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A Broad Perspective

Low vs. High Dimensional Analysis of Time series
 Low dimensional setup

- “fine-grained”

Conditional heteroscedasticity,
Heavy tails, Quantile inference,
Non-stationarity, ...

 High dimensional setup
- “coarse”

Dimensionality reduction,
Non-asymptotic guarantees, ...

A “sharp” non-asymptotic analysis in high dimensions can uncover
low dimensional phenomena.
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Background



Vector Autoregressive (VAR) Model

For an observed d-dimensional time series Xt ∈ Rd, VAR(1) model:
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𝒕 = 𝟏, 𝟐, … ,n

where n is the sample size/time horizon (asymptotic analysis: n→ ∞).

Numerous applications: economics, finance, energy forecasting, ecological
forecasting, neuroscience, health research, reinforcement learning, ...
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Problem of Over-parameterization

 The unknown transition matrix A has d2 parameters.

 For the general VAR(p) model

Xt+1 = A1Xt +A2Xt−1 + · · ·+ApXt+1−p + ηt,

number of parameters = O(pd2).

 Possible over-parametrization when d is even moderately large!

⇒ Cannot provide reliable estimates and forecasts without
further restrictions.
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Literature: Taming the Dimensionality of Large VAR Models

(D). Direct reduction
 Regularized estimationa

 Banded modelb

 Network modelc

 Other parameter restrictions
motivated by specific applications

aDavis et al. (2015, JCGS), Han et al. (2015,
JMLR), Basu and Michailidis (2015, AoS), ...
bGuo et al. (2016, Biometrika)
cZhu et al. (2017, AoS)

(I). Indirect reduction
 Reduced rank models
 Factor models
 ...

(our focus)
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Motivation of This Work

What most work in (D) has in common:
(i) A particular sparsity or structural

assumption is often imposed on the
transition matrix A: exact sparsity,
banded/network structure, ...

(ii) There is an almost exclusive focus on
stable processes:
i.e., imposing the spectral radius ρ(A) < 1,
or even more stringently, the spectral norm
∥A∥2 < 1a.

aDenote the spectral radius of A by
ρ(A) := max{|λ1|, . . . , |λd|}, where λi are the
eigenvalues of A ∈ Rd×d. Note that even when
ρ(A) < 1, ∥A∥2 can be arbitrarily large for an
asymmetric matrix A.

Our approach:
 Linear restriction

framework
encompassing various
existing models

 Allow unstable and even
slightly explosive
processes:

ρ(A) ≤ 1 + c/n
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Our Objective

We study large VAR models from a more general viewpoint, without being
confined to any particular sparsity structure or to the stable regime.

We provide a non-asymptotic analysis of the ordinary least squares (OLS)
estimator for

 possibly unstable and even slightly explosive VAR models with
ρ(A) ≤ 1 + c/n

 under linear restrictions in the form of

C︸︷︷︸
known restriction matrix

vec(AT)︸ ︷︷ ︸
stacking rows of A

= µ︸︷︷︸
known vector

;

often, we may simply use µ = 0.
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Linear Restriction Framework

For time-dependent pairs (Xt, Yt), consider the unrestricted multivariate
stochastic regression:

Yt
q×1

= A
q×d

Xt
d×1

+ ηt
q×1

.

This includes VAR(p) models as special cases; VAR(1) if Yt = Xt+1, q = d.

 Let β = vec(AT)︸ ︷︷ ︸
stacking rows of A

∈ RN , where N = qd.

 Parameter space of a linearly restricted model: for 0 ≤ m ≤ N ,

L =
{
β ∈ RN : C︸︷︷︸

(N−m)×N

β = µ︸︷︷︸
(N−m)×1

}
,

where C and µ are known, and rank(C) = N −m︸ ︷︷ ︸
N − m independent restrictions

.
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Equivalent Form

For simplicity, we restrict our attention to µ = 0 in this talk. Note that

L = {β ∈ RN : C︸︷︷︸
(N−m)×N

β = 0}

has an equivalent, unrestricted parameterization:

L = { R︸︷︷︸
N×m

θ : θ ∈ Rm}.

Specific relationship between C and R:
Let C̃ be an m×N complement of C such that Cfull = (C̃T, CT)T is invertible.
Then let C−1

full = (R, R̃), where R is an N ×m matrix.

 If Cβ = 0, then β = C−1
full Cfullβ = RC̃β + R̃Cβ = Rθ, where θ = C̃β.

 Conversely, if β = Rθ, then Cβ = CRθ = 0.

Thus, the above forms of L are equivalent.
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Implications

 There exists a unique unrestricted θ∗ ∈ Rm such that

β∗
N×1

= R θ∗
m×1

.

 Therefore, the original restricted model can be converted into a
reparameterized unrestricted model.

 Special case: when
R = IN ,

there is no restriction at all, and

β∗ = θ∗.
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How to Encode Restrictions via R or C: Zero Restrictions

Recall:
R

N×m
θ

m×1
= β

N×1

⇔ C
(N−m)×N

β
N×1

= 0

Restricting the i-th element of β to zero: βi = 0

 This can be encoded in R by setting the i-th row of R to zero.
 Alternatively, it can be encoded in C by setting a row of C to

(0, . . . , 0, 1︸︷︷︸
the i-th entry

, 0, . . . , 0) ∈ RN .
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How to Encode Restrictions via R or C: Equality Restrictions

Recall:
R

N×m
θ

m×1
= β

N×1

⇔ C
(N−m)×N

β
N×1

= 0

Restricting that the i-th and j-th elements of β are equal: βi−βj = 0

 Suppose that the value of βi = βj is θk, the k-th element of θ. Then
this can be encoded in R by setting both its i-th and j-th rows to

(0, . . . , 0, 1︸︷︷︸
the k-th entry

, 0, . . . , 0) ∈ Rm.

 Alternatively, we may set a row of C to

(0, . . . , 0, 1︸︷︷︸
the i-th entry

, 0, . . . , 0, −1︸︷︷︸
the j-th entry

, 0, . . . , 0) ∈ RN .
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Example 1: VAR(p) Models

VAR(p) model

Zt+1
d0×1

= A1
d0×d0

Zt + A2
d0×d0

Zt−1 + · · ·+ Ap
d0×d0

Zt−p+1 + εt.

 Let Xt = (ZT
t , Z

T
t−1, . . . , Z

T
t−p+1)

T ∈ Rd and ηt = (εT
t , 0, . . . , 0)

T ∈ Rd,
where d = d0p. Then

Zt+1

Zt

...
Zt−p+2


︸ ︷︷ ︸

Xt+1

=


A1 · · · Ap−1 Ap

Id0 · · · 0 0
... . . . ...

...
0 · · · Id0 0


︸ ︷︷ ︸

A


Zt

Zt−1

...
Zt−p+1


︸ ︷︷ ︸

Xt

+


εt

0
...
0


︸ ︷︷ ︸

ηt

 Thus, VAR(p) models can be viewed as linearly restricted
VAR(1) models.

We may focus on VAR(1) models from now on.
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Example 2: Banded VAR Model

Banded VAR model
In practice, it is often sufficient to collect information from
“neighbors”:

aij = 0 ∀ |i− j| > k0.

Figure 1: Location plot and estimated transition
matrix Â (Guo et al., 2016, Biometrika).

In this case, µ = 0 and

R =


R(1) 0

. . .
0 R(d)


is a d2 ×m block diagonal
matrix.

Actually, the definition of “neighbors” can be more general.
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Example 3: Network VAR Model

Network VAR model
To analyze users’ time series data from large social networks, Zhu et al.
(2017, AoS) imposes that

 a11 = · · · = add;
 the zero-nonzero pattern of A is known: aij = 0 if individual j does

not follow individual i on the social network;
 all nonzero off-diagonal entries of A are equal.

This model is essentially low-dimensional.
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Example 4: Pure Unit Root Process

Pure unit root process

A = ρId, where ρ ∈ R.

If ρ = 1, it is the pure unit root process, a classic unstable VAR process.

 If all restrictions are imposed (only ρ is unknown), then
R = (eT

1 , . . . , e
T
d)

T ∈ Rd2 , with
ei = (0, . . . , 0, 1︸︷︷︸

the i-th entry

, 0, . . . , 0)T ∈ Rd.

 Testing H0 : A∗ = Id (unit root testing in panel data) has been
extensively studied in the asymptotic literature.a

 Our non-asymptotic approach can precisely characterize the behavior of
ρ̂ over |ρ| ∈ (0, 1 + c/n].

aSee Chang (2004, JoE) and Zhang et al. (2018, AoS) for low and high dimensional
cases, respectively.

16 / 52



Ordinary Least Squares (OLS) Estimation

 We can define the OLS estimator under the general multivariate
stochastic regression framework:

Yt
q×1

= A∗
q×d

Xt
d×1

+ ηt
q×1

, (1)

where A∗ is the true value. Then (1) has the matrix form
Y T
1

...
Y T
n


︸ ︷︷ ︸

n×q

=


XT

1

...
XT

n


︸ ︷︷ ︸

n×d

AT
∗︸︷︷︸

d×q

+


ηT
1

...
ηT
n


︸ ︷︷ ︸

n×q

,

i.e., Y = X AT
∗ + E.

 By vectorization, vec(Y )︸ ︷︷ ︸
y

= (Iq ⊗X) vec(AT
∗)︸ ︷︷ ︸

β∗

+ vec(E)︸ ︷︷ ︸
η

.
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Ordinary Least Squares (OLS) Estimation

 Here we let

y = vec(Y ), η = vec(E) and Z = (Iq ⊗X)R.

 By reparameterization, we further have

y = (Iq ⊗X)β∗ + η = (Iq ⊗X)R︸ ︷︷ ︸
Z

θ∗ + η = Zθ∗ + η.

 As a result, the OLS estimator of β∗ for the restricted model can be
defined asa

β̂ = Rθ̂, where θ̂ = argmin
θ∈Rm

∥y − Z︸︷︷︸
qn×m

θ∥2. (2)

aTo ensure the feasibility of (2), we assume that qn ≥ m. (But Z need not be full rank).
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Ordinary Least Squares (OLS) Estimation

 Let R = (RT
1 , . . . , R

T
q )

T, where Ri are d×m matrices. Then,

A∗ = (Iq ⊗ θT
∗)R̃,

where R̃ is an mq × d matrix:

R̃ = (R1, . . . , Rq)
T.

Hence, we can obtain the OLS estimator of A by

Â = (Iq ⊗ θ̂T)R̃.

 Note that ∥β̂ − β∗∥ = ∥Â−A∗∥F .
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A Sneak Peek of Our Results
||
 β^

−
β *

||

|ρ|

1 − O{(m + logd) n} (1 − 1 n)1 2
1 1 + O(1 n)

O[{(1 − ρ2)m n}1 2]
O{(m + logd) n}

O{mlog(dn) n}

O(m n)

Ω[{(1 − ρ2)m n}1 2]

Ω(m
1 2

n)

Ω[|ρ|
−n{(ρ2 − 1)m n}1 2]

Figure 2: Illustration of theoretical upper (black) and lower (blue) bounds and
actual rates (red) suggested by simulation results for VAR(1) model with
A∗ = ρId and Gaussian innovations.
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Small-Ball Method for Stochastic
Regression



Key Technical Tool for Upper Bound Analysis

Extension of Mendelson’s small-ball method to time-dependent dataa

Why using this method
The small-ball method helps us establish lower bounds of the Gram matrix
XTX (or ZTZ) under very mild conditions, while dropping the stability
assumption and avoiding reliance on mixing properties.

How to use this method

(a) Formulate a (pointwise) small-ball condition
(b) Use this condition to control the lower tail behavior of the Gram matrix
(c) Derive upper bounds for the estimation error
(d) Verify the small-ball condition - in our context, for VAR models

aSimchowitz et al. (2018, COLT)
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Main Idea of (a)→(b): Lower-Bounding λmin(
∑n

t=1 XtX
T
t )

(1) Divide the data into size-k blocks along the time dimension, with the
ℓ-th block being {X(ℓ−1)k+1, . . . , Xℓk}.

(2) Lower-bound each ∑k

i=1⟨X(ℓ−1)k+i, ω⟩2 for ω ∈ Sd−1 with high
probability by a small ball condition (defined in the next slide).

(3) Aggregate to get with probability at least 1− exp(−cn/k),

1

n

n∑
t=1

⟨Xt, ω⟩2 & ωTΓsbω.

(4) By the covering method, strengthen the pointwise bound into a lower
bound on

inf
ω∈Sd−1

n∑
t=1

⟨Xt, ω⟩2,

where Sd−1 = {ω ∈ Rd : ∥ω∥ = 1} is the unit sphere in Rd.
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Small-Ball Condition for Dependent Data

Block martingale small ball (BMSB) condition: Univariate case
For {Xt}t≥1 taking values in R adapted to the filtration {Ft}, we say that
{Xt} satisfies the (k, ν, α)-BMSB condition if:

there exist an integer k ≥ 1 and universal constants ν > 0 and
α ∈ (0, 1) such that for every integer s ≥ 0,

1

k

k∑
t=1

P(|Xs+t| ≥ ν | Fs) ≥ α

with probability one.

Here, k is the block size.
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Small-Ball Condition for Dependent Data

Block martingale small ball (BMSB) condition: Multivariate case
For {Xt}t≥1 taking values in Rd, we say that {Xt} satisfies the
(k,Γsb, α)-BMSB condition if:

there exists
0 ≺ Γsb ∈ Rd×d

such that, for every ω ∈ Sd−1, the univariate time series

{ωTXt, t = 1, 2, . . . }

satisfies the (k,
√
wTΓsbw,α)-BMSB condition.
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Regularity Conditions for Upper Bound Analysis

Assumptions for multivariate stochastic regression

A1. {Xt}nt=1 satisfies the (k,Γsb, α)-BMSB condition.
A2. For any δ ∈ (0, 1), there exists ΓR dependent on δ such that

P(ZTZ � nΓR) ≤ δ.

A3. For every integer t ≥ 1, ηt | Ft is mean-zero and σ2-sub-Gaussian,
where

Ft = σ{η1, . . . , ηt−1, X1, . . . , Xt}.

Assumptions A1 and A2 will be verified (with specific Γsb and ΓR) for
VAR models later.

25 / 52



General Upper Bound for ∥β̂ − β∗∥(= ∥Â− A∗∥F )

Theorem 1 (General upper bound)
Let {(Xt, Yt)}nt=1 be generated by the linearly restricted stochastic regression
model. Fix δ ∈ (0, 1). Suppose that Assumptions A1–A3 hold, 0 ≺ Γsb ≼ Γ, and

n ≥ 9k

α2

{
m log

27

α
+

1

2
log det(ΓRΓ

−1
R ) + log q + log

1

δ

}
, (⋆)

where ΓR = RT(Iq ⊗ Γsb)R. Then, with probability at least 1− 3δ, we have

∥β̂ − β∗∥

≤ 9σ

α

√
λmax(RΓ−1

R RT)

n

{
12m log

14

α
+ 9 log det(ΓRΓ

−1
R ) + 6 log

1

δ

}
.

Similarly, we can also provide an upper bound for ∥Â−A∗∥2.
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Application to VAR Models



Properties of VAR(1) Model

Xt+1 = A∗Xt + ηt, t = 1, . . . , n,

subject to
β∗ = Rθ∗,

where β∗ = vec(AT
∗) ∈ Rd2 , θ∗ ∈ Rm, and R ∈ Rd2×m. Then {Xt} is

adapted to the filtration Ft = σ{η1, . . . , ηt−1}.

Assumptions for VAR model (Note: A4 ⇒ A1–A3.)

A4. (i) The process {Xt} starts at t = 0, with X0 = 0.

(ii) The innovations {ηt} are i.i.d. with E(ηt) = 0 and var(ηt) = Ση = σ2Id.

(iii) There is a universal constant C0 > 0 such that, for every ω ∈ Sd−1, the
density of ωTΣ

−1/2
η ηt is bounded by C0 almost everywhere.

(iv) {ηt} are σ2-sub-Gaussian.
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About Fixing X0

Xt = ηt−1 +A∗ηt−2 + · · ·+At−1
∗ η0 +At

∗X0︸ ︷︷ ︸
0

=
t−1∑
s=0

As
∗ηt−s−1, t ≥ 1.

Then
var(Xt) = E(XtX

T
t ) = σ2Γt,

where the finite-time controllability Gramian

Γt =
t−1∑
s=0

As
∗(A

T
∗)

s.

This highlights a subtle but critical difference from the typical set-up in the
asymptotic theory where a stable process {Xt} starts at t = −∞, so that

Xt =
∞∑
s=0

As
∗ηt−s−1, t ∈ Z,
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About Fixing X0

... which implies that

var(Xt) <∞ if and only if ρ(A∗) = max{|λ1|, . . . , |λd|} < 1,

and if ρ(A∗) < 1, then

var(Xt) = σ2

∞∑
s=0

As
∗(A

T
∗)

s = σ2 lim
t→∞

Γt.

In contrast, by fixing X0, we can provide a unified analysis of stable
and unstable processes via the finite-time controllability Gramian Γt.
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Assumption A4 ⇒ A1

Lemma 1 (Verification of the BMSB condition)
Let {Xt}n+1

t=1 be generated by the linearly restricted vector autoregressive model.
Under Assumptions A4(ii) and (iii), for any 1 ≤ k ≤ ⌊n/2⌋, {Xt}nt=1 satisfies
the (2k,Γsb, 1/10)-BMSB condition, where Γsb = σ2Γk/(4C0)

2.

By Lemma 1, for any 1 ≤ k ≤ ⌊n/2⌋, the matrix ΓR in Theorem 1 can be
specified as

ΓR = σ2RT(Id ⊗ Γk)R/(4C0)
2.
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Assumption A4 ⇒ A2: Two choices of ΓR

Lemma 2 (The first choice of ΓR)
Let {Xt}n+1

t=1 be generated by the linearly restricted vector autoregressive model.
Under Assumptions A4(i) and (ii), for any δ ∈ (0, 1), it holds
pr(ZTZ � nΓR) ≤ δ, where ΓR = RT(Id ⊗ Γ)R, with Γ = σ2mΓn/δ.

By Lemma 2, the matrix ΓR in Theorem 1 can be chosen as

ΓR = Γ
(1)

R := σ2mRT(Id ⊗ Γn)R/δ.
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Assumption A4 ⇒ A2: Two choices of ΓR

Let ΣX = [E(XtX
T
s )d×d]1≤t,s≤n be the covariance matrix of the dn× 1

vector vec(XT) = (XT
1 , . . . , X

T
n)

T. Then, for a universal constant C1 > 0,
define ψ(m, d, δ) = C1{m log 9 + log d+ log(2/δ)}, and

ξ = ξ(m, d, n, δ) = 2

{
λmax(Γn)ψ(m, d, δ)∥ΣX∥2

σ2n

}1/2

+
2ψ(m, d, δ)∥ΣX∥2

σ2n
.

Lemma 3 (The second choice of ΓR)
Let {Xt}n+1

t=1 be generated by the linearly restricted vector autoregressive model.
Under Assumptions A4(i) and (ii), if {ηt} are normally distributed, then for any
δ ∈ (0, 1), it holds pr(ZTZ � nΓR) ≤ δ, where ΓR = RT(Id ⊗ Γ)R, with
Γ = σ2Γn + σ2ξId, and ξ = ξ(m, d, n, δ).

By Lemma 3, the matrix ΓR in Theorem 1 can be chosen as

ΓR = Γ
(2)

R := σ2RT(Id ⊗ Γn)R+ σ2ξ(m, d, n, δ)RTR.

32 / 52



Theorem 1 Revisited

Theorem 1 applied to VAR(1) model)
Let {Xt}n+1

t=1 be generated by the linearly restricted VAR model. Fix δ ∈ (0, 1).
Suppose that Assumption A4 hold and

n ≥ 9k

α2

{
m log

27

α
+

1

2
log det(ΓRΓ

−1
R ) + log d+ log

1

δ

}
. (⋆)

Then, with probability at least 1− 3δ, we have

∥β̂ − β∗∥ ≤ 9σ

α

√
λmax(RΓ−1

R RT)

n

{
12m log

14

α
+ 9 log det(ΓRΓ

−1
R ) + 6 log

1

δ

}
.

Here, ΓR = σ2RT(Id ⊗ Γk)R/(4C0)
2 with 1 ≤ k ≤ ⌊n/2⌋, and ΓR = Γ

(1)
R or

Γ
(2)
R (if {ηt} are normally distributed), where

Γ
(1)
R = σ2mRT(Id ⊗ Γn)R/δ,

Γ
(2)
R = σ2RT(Id ⊗ Γn)R+ σ2ξ(m, d, n, δ)RTR.

We need to verify the existence of k satisfying (⋆).
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Verifying the Existence of k in (⋆)

 Obviously, without imposing normality on {ηt}, we can only choose
ΓR = Γ

(1)

R . However, if {ηt} are normal, we can set ΓR to whichever of
Γ

(1)

R and Γ
(2)

R delivers the sharper upper bound.
 It can be shown that

log det(ΓRΓ
−1
R ) .

m log(m/δ) + κ, if ΓR = Γ
(1)

R

m log{2max(1, ξ)}+ κ, if ΓR = Γ
(2)

R

,

where ξ = ξ(m, d, n, δ) and κ = log det {RT(Id ⊗ Γn)R(R
TR)−1}.

Next goal: Derive explicit upper bounds for ξ and κ. Note that

 Γn =
∑n−1

s=0 A
s
∗(A

T
∗)

s ≼ Γ∞ <∞ only if ρ(A∗) < 1.
 ξ depends on ∥ΣX∥2, which also depends on n and is not necessarily

bounded even if ρ(A∗) < 1. Recall (ΣX)t,s = E(XtX
T
s ) = σ2At−s

∗ Γs

for 1 ≤ s ≤ t ≤ n (growing with s).
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Upper Bounds on κ

Different cases of A∗:

A5. ρ(A∗) ≤ 1 + c/n, where c > 0 is a universal constant.

A6. ρ(A∗) ≤ ρ̄ < 1 and ∥A∗∥2 ≤ C, where C, ρ̄ > 0 are universal constants.

Jordan decomposition: A∗ = SJS−1, where J has L blocks with maximum
block size bmax = max1≤ℓ≤L bℓ, Let cond(S) = {λmax(S

∗S)/λmin(S
∗S)}1/2,

where S∗ is the conjugate transpose of S.

Lemma S7 (Upper bounds of κ)
For any A∗ ∈ Rd×d, under Assumption A5,

κ . m [log{d cond(S)}+ bmax log n] .

Moreover, if Assumption A6 holds, then κ . m.

Simple example: A∗ = ρId ⇒ bmax = cond(S) = 1.
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Upper Bounds on ξ

Different cases of A∗:

A5. ρ(A∗) ≤ 1 + c/n, where c > 0 is a universal constant.

A6. ρ(A∗) ≤ ρ̄ < 1 and ∥A∗∥2 ≤ C, where C, ρ̄ > 0 are universal constants.

A7. ρ(A∗) ≤ ρ̄ < 1, ∥At
∗∥2 ≤ Cϱt for any integer 1 ≤ t ≤ n, and

µmin(A) = inf∥z∥=1 λmin(A∗(z)A(z)) ≥ µ1, where C, ρ̄, µ1 > 0 and
ϱ ∈ (0, 1) are universal constants, and A(z) = Id −A∗z for z ∈ C.

Lemma S8 (Upper bounds of ξ)
For any A∗ ∈ Rd×d, under Assumption A5,

log ξ . log{d cond(S)}+ bmax log n.

Moreover, if Assumption A7 holds, then ξ . 1.
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Feasible Region for k

Note: In Theorem 1, as the upper bound of log det(ΓRΓ
−1
R ) becomes smaller,

 the feasible region for k becomes larger,
 and the upper bound of ∥β̂ − β∗∥ becomes smaller

Sufficient condition for (⋆):

k .


n

m[log{d cond(S)}+bmax logn]+log(1/δ)
, if Assumption A5 holds

n
m log(m/δ)+log d

, if Assumption A6 holds
n

m+log(d/δ)
, if Assumption A7 and {ηt} are normal

.

(F)
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Analysis of Upper Bounds for VAR Model

Denote ΓR,k = RΓ−1
R RT = R

{
RT(Id ⊗ Γk)R

}−1
RT (decreasing in k).

Theorem 2 (Upper bounds for VAR model)
Let {Xt}n+1

t=1 be generated by the linearly restricted VAR model. Fix δ ∈ (0, 1).
For any 1 ≤ k ≤ ⌊n/2⌋ satisfying (F), under Assumption A4,

(i) if Assumption A5 holds, with probability at least 1− 3δ,

∥β̂ − β∗∥ .
(
λmax(ΓR,k)

m [log{d cond(S)}+ bmax logn] + log(1/δ)

n

)1/2

;

(ii) if Assumption A6 holds, with probability at least 1− 3δ,

∥β̂ − β∗∥ .
{
λmax(ΓR,k)

m log(m/δ)

n

}1/2

.

(iii) if Assumption A7 holds and {ηt} are normal, with probability at least 1− 3δ,

∥β̂ − β∗∥ .
{
λmax(ΓR,k)

m+ log(1/δ)

n

}1/2

.
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Understanding the Scale Factor λmax(ΓR,k)

This scale factor may be viewed as a low dimensional property:

 The limiting distribution of β̂ under the assumptions that d is fixed
(and so are m and A∗) and ρ(A∗) < 1 is

n1/2(β̂ − β∗) → N(0, R{RT(Id ⊗ Γ∞)R}−1RT︸ ︷︷ ︸
limk→∞ λmax(ΓR,k)

) (3)

in distribution as n→ ∞, where Γ∞ = limn→∞ Γn.

 The strength of our non-asymptotic approach is signified by the
preservation of this scale factor in the error bounds.

The key is to simultaneously bound ZTZ and ZTη through the
Moore-Penrose pseudoinverse Z†. (Recall that Z† = (ZTZ)−1ZT if
ZTZ ≻ 0)

39 / 52



Insight from Theorem 2: Impact of Restrictions

Adding more restrictions will reduce the error bounds through not
only the reduced model size m, but also the reduced scale factor
λmax(ΓR,k).

 To illustrate this, suppose that β∗ = Rθ∗ = R(1)R(2)θ∗, where
R(1) ∈ Rd2×m̃ has rank m̃, and R(2) ∈ Rm̃×m has rank m, with
m̃ ≥ m+ 1.

 Then L(1) = {R(1)θ : θ ∈ Rm̃} ⊇ L = {Rθ : θ ∈ Rm}.

 If the estimation is conducted on the larger parameter space
L(1), then the (effective) model size will increase to m̃, and the
scale factor in the error bound will become λmax(ΓR(1),k), where it
can be shown that

λmax(ΓR(1),k) ≥ λmax(ΓR,k).
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Strengthening Theorem 2: Leveraging k

 Note that λmax(ΓR,k) is monotonic decreasing in k.

 By choosing the largest possible k satisfying (F), we can obtain
the sharpest possible result from Theorem 2.

 We will capture the magnitude of λmax(ΓR,k) via σmin(A∗), a measure
of the least excitable mode of the underlying dynamics.

 This allows us to uncover a phase transition from the slow to
fast error rate regimes in terms of σmin(A∗).
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A Sharper Analysis of Upper Bounds for VAR Model

Theorem 3 (Sharpened upper bounds for VAR model)
Suppose that the conditions of Theorem 2 hold. Fix δ ∈ (0, 1), and let c1 > 0 be
a universal constant.

(i) Under Assumption A5, if

σmin(A∗) ≤ 1− c1 {m [log{d cond(S)}+ bmax logn] + log(1/δ)}
n

, (A.1)

then, with probability at least 1− 3δ,

∥β̂−β∗∥ .
√

{1− σ2
min(A∗)} {m [log{d cond(S)}+ bmax logn] + log(1/δ)}

n
,

(S.1)
and if inequality (A.1) holds in the reverse direction, then, with probability at
least 1− 3δ,

∥β̂ − β∗∥ . m [log{d cond(S)}+ bmax logn] + log(1/δ)

n
. (F.1)
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A Sharper Analysis of Upper Bounds for VAR Model

Theorem 3 (Cont’d)

(ii) Under Assumption A6, if

σmin(A∗) ≤ 1− c1{m log(m/δ) + log d}
n

, (A.2)

then, with probability at least 1− 3δ,

∥β̂ − β∗∥ .
√

{1− σ2
min(A∗)}m log(m/δ)

n
, (S.2)

and if inequality (A.2) holds in the reverse direction, then, with probability at
least 1− 3δ,

∥β̂ − β∗∥ . m log(m/δ) + log d

n
. (F.2)
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A Sharper Analysis of Upper Bounds for VAR Model

Theorem 3 (Cont’d)

(ii) Under Assumption A7, if

σmin(A∗) ≤ 1− c1{m+ log(d/δ)}
n

, (A.3)

then, with probability at least 1− 3δ,

∥β̂ − β∗∥ .
√

{1− σ2
min(A∗)}{m+ log(1/δ)}

n
. (S.3)

and if inequality (A.3) holds in the reverse direction, then, with probability at
least 1− 3δ,

∥β̂ − β∗∥ . m+ log(d/δ)

n
. (F.3)
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Simulation Experiment

Three data generating processes (DGPs) with ηt i.i.d.∼ N(0, Id):

 DGP1 (banded structure): a∗ij = 0 if |i− j| > k0, where k0 ≥ 1 is the
bandwidth parameter. ⇒ m = d+ (2d− 1)k0 − k2

0

 DGP2 (group structure): Xt is equally partitioned into K groups. In
each row of A∗, the off-diagonal entries a∗ij with j belonging to the
same group are assumed to be equal. ⇒ m = (K + 1)d
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 DGP3: A∗ = ρId, where ρ ∈ R. ⇒ m ≥ 1
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Simulation Results
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Figure 3: Plots of ∥β̂ − β∗∥ against (m/n)1/2 for three data generating processes
with ρ(A∗) = 0.2, 0.8 or 1 and different m. DGP1 and DGP3 were fitted as
banded vector autoregressive models with m = 70, 156 or 304, and DGP2 was
fitted as grouped vector autoregressive models with m = 72, 120 or 312.
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Simulation Results
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Figure 4: Error rates for DGP3 as ρ is fixed or approaching one at different rates.
Left panel: plot of ∥β̂ − β∗∥ against {(1− ρ2)/n}1/2 with ρ = 0.2, 0.4 or 0.6, and
m = 70. Right panel: plot of ∥β̂ − β∗∥ against m/n with ρ = 0.99,
1− (m+ log d)/n, 1 + 1/n or 1.01, and m = 1 or 70. The case of
(m, ρ) = (70, 1.01) is omitted as the process becomes very explosive.
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Analysis of Lower Bounds

Notations: For a fixed ρ̄ > 0, let Θ(ρ̄) = {θ ∈ Rm : ρ{A(θ)} ≤ ρ̄}. so the
linearly restricted subspace of β is L(ρ̄) = {Rθ : θ ∈ Θ(ρ̄)}. Denote by P(n)

θ

the distribution of (X1, . . . , Xn+1) on (X n+1,Fn+1).

Theorem 4 (Lower bounds for Gaussian VAR model)
Suppose that {Xt}n+1

t=1 follow the VAR model Xt+1 = AXt + ηt with linear
restrictions defined previously. In addition, Assumptions A4(i) and (ii) hold, and
{ηt} are normal. Fix δ ∈ (0, 1/4) and ρ̄ > 0. Then, for any ϵ ∈ (0, ρ̄/4], we have

inf
β̂

sup
θ∈Θ(ρ̄)

P(n)
θ

{
∥β̂ − β∥ ≥ ϵ

}
≥ δ,

where the infimum is taken over all estimators of β subject to
β ∈ {Rθ : θ ∈ Rm}, for any n such that

n

n−1∑
s=0

ρ̄2s . m+ log(1/δ)

ϵ2
.
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Minimax Rates Implied by Theorem 4

Corollary 2 (Minimax rates for Gaussian VAR model)
The minimax rates of estimation over β ∈ L(ρ̄) in different stability regimes are
as follows:

(i)
√

(1− ρ̄2)m/n, if ρ̄ ∈ (0,
√

1− 1/n);

(ii) n−1√m, if ρ̄ ∈ [
√

1− 1/n, 1 + c/n] for a fixed c > 0; and

(iii) ρ̄−n
√

(ρ̄2 − 1)m/n, if ρ̄ ∈ (1 + c/n,∞).

||
 β^

−
β *

||

|ρ|

1 − O{(m + logd) n} (1 − 1 n)1 2
1 1 + O(1 n)

O[{(1 − ρ2)m n}1 2]
O{(m + logd) n}

O{mlog(dn) n}

O(m n)

Ω[{(1 − ρ2)m n}1 2]

Ω(m
1 2

n)

Ω[|ρ|
−n{(ρ2 − 1)m n}1 2]
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Conclusion

 We develop a unified non-asymptotic theory for the OLS estimation of
VAR models under linear restrictions, which is applicable to stable,
unstable and even slightly explosive processes.

 The derived upper bounds reflect an interesting connection between
asymptotic and non-asymptotic theory.

 Simulation results shed light on the sharpness of the error bounds and
the actual phase transition behavior.

A “sharp” non-asymptotic analysis in high dimensions can uncover
low dimensional phenomena.
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Some future directions

 Estimation with data-driven restrictions:
Such an estimation procedure would involve (1) suggesting possible
linear restrictions based on subject knowledge and then (2) selecting
the true restrictions by a data-driven approach.

 Linear hypothesis testing:
Simultaneous tests for linear constraints of the VAR model

Manuscript: Yao Zheng and Guang Cheng (2019+). Finite time analysis of
vector autoregressive models under linear restrictions. arXiv:1811.10197.
Under revision for Biometrika.
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Thank you!
Email: yao.zheng@uconn.edu
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