptop with the Intel® CoreTM i7-9750H pro-
cessor (CPU@2.60GHz, 16.0GB RAM). The recorded time
includes that spent on generating the time series data. Table
5 displays the average computation time per replication for
constructing the bootstrapped confidence intervals in Table
1. Table 6 reports that for conducting the proposed tests
F ∗
HE1, F

∗
HE2 and F ∗

HO under the settings of Table 3 when
ϕi = 0 and the significance level is 5%. Generally speaking,

LAD estimation for nonstationary VAR models 9



Table 3. Rejection rate of the proposed tests, F ∗
HE1, F

∗
HE2

and F ∗
HO, and two OLS-based bootstrapping panel unit root

tests, F ∗
OT and t∗OT , for the case of i.i.d. errors with

(N,T ) = (2, 100), (2, 200) and (5, 100).

(2, 100) (2, 200) (5, 100)
Test 5% 10% 5% 10% 5% 10%

ϕi = 0
F ∗
HE1 0.054 0.108 0.050 0.098 0.040 0.086

F ∗
HE2 0.053 0.112 0.048 0.099 0.049 0.096
F ∗
HO 0.060 0.101 0.054 0.108 0.051 0.098

F ∗
OT 0.060 0.122 0.077 0.140 0.059 0.138

t∗OT 0.045 0.087 0.067 0.133 0.062 0.108
ϕi ∼ U [−0.1, 0]

F ∗
HE1 0.512 0.675 0.837 0.917 0.686 0.852

F ∗
HE2 0.354 0.531 0.621 0.768 0.560 0.731
F ∗
HO 0.577 0.715 0.808 0.877 0.808 0.886

F ∗
OT 0.261 0.380 0.448 0.552 0.365 0.495

t∗OT 0.270 0.374 0.453 0.554 0.432 0.542
ϕi ∼ U [−0.2, 0]

F ∗
HE1 0.812 0.897 0.956 0.983 0.978 0.994

F ∗
HE2 0.594 0.756 0.834 0.910 0.930 0.975
F ∗
HO 0.783 0.858 0.901 0.932 0.927 0.951

F ∗
OT 0.433 0.535 0.650 0.718 0.596 0.716

t∗OT 0.406 0.495 0.531 0.620 0.575 0.659
ϕi ∼ U [−0.4, 0]

F ∗
HE1 0.948 0.968 0.987 0.992 1.000 1.000

F ∗
HE2 0.847 0.914 0.964 0.979 0.993 0.999
F ∗
HO 0.894 0.932 0.953 0.968 0.961 0.970

F ∗
OT 0.587 0.674 0.769 0.828 0.850 0.904

t∗OT 0.523 0.584 0.686 0.744 0.660 0.729
ϕi ∼ U [−0.6, 0]

F ∗
HE1 0.991 0.994 0.995 0.996 1.000 1.000

F ∗
HE2 0.930 0.965 0.982 0.988 1.000 1.000
F ∗
HO 0.941 0.961 0.966 0.980 0.981 0.988

F ∗
OT 0.702 0.772 0.833 0.886 0.919 0.948

t∗OT 0.568 0.648 0.731 0.787 0.696 0.760

the computation speed is relatively insensitive to the per-
turbing and error distributions. We also investigated more
settings of (N,T ) than those reported here. We found that
the computation time tends to increase linearly with T , and
it increases faster as N gets larger.

6. REAL DATA EXAMPLES

We demonstrate the usefulness of the proposed panel unit
root tests in two real data applications: monthly real ex-
change rates and daily trading volumes of stocks.

In economics, empirical tests of purchasing power par-
ity (PPP) are typically formulated as tests of stationar-
ity of the real exchange rate (RER) in an I(1) model-
ing framework. This is an important application of panel
unit root testing, and support of PPP corresponds to re-
jection of the unit root null hypothesis. However, empir-
ical results have been mixed dependent on different data

Table 4. Rejection rate of the proposed tests, F ∗
HE1, F

∗
HE2

and F ∗
HO, and the two OLS-based bootstrapping panel unit

root tests, F ∗
OT and t∗OT , for the case of vector GARCH errors

with (N,T ) = (2, 100), (2, 200) and (5, 100).

(2, 100) (2, 200) (5, 100)
Test 5% 10% 5% 10% 5% 10%

ϕi = 0
F ∗
HE1 0.042 0.081 0.040 0.083 0.042 0.091

F ∗
HE2 0.047 0.091 0.041 0.092 0.045 0.099
F ∗
HO 0.047 0.093 0.049 0.099 0.044 0.095

F ∗
OT 0.069 0.130 0.090 0.170 0.064 0.131

t∗OT 0.087 0.146 0.102 0.157 0.092 0.138
ϕi ∼ U [−0.1, 0]

F ∗
HE1 0.528 0.709 0.893 0.942 0.655 0.837

F ∗
HE2 0.462 0.612 0.777 0.869 0.630 0.799
F ∗
HO 0.633 0.758 0.851 0.896 0.823 0.903

F ∗
OT 0.273 0.352 0.458 0.579 0.350 0.470

t∗OT 0.306 0.401 0.472 0.556 0.419 0.537
ϕi ∼ U [−0.2, 0]

F ∗
HE1 0.843 0.918 0.970 0.983 0.958 0.989

F ∗
HE2 0.723 0.849 0.904 0.953 0.919 0.971
F ∗
HO 0.815 0.886 0.917 0.941 0.923 0.960

F ∗
OT 0.386 0.484 0.634 0.714 0.590 0.725

t∗OT 0.394 0.488 0.552 0.639 0.530 0.614
ϕi ∼ U [−0.4, 0]

F ∗
HE1 0.955 0.976 0.994 0.996 1.000 1.000

F ∗
HE2 0.881 0.933 0.973 0.988 0.993 1.000
F ∗
HO 0.894 0.933 0.952 0.964 0.966 0.975

F ∗
OT 0.569 0.683 0.734 0.797 0.774 0.865

t∗OT 0.509 0.612 0.654 0.727 0.670 0.691
ϕi ∼ U [−0.6, 0]

F ∗
HE1 0.979 0.990 0.995 0.997 1.000 1.000

F ∗
HE2 0.945 0.973 0.982 0.995 0.999 1.000
F ∗
HO 0.942 0.965 0.966 0.975 0.976 0.980

F ∗
OT 0.686 0.762 0.831 0.873 0.886 0.928

t∗OT 0.581 0.642 0.742 0.803 0.697 0.774

sets and methodologies; see [3] for a recent survey. In our
first application, we investigate if PPP holds among a sub-
group of the world’s most advanced economies using the
monthly country average RER from January 1970 to De-
cember 2020. The data set uses the U.S. as the based coun-
try and is obtained from the Agricultural Exchange Rate
Data Set of the U.S. Department of Agriculture (USDA)
Economic Research Service; see https://www.ers.usda.gov/
data-products/agricultural-exchange-rate-data-set/. Note
that the RER is different from the nominal exchange rate
(NER) as the former is adjusted by the relative rates of
inflation: specifically, for the USDA data,

RERi,t =
NERi,t

LCCPIi,t/USCPIi,t
,

where NERi,t is the nominal dollar exchange rate in terms
of country i’s local currency, and LCCPIi,t and USCPIi,t

10 Y. Zheng et al.
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Table 5. Average computation time (in seconds) per
replication for constructing bootstrapped 95% confidence

intervals of µ1, µ2, ϕ1,1, ϕ1,2, ϕ2,1 and ϕ2,2 under the settings
of Table 1 with T = 50, 100 and 200.

i.i.d. errors GARCH errors
50 100 200 50 100 200

Exponential 1.7952 2.5711 5.5951 1.6246 2.1997 4.9739
Two-point 1.7190 2.5094 5.5953 1.5729 2.2215 4.7462
Log-normal 1.8064 2.5610 5.8437 1.6341 2.4676 4.8876

Table 6. Average computation time (in seconds) per
replication for conducting the proposed tests F ∗

HE1, F
∗
HE2

and F ∗
HO under the settings of Table 3 when ϕi = 0, the

significance level is 5% and (N,T ) = (2, 100), (2, 200) or
(5, 100).

(2, 100) (2, 200) (5, 100)

All three tests 4.7311 10.4988 14.5598
F ∗
HE1 & F ∗

HE2 2.6421 5.7982 7.4263
F ∗
HO only 2.1121 4.5489 7.9297

are the Consumer Price Indexes for country i and the U.S.,
respectively; for details, see the documentation on the above
website for the data.

We consider five countries (N = 5), including Canada,
France, Germany, Italy, and the U.K., and define yt ∈ R5

as the logarithm transformed sequence of the monthly RER;
i.e., yi,t = log(RERi,t). There are T = 612 observations. The
time series plots of {yi,t} and empirical autocorrelation func-
tions (ACFs) of {yi,t} and {∆yi,t} are displayed in Figure
1, for 1 ≤ i ≤ 5. Since the ACF of {yi,t} substantially ex-
ceeds the upper confidence limit and decays very slowly for
all countries, we strongly suspect that there exist unit roots.
In addition, the ACF of {∆yi,t} suggests that only lag 1 of
∆yi,t is significant for all countries. Thus, we choose the lag
orders pi = 1 for 1 ≤ i ≤ 5. Then we conduct the proposed
panel unit root tests based on 1000 bootstrapped sequences
and the log-normal perturbing distribution defined as in the
previous section. The total computation time is 230.53 sec-
onds using the same laptop for reporting the time in Sec-
tion 5. The resulting p-values are 0.3020 for F ∗

HE1, 0.8180
for F ∗

HE2, and 0.3590 for F ∗
HO, all suggesting that the unit

root hypothesis is not rejected, i.e., PPP is not supported
by this data set.

Next we consider an application in finance: testing the
unit root behavior in stock trading volumes time series.
For illustration, we picked two top technology companies,
Apple (AAPL) and Microsoft (MSFT), whose stock data
are among the list of most popular datasets on the Histori-
cal Data webpage of Nasdaq Inc.; see https://www.nasdaq.
com/market-activity/quotes/historical, which provides real-
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Figure 1. Monthly logarithm transformed real exchange rates
{yt} (top) and empirical autocorrelation functions of {yt}

(middle) and {∆yt} (bottom) for five countries from January
1970 to December 2020. The dashed lines represent 95%

confidence bands.

time daily historical stock prices and volumes data to the

public. We focus on daily trading volumes of the two stocks

from January 2, 2020 to December 31, 2020, where there

are T = 253 trading days; see the top panel of Figure 2.

Since the raw volume observations are in the order of 107,

we define each {yi,t} for i = 1, 2 as the correspondingly

normalized series with mean zero and variance one. Note

that the normalization does not affect the autocorrelations.

Unlike the middle panel of Figure 1, the empirical ACF of

{yi,t} in Figure 2 decays only moderately slowly, so it is

much less clear whether there exist unit roots. Moreover, in

contrast to Figure 1, the empirical ACF of {∆yi,t} in Fig-

ure 2 is still prominent at some fairly large lags, especially in

the case of AAPL. Thus, we rely on the Akaike information

criterion (AIC) to select the lag order pi based on fitting

an AR model for each {∆yi,t}, where i = 1 corresponds to

AAPL and i = 2 to MSFT. The AIC suggests p1 = 5 and

p2 = 7. Accordingly, following the same procedure as in the

previous example, we obtain p-values of the proposed tests

as follows: 0.0020 for F ∗
HE1, 0.0230 for F ∗

HE2, and less than

10−4 for F ∗
HO. The total computation time is 16.08 seconds.

Clearly, the unit root hypothesis is rejected. To demonstrate

the advantage of the panel unit root tests over the univariate

approach, we conduct the augmented Dickey-Fuller (ADF)

test for each {yi,t}. The p-values are 0.0279 for AAPL and

0.2682 for MSFT, both much larger than those of the panel

unit root tests. This suggests that testing unit roots in pan-

els can indeed significantly increase the power of the test.

Note that the panel data approach will detect the violation

of the unit root null hypothesis if any component series has

a unit root. The ability to jointly test unit root behavior

is especially useful for financial data where the analysis of

large panels is commonly of interest.
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Figure 2. Daily trading volumes (top) and empirical
autocorrelation functions of the normalized series {yt}
(middle) and first difference {∆yt} for two stocks from
January 2, 2020 to December 31, 2020. The dashed lines

represent 95% confidence bands.

7. CONCLUSION AND DISCUSSION

This paper studies the LAD estimation for vector AR
models with pure unit roots. The technical conditions on
the error term are mild, and two important cases are in-
cluded: i.i.d. errors with the median possibly not equal to
zero and conditional heteroscedastic errors. A novel boot-
strap method is proposed for the approximation of the com-
plicated asymptotic distributions, and its validity is veri-
fied by both theory and simulations. We further construct
three bootstrapping panel unit root tests whose usefulness
is demonstrated by real applications.

Besides the pure unit roots, the nonstationary vector AR
model is usually employed to study cointegration, which is
another important feature in financial time series; see Sec-
tion 2 for details. The methodology proposed in this paper
can be readily extended to this case. Furthermore, the pro-
posed bootstrap method may be extended to other estima-
tion methods such as the quantile regression. We will leave
these for future research.

APPENDIX A. APPENDIX: TECHNICAL
DETAILS

Lemma A.1. Under Assumptions 2.1 and 2.2, the follow-
ing results are jointly satisfied:

(i)
1

T 2

T∑
t=p+2

yt−1y
T

t−1 ⇒ Υ

∫ 1

0

B1(τ)B
T

1 (τ)dτΥ
T,

(ii)
1

T
√
T

T∑
t=p+2

yt−1 ⇒ Υ

∫ 1

0

B1(τ)dτ,

(iii)
1

T

T∑
t=p+2

sgn(εi,t)yt−1 ⇒ Υ

∫ 1

0

B1(τ)dB
(i)
2 (τ),

i = 1, . . . , N,

(iv)
1√
T

T∑
t=p+2

sgn(εt) ⇒ B2(1),

(v)
1√
T

T∑
t=p+2

sgn(εi,t)zt ⇒ Bi+2(1), i = 1, . . . , N,

where Υ = (IN − Ψ1 − · · · − Ψp)
−1, B(τ) =

[BT
1 (τ), . . . ,B

T

N+2(τ)]
T is the (pN2 + 2N)-dimensional

Brownian motion as defined in Theorem 2.1, and B
(i)
2 (τ)

is the ith element of B2(τ).

Proof. Let

ζt = [eT

t , sgn(εt)
T, sgn(ε1,t)z

T

t , . . . , sgn(εN,t)z
T

t ]λ,

where λ is a (pN2 + 2N)-dimensional constant vector with
λTλ ̸= 0. It is noteworthy that {ζt, t ∈ Z} is a martingale
difference sequence with respect to the filtration {Ft, t ∈ Z},
and E(ζ2t ) = λTΩλ, where Ω is defined as in Theorem 2.1
and 0 < λTΩλ <∞.

Let Si = T−1/2
∑i

t=1 ζt. Note that the sequences {ζt}
and {E(ζt

2|Ft−1)} are both strictly stationary and ergodic,
and EST

2 = λTΩλ. Hence, it can be verified that

(7)
1

T

T∑
t=1

E(ζt
2|Ft−1)

EST
2 → 1

in the almost surely sense and, for any ϵ > 0,

(8)
1

T

T∑
t=1

E[ζt
2I(ζt ≥

√
Tvar(ζt)ϵ)] → 0,

as T → ∞. The invariance principle for martingales [14],
together with (7) and (8), implies that

S[Tτ ] =
1√
T

[Tτ ]∑
t=1

ζt ⇒W (τ),

where W (τ) is a Brownian motion with variance τλTΩλ.
Thus, by Cramér’s device,

1√
T

[Tτ ]∑
t=1

[eT

t , sgn(εt)
T, sgn(ε1,t)z

T

t , . . . , sgn(εN,t)z
T

t ]
T

⇒ B(τ),

(9)

and then we obtain (iv) and (v).
By Assumption 2.1, Π(B) = (IN −

∑p
j=1 ΨjB

j)−1 =∑∞
j=0 ΠjB

j and
∑∞

j=0 j|Πj | <∞, where B is the back shift
operator and the Πj ’s are N × N real matrices; see Chap-
ter 18 of [15]. Note that µ = 0. Let ut = ∆yt, and then
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we have ut = Π(B)et. We consider the Beveridge-Nelson
representation as follows,

ut = Υet + (ūt−1 − ūt),

where Υ = Π(1), Π̄j =
∑∞

i=j+1 Πi and ūt =
∑∞

j=0 Π̄jet−j .
Thus,

(10) yt = Υ

t∑
i=1

ei + (ū0 − ūt).

It holds that
∑∞

j=0 |Π̄j | < ∞, and then {ūt} is an N -
dimensional time series with strict stationarity. In view of
(9) and (10), we complete the proof of (i)–(iii), and Theo-
rem 2.2 in [19] makes sure that (i)–(v) hold jointly.

Proof of Theorem 2.1. Define the objective functions

QT (θ) =

N∑
i=1

Qi,T (θ)

and

Qi,T (θ) =

T∑
t=p+2

|∆yi,t − ϕT

i yt−1 − µi − ψT

i zt|,

where i = 1, . . . , N and zt = (∆yT
t−1, . . . ,∆yT

t−p)
T. For

any vi = (vT
i1,v

T
i2)

T, vi1 ∈ RN and vi2 ∈ RpN+1, de-
note by Qi,T (vi) the function Qi,T (θi) evaluated at θ0i +

(vT
i1/T,v

T
i2/

√
T )T, where θ0i = (0,mi, ψ

T
i ) is the true

value of the parameter vector θi, and 0 here denotes an
N -dimensional zero vector. Let v = (vT

1 , . . . ,v
T

N )T and

QT (v) =
∑N

i=1Qi,T (vi).
Notice that

|x− y| − |x| = −y sgn(x) + 2

∫ y

0

I(x ≤ s)− I(x ≤ 0)ds,

for x, y ∈ R and x ̸= 0, where sgn(x) is equal to 1 for
x > 0 and −1 for x < 0; see [18]. Thus, QT (v)−QT (θ0) =∑N

i=1[Qi,T (v)−Qi,T (θ0)] and

Qi,T (v)−Qi,T (θ0) = ξi

−

(
1

T

T∑
t=p+2

yT

t−1 sgn(εi,t),
1√
T

T∑
t=p+2

z̄T

t sgn(εi,t)

)T

vi,

where z̄t = (1, zT
t )

T and

ξi = 2

T∑
t=p+2

∫ vT
i1yt−1/T+vT

i2z̄t/
√
T

0

I(εi,t ≤ s)− I(εi,t ≤ 0)ds.

Let

ξ1i = 2

T∑
t=p+2

∫ vT
i1yt−1/T+vT

i2z̄t/
√
T

0

Fi,t(s)− Fi,t(0)ds

and

ξ2i = vT

i

(
Γ̂11,i Γ̂12,i

Γ̂T
12,i T−1

∑
t fi,t(0)z̄tz̄

T
t

)
vi,

where Γ̂11,i = T−2
∑

t fi,t(0)yt−1y
T
t−1, Γ̂12,i =

T−3/2
∑

t fi,t(0)yt−1z̄
T
t , and Fi,t(x) is the conditional

distribution function of εi,t, i.e., Fi,t(x) = P (εi,t ≤ x|Ft−1).
We next show that ξi = ξ1i + op(1) and ξ1i = ξ2i + op(1).

Define ιT (t) = vT
i1yt−1/T + vT

i2z̄t/
√
T . By (10),

E(yty
T
t ) = tΥΣeΥ

T +O(1), and then

TE[ι2T (t)]

≤ 2vT

i1ΥΣeΥ
Tvi1 + 2vT

i2 diag{1,Σz}vi2 + o(1)

≤ C1

(11)

for t > n0, where C1 is a constant independent of T and n0
is a large but fixed positive number. Note that the quantity
ξi−ξ1i is the summation of a martingale difference sequence
with respect to the filtration {Ft, t ∈ Z}. Thus, for any
δ > 0,

0.25E(ξi − ξ1i)
2

≤
T∑

t=p+2

E

{∫ ιT (t)

0

[I(εi,t ≤ s)− I(εi,t ≤ 0)]ds

}2

= aT (δ) +

T∑
t=p+2

E{
∫ ιT (t)

0

[I(εi,t ≤ s)− I(εi,t ≤ 0)]ds

· I(|ιT (t)| > δ)}2

≤ aT (δ) + TE[ι2T (t)I(|ιT (t)| > δ)],

(12)

where

aT (δ) =

T∑
t=p+2

E

{∫ ιT (t)

0

[I(εi,t ≤ s)− I(εi,t ≤ 0)]dsI(|ιT (t)| ≤ δ)

}2

.

It is implied by (11) that, for any fixed δ > 0,

(13) TE[ι2T (t)I(|ιT (t)| > δ)] → 0,

as T → ∞. Furthermore, it can be verified that∫ y

0

I(x ≤ s)− I(x ≤ 0)ds

= (y − x)I(0 < x < y) + (x− y)I(y < x < 0).

Hence, when 0 < δ < π, we can obtain that

aT (δ) =

T∑
t=p+2

E[ιT (t)− εi,t]
2[I(0 < εi,t < ιT (t) ≤ δ)

LAD estimation for nonstationary VAR models 13



+ I(0 > εl,t > ιT (t) ≥ −δ)]

≤ δ · 2
3
TE[ι2T (t)] · C2 ≤ δ · 2

3
C1C2,

where C1 is given as in (11) and sup|x|≤π,t∈Z fi,t(x) ≤ C2

by Assumption 2.3. In light of (12) and (13), we can show
that E(ξi−ξ1i)2 = o(1), which implies ξi = ξ1i+op(1). Note
that, for 0 < δ < π,

ξ1i−ξ2i = 2

T∑
t=p+2

∫ ιT (t)

0

Fi,t(s)− Fi,t(0)− fi,t(0)sds

≤ sup
|x|≤δ,t∈Z

|fi,t(x)− fi,t(0)|
T∑

t=p+2

ι2T (t)I(|ιT (t)| ≤ δ)

+

T∑
t=p+2

[|ιT (t)|+ fi,t(0)ι
2
T (t)]I(|σ−1

i,t ιT (t)| > δ).

Similarly, we can show that ξ1i = ξ2i + op(1).
By the ergodic theorem, we have

T−1
∑T

t=p+2 fi,t(0)z̄tz̄
T
t = E[fi,t(0)z̄tz̄

T
t ] + op(1). By a

method similar to the proof of Theorem 3.1 in [25], we can
show that

1

T 2

T∑
t=p+2

fi,t(0)yt−1y
T

t−1

= E[fi,t(0)] ·
1

T 2

T∑
t=p+2

yt−1y
T

t−1 + op(1)

and

1

T
√
T

T∑
t=p+2

fi,t(0)z̄ty
T

t−1

=
1

T
√
T
E[fi,t(0)z̄t] ·

T∑
t=p+2

yT

t−1 + op(1),

which together with Lemma A.1 implies that

Qi,T (vi)−Qi,T (θ0)

⇒ −
[∫ 1

0

BT

1 (τ)dB
(i)
2 (τ)ΥT,B

(i)
2 (1),BT

i+2(1)

]T

vi

+ vT

i Γivi,

and then

QT (v)−QT (θ0)

⇒ −
N∑
i=1

[∫ 1

0

BT

1 (τ)dB
(i)
2 (τ)ΥT,B

(i)
2 (1),BT

i+2(1)

]T

vi

+

N∑
i=1

vT

i Γivi.

Note that QT (θ) is a convex function with respect to θ.
Hence, we complete the proof by following [18].

Proof of Theorem 3.1. By a method similar to the proof of
Lemma A.1, we can show that, condition on y1, . . . ,yT ,

1

T 2

T∑
t=p+2

y∗
t−1y

∗T

t−1 ⇒ Υ

∫ 1

0

B∗
1(τ)B

∗T

1 (τ)dτΥT,

1

T
√
T

T∑
t=p+2

y∗
t−1 ⇒ Υ

∫ 1

0

B∗
1(τ)dτ,

1

T

T∑
t=p+2

(ωt − 1) sgn(εi,t)y
∗
t−1 ⇒ Υ

∫ 1

0

B∗
1(τ)dB

∗(i)
2 (τ),

1 ≤ i ≤ N,

1√
T

T∑
t=p+2

(ωt − 1) sgn(εt) ⇒ B∗
2(1),

1√
T

T∑
t=p+2

(ωt − 1) sgn(εi,t)zt ⇒ B∗
i+2(1), 1 ≤ i ≤ N,

(14)

in probability, whereB∗(τ) = [B∗T
1 (τ), . . . ,B∗T

N+2(τ)]
T is the

(pN2 + 2N)-dimensional Brownian motion defined in The-
orem 3.1.

Let

Q∗
T (θ) =

N∑
i=1

Q∗
i,T (θ)

and

Q∗
i,T (θ) =

T∑
t=p+2

ωt|∆yi,t − ϕT

i y
∗
t−1 − µi − ψT

i zt|.

We first show that

Q∗
i,T (vi)−Q∗

i,T (θ0) =

−

(
1

T

T∑
t=p+2

ωty
∗T

t−1 sgn(εi,t),
1√
T

T∑
t=p+2

ωtz̄
T

t sgn(εi,t)

)T

vi

+ ξ∗2i + o∗p(1),

(15)

where both v = (vT
1 , . . . ,v

T

N )T and θ0 are defined as in

the proof of Theorem 2.1, Γ̂∗
11,i = T−2

∑
t ωtfi,t(0)y

∗
t−1y

∗T
t−1,

Γ̂∗
12,i = T−3/2

∑
t ωtfi,t(0)y

∗
t−1z̄

T
t , and

ξ∗2i = vT

i

(
Γ̂∗
11,i Γ̂∗

12,i

Γ̂∗T
12,i T−1

∑
t ωtfi,t(0)z̄tz̄

T
t

)
vi.

Denote the σ-field Ft = σ(εt, εt−1, . . . ) and F∗
t =
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σ(ωt, ωt−1, . . . , ω1). Let ι
∗
T (t) = vT

i1y
∗
t−1/T + vT

i2z̄t/
√
T ,

ξ∗i = 2

T∑
t=p+2

ωt

∫ ι∗T (t)

0

I(εi,t ≤ s)− I(εi,t ≤ 0)ds,

and

ξ∗1i = 2

T∑
t=p+2

ωt

∫ ι∗T (t)

0

Fi,t(s)− Fi,t(0)ds,

where Fi,t(x) is the conditional distribution function of εi,t.
Then

TE{[ι∗T (t)]2|F∗
T }

≤ 2vT

i1Υ̂

(
t−1

t∑
i=1

êiê
T

i

)
Υ̂Tvi1 + 2vT

i2z̄tz̄
T

t vi2

= 2vT

i1ΥΣeΥ
Tvi1 + 2vT

i2 diag{1,Σz}vi2 + op(1),

which implies that

(16) TE{[ι∗T (t)]2I(|ι∗T (t)| > δ)|F∗
T } = op(1)

for any δ > 0. By a method similar to the proof of Theorem
2.1, we can show that

a∗T (δ) =

T∑
t=p+2

E{
∫ ι∗T (t)

0

[I(εi,t ≤ s)− I(εi,t ≤ 0)]ds

I(|ι∗T (t)| ≤ δ)}2

≤ δ · 2
3
TE[ι∗T (t)]

2 · sup
|x|≤π,t∈Z

fi,t(x)

(17)

for 0 < δ < π. Note that the quantity ξi − ξ1i is the sum-
mation of a martingale difference sequence with respect to
the filtration {Ft ∪F∗

T , t ∈ Z}. In view of (16) and (17), we
have that, for any δ > 0,

0.25E[(ξ∗i − ξ∗1i)
2|F∗

T ] ≤ aT (δ) + TE[ι2T (t)I(|ιT (t)| > δ)]

= op(1)

and hence ξ∗i = ξ∗1i + o∗p(1). Similarly, it can be shown that
ξ∗1i = ξ∗2i + o∗p(1), and we finish the proof of (15).

For the components of the matrix ξ∗2i, we have

1

T 2

T∑
t=p+2

ωtfi,t(0)y
∗
t−1y

∗T

t−1

= E[fi,t(0)]
1

T 2
·

T∑
t=p+2

y∗
t−1y

∗T

t−1 + o∗p(1),

1

T
√
T

T∑
t=p+2

ωtfi,t(0)z̄ty
∗
t−1

= E[fi,t(0)z̄t] ·
1

T
√
T

T∑
t=p+2

y∗
t−1 + o∗p(1)

and

1

T

T∑
t=p+2

ωtfi,t(0)z̄tz̄
T

t = E[fi,t(0)z̄tz̄
T

t ] + o∗p(1);

see the proof of Theorem 3.1 in [25]. By (15), we have ξ∗2i =

vT
i Γ

∗
i,Tvi and

 T ϕ̂∗i,2√
T (µ̂∗

i,2 −mi)√
T (ψ̂∗

i,2 − ψi)


= 0.5(Γ∗

i,T )
−1

(
T−1

∑T
t=p+2 ωty

∗T
t−1 sgn(εi,t)

T−1/2
∑T

t=p+2 ωtz̄
T
t sgn(εi,t)

)
+ o∗p(1),

(18)

where Γ∗
11,i,T = E[fi,t(0)] · T−2

∑
t y

∗
t−1y

∗T
t−1, Γ∗

12,i,T =

T−3/2
∑

t y
∗
t−1 · E[fi,t(0)z̄

T
t ], and

Γ∗
i,T =

(
Γ∗
11,i,T Γ∗

12,i,T

Γ∗T

12,i,T E[fi,t(0)z̄tz̄
T
t ]

)
,

Similarly, it can be shown that

 T ϕ̂∗i,1√
T (µ̂∗

i,1 −mi)√
T (ψ̂∗

i,1 − ψi)


= 0.5(Γ∗

i,T )
−1

(
T−1

∑T
t=p+2 y

∗T
t−1 sgn(εi,t)

T−1/2
∑T

t=p+2 z̄
T
t sgn(εi,t)

)
+ o∗p(1).

Combining the above two equations, together with (14), we

finish the proof of this theorem.

Proof of Theorem 4.1. We first prove the result for the test

statistics FHE1 and FHE2. By Lemma A.1, the following
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results hold jointly for 1 ≤ i ≤ N :

1

T
√
T

T∑
t=pi+2

yi,t−1 ⇒ φi

∫ 1

0

W
(i)
1 (τ)dτ,

1√
T

T∑
t=pi+2

sgn(εi,t) ⇒ W
(i)
2 (1),

1√
T

T∑
t=pi+2

sgn(εi,t)zi,t ⇒ Wi+2(1),

1

T

T∑
t=pi+2

sgn(εi,t)yi,t−1 ⇒ φi

∫ 1

0

W
(i)
1 (τ)dW

(i)
2 (τ),

1

T 2

T∑
t=pi+2

yt−1y
T

t−1 ⇒ diag{φ1, . . . , φN}

∫ 1

0

W1(τ)W
T

1 (τ)dτ diag{φ1, . . . , φN},

(19)

where yt = (y1,t, . . . , yN,t)
T, φi = (1 −

∑pi

j=1 ψi,j)
−1,

zi,t = (∆yi,t−1, . . . ,∆yi,t−pi)
T, and W(τ) =

[WT
1 (τ), . . . ,W

T

N+2(τ)]
T is the Brownian motion defined in

Theorem 4.1. Thus,

1

T 2
Bi ⇒ φ2

i

{∫ 1

0

[W
(i)
1 (τ)]2dτ −

[∫ 1

0

W
(i)
1 (τ)dτ

]2}
,

1√
T
Ai ⇒ φi

(∫ 1

0

W
(i)
1 (τ)dτ, 0, . . . , 0

)
,

1

T 2

T∑
t=p+2

(yi,t−1 −Aiz̄i,t)(yj,t−1 −Aj z̄j,t)

⇒ φiφj

{∫ 1

0

W
(i)
1 (τ)W

(j)
1 (τ)dτ

−
∫ 1

0

W
(i)
1 (τ)dτ

∫ 1

0

W
(j)
1 (τ)dτ

}
,

where z̄i,t = (1, zT
i,t)

T. Then it follows that

(20)
1

T 2
v̂ar(Φ̂) ⇒ Σϕ̂.

Denote the objective functions of model (4) by

QT (θ) =

N∑
i=1

Qi,T (θ)

and

Qi,T (θ) =

T∑
t=p+2

|∆yi,t − ϕiyi,t−1 − µi − ψT

i zi,t|,

where 1 ≤ i ≤ N and ψi = (ψi,1, . . . , ψi,pi
)T. For any vi =

(vT
i1,v

T
i2)

T, vi1 ∈ R and vi2 ∈ Rpi+1, denote by Qi,T (vi) the

value of the function Qi,T (θi) at θ0i + (vT
i1/T,v

T
i2/

√
T )T,

where θ0i is the true value of the parameter vector of model
(4). Let v = (vT

1 , . . . ,v
T

N )T and QT (v) =
∑N

i=1Qi,T (vi). By
(19), [18] and a method similar to the proof of Theorem 2.1,
we have

Qi,T (vi)−Qi,T (θ0i)

= (vi1,v
T

i2)

(
T−2

∑
t y

2
i,t−1fi,t(0) Hi

HT
i Gi

)(
vi1
vi2

)
− vi1

1

T

∑
t

yi,t−1 sgn(εi,t)

− vT

i2

1√
T

∑
t

z̄i,t sgn(εi,t) + op(1),

and then T ϕ̂i ⇒ ζW(i), where Hi =
T−3/2

∑
t yi,t−1z̄

T
i,tfi,t(0) and Gi = T−1

∑
t z̄i,tz̄

T
i,tfi,t(0).

In view of (20), we complete the proof for the test statistics
FHE1 and FHE2.

For the asymptotic distribution of the test statistic FHO,
denote by QT (v) the corresponding objective function,
where v1 = vi1 for 1 ≤ i ≤ N and v = (v1,v

T
12, . . . ,v

T

N2)
T.

By a method similar to the proof of Theorem 2.1, we can
show that

QT (v)−QT (θ0)

= v

( ∑N
i=1 T

−2
∑

t y
2
i,t−1fi,t(0) H

HT G

)
vT

− v1

N∑
i=1

1

T

∑
t

yi,t−1 sgn(εi,t)

−
N∑
i=1

vT

i2

1√
T

∑
t

z̄i,t sgn(εi,t) + op(1),

where H = (H1, . . . ,HN ) and G = diag{G1, . . . ,GN}.
Note that the function QT (v) is still convex with respect to
v. By (19), [18] and elementary calculations, we complete
the proof of the theorem.

Proof of Theorem 4.2. Compared with the bootstrap mech-
anism in Section 3, there is one more term, ϕ̂iyi,t−1 or

ϕ̃yi,t−1, involved in this theorem. We first verify two im-

portant facts to handle the extra term, say ϕ̂iyi,t−1.

The first one is that, for 1 ≤ i ≤ N , ϕ̂i = Op(T
−1) and

max1≤t≤T |yi,t| = Op(T
−1/2) if H0 holds; see Theorem 4.1

and [23]. However, if H1 holds, then ϕ̂i − ϕi = Op(T
−1/2),

where ϕi ̸= 0 is the true value of the corresponding param-
eter.

The second one provides a way of decomposition. For
example, for 1 ≤ i ≤ N , define the objective function related

to the estimator θ̂
∗
i,2 as

Q∗
i,T (θ) =

T∑
t=p+2

ωt|∆yi,t − ϕiy
∗
i,t−1 − µi −ψT

i zi,t − ϕ̂iyi,t−1|.
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Thus,

Q∗
i,T (vi)−Q∗

i,T (θ0)

=

T∑
t=pi+2

ωt|εi,t −
vi1
T
y∗i,t−1 −

vi2√
T
z̄i,t − ϕ̂iyi,t−1|

−
T∑

t=pi+2

ωt|εi,t − ϕ̂iyi,t−1|

=

(
T∑

t=pi+2

ωt|εi,t −
vi1
T
y∗i,t−1 −

vi2√
T
z̄i,t − ϕ̂iyi,t−1|

−
T∑

t=pi+2

ωt|εi,t|

)

−

(
T∑

t=pi+2

ωt|εi,t − ϕ̂iyi,t−1| −
T∑

t=pi+2

ωt|εi,t|

)
,

where θ0 is the true value of the parameter vector, and
vi = (vi1,v

T
i2)

T is defined as in the proof of Theorem 4.1.
By a method similar to the proof of Theorem 3.1, together
with the first fact mentioned at the beginning of this proof,
we establish a result similar to (18). Repeatedly using the
above two facts, we complete the proof by a method similar
to that of Theorem 3.1.
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