Tensor Methods for High-Dimensional Time Series Modeling

Yao Zheng

(based on joint works with Di Wang, Heng Lian, and Guodong Li) $\,$

May 10, 2022

Department of Statistics

University of Connecticut

Outline

- Introduction
- Topic 1: High-Dimensional Vector Autoregression via Tensor Decomposition
 - Motivation
 - Proposed Model
 - Estimation Methods
 - Empirical Example
- Topic 2: Low-Rank Tensor Autoregression
 - Motivation
 - Proposed Model
 - Estimation Methods
 - Empirical Example
- Conclusion

Introduction

High Dimensional Time Series

Big data is everywhere, and many big datasets are temporally dependent.

Needs for high-dimensional time series models:

- Economics: forecast with many predictors and understand causal relationships
- Finance: build large scale systemic risk models
- Functional Genomics: reconstruct gene regulatory networks based on limited experimental data
- Neuroscience: build detailed connectivity maps on temporal data exhibiting multiple structural changes

Vector AutoRegression

- VAR is a fundamental model for multivariate time series analysis.
- VAR with N variables, lag order P, and time length T:

$$\mathbf{y}_{t} = \sum_{j=1}^{P} \mathbf{A}_{j} \mathbf{y}_{t-j} + \boldsymbol{\epsilon}_{t}, \quad \mathbf{y}_{t} = (y_{1t}, y_{2t}, \dots, y_{Nt})', \ t = 1, \dots, T.$$

- This is called a VAR(P) model.
- Curse of dimensionality $(N^2P\gg T)$ even when the dimension N is moderately large.

Topic 1: High-Dimensional

Vector Autoregression via

Tensor Decomposition

Motivation: Large Lag Order

- Compared with VAR, the vector autoregressive moving average (VARMA)
 model usually performs better in practice since it provides a more flexible
 autocorrelation structure.
- However, VARMA has a serious identification problem when $N \geq 2$. (Estimation is unstable since the objective function involves a high-order polynomial.)
- It is common to employ a VAR(P) model to approximate the VARMA process, and the lag order P may be very large to provide a better fit.
- As $T \to \infty$, we need $P \to \infty$ and $PT^{-1/3} \to 0$.
- Curse of dimensionality

Low-Dimensional Structures in VAR

• Sparse VAR model (Lasso, Dantzig selector, SCAD, etc.)

Basu and Michailidis (2015); Han et al. (2015); Wu and Wu (2016)

• Reduced-rank VAR model (SVD, nuclear norm)

Velu et al. (1986); Negahban and Wainwright (2011); Chen et al. (2013) Constraint on column space of $[A_1, A_2, \ldots, A_P]$.

VAR in Tensor Form

We propose to rearrange the transition matrices into a tensor

and consider dimensionality reduction in three different directions:

- column-wise $[A_1, A_2, \dots, A_P]$
- ullet row-wise $[oldsymbol{A}_1',oldsymbol{A}_2',\ldots,oldsymbol{A}_P']$
- temporal $[\text{vec}(\boldsymbol{A}_1), \text{vec}(\boldsymbol{A}_2), \dots, \text{vec}(\boldsymbol{A}_P)]$

(reduced-rank model)

(autoregressive index model)

(new temporal structure)

Vector, Matrix and Tensor

Tensors are higher-order extensions of matrices.

- 1st-order tensors are vectors (a)
- ullet 2nd-order tensors are matrices (A)
- higher-order tensors (A)

Figure 1: $5 \times 5 \times 5$ tensor. This is a third-order tensor.

Matricization and Tucker Ranks of a Tensor

Consider $\mathcal{A} \in \mathbb{R}^{p_1 \times p_2 \times p_3}$. For i=1,2,3, its mode-i matricization $\mathcal{A}_{(i)}$ is

Let $r_i = \text{rank}(\mathcal{A}_{(i)})$ be the matrix rank of $\mathcal{A}_{(i)}$. (r_1, r_2, r_3) are analogous to column and row ranks of a matrix, but they are not always equal.

Tucker Decomposition

ullet For a tensor $\mathfrak{X} \in \mathbb{R}^{p_1 imes p_2 imes p_3}$, the Tucker decomposition is

$$X = \mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C} \equiv \llbracket \mathcal{G}; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$$

where \mathcal{G} is a $r_1 \times r_2 \times r_3$ core tensor, \boldsymbol{A} is a $p_1 \times r_1$ matrix, \boldsymbol{B} is a $p_2 \times r_2$ matrix, and \boldsymbol{C} is a $p_3 \times r_3$ matrix.

- Higher-order SVD: 9 is all-orthogonal; A, B and C are orthonormal
- (r_1, r_2, r_3) : Tucker ranks or multilinear ranks.

Proposed Model: Multilinear Low-Rank VAR

• For a VAR(P) model, we stack A_1, \ldots, A_P into an $N \times N \times P$ tensor \mathcal{A} , where

$$\mathcal{A} = \mathcal{G} \times_1 \mathbf{U}_1 \times_2 \mathbf{U}_2 \times_3 \mathbf{U}_3.$$

• If $(r_1, r_2, r_3) \ll (N, N, P)$,

of parameters
$$= r_1 r_2 r_3 + r_1 (N - r_1) + r_2 (N - r_2) + r_3 (P - r_3)$$
.

 \bullet The reduced-rank model is a special case of multilinear low-rank model with ranks (r,N,P).

Connection with the factor model

• Factor model:

$$\boldsymbol{y}_t = \boldsymbol{\Lambda} \boldsymbol{f}_t + \boldsymbol{\xi}_t, \tag{1}$$

where f_t is a set of latent factor with dimension $r \ll N$, Λ is an N-by-r factor loading matrix, and ξ_t is the noise series.

- ullet Estimated factor: $\widehat{m{f}}_t = \widehat{m{\Lambda}}' m{y}_t.$
- ullet Supervised factor interpretation: since $oldsymbol{U}_i$ is orthonormal

$$\mathbf{U}_{1}'\mathbf{y}_{t} = \mathcal{G}_{(1)}\operatorname{vec}(\mathbf{U}_{2}'\mathbf{X}_{t}\mathbf{U}_{3}) + \mathbf{U}_{1}'\boldsymbol{\epsilon}_{t}, \tag{2}$$

where $\boldsymbol{X}_t = (\boldsymbol{y}_{t-1}, \dots, \boldsymbol{y}_{t-P})$.

- ullet $oldsymbol{U_1}' oldsymbol{y_t}$: $oldsymbol{r_1}$ response factors
- $U_2'X_tU_3$: $r_2 \times r_3$ bilinear predictor factors.
- r_1 : response rank, r_2 : predictor rank and r_3 : temporal rank.

Connection with VARMA

• The VARMA(1,1) process

$$\boldsymbol{y}_t = \boldsymbol{\Psi} \boldsymbol{y}_{t-1} + \boldsymbol{\epsilon}_t - \boldsymbol{\Theta} \boldsymbol{\epsilon}_{t-1} \tag{3}$$

has the VAR(∞) form with $A_j = -\Theta^{j-1}(\Theta - \Psi)$ for $j \ge 1$:

$$y_t = \epsilon_t + A_1 y_{t-1} + A_2 y_{t-2} + A_3 y_{t-3} + \cdots$$
 (4)

Accordingly, we can define an $N imes N imes \infty$ tensor $\mathcal{A}_{\mathsf{VARMA}}.$

Proposition 1

Under regularity conditions, if $\operatorname{rank}(\Theta) = r$ and $\operatorname{rank}(\Psi) = s$, then $\mathcal{A}_{\text{VARMA}}$ has multilinear ranks at most (r+s, r+s, r+1).

- VAR(P) approximation is easier to implement but involves more parameters.
- Tucker decomposition reduces the dimensionality and alleviates the overparametrization.

Multilinear Low-Rank Estimator

• Denote $x_t = (y'_{t-1}, \dots, y'_{t-P})'$. Given Tucker ranks (r_1, r_2, r_3) , consider the multilinear low-rank (MLR) estimator

$$\begin{split} \widehat{\mathcal{A}}_{\text{MLR}} &\equiv \llbracket \widehat{\mathbf{G}}; \widehat{\boldsymbol{U}}_1, \widehat{\boldsymbol{U}}_2, \widehat{\boldsymbol{U}}_3 \rrbracket \\ &= \arg\min \sum_{t=1}^T \| \boldsymbol{y}_t - (\mathbf{G} \times_1 \boldsymbol{U}_1 \times_2 \boldsymbol{U}_2 \times_3 \boldsymbol{U}_3)_{(1)} \boldsymbol{x}_t \|_2^2. \end{split}$$

- Alternating least squares algorithm:
 - \circ Update \mathfrak{G} , U_1 , U_2 , U_3 alternatingly.
 - o Each step is an OLS problem.

Theorem 1 (Asymptotic Normality)

Under regularity conditions, if N and P are fixed, then as $T \to \infty$,

$$\sqrt{T}(\operatorname{vec}(\widehat{\mathcal{A}}_{\operatorname{MLR}}) - \operatorname{vec}(\mathcal{A})) \stackrel{d}{\to} N(0, \Sigma_{\operatorname{MLR}}).$$

Rank Selection

- We propose a ridge-type ratio estimator to determine (r_1, r_2, r_3) .
- Based on an initial estimator $\widehat{\mathcal{A}}$ (e.g., the OLS estimator or the nuclear norm estimator), we estimate (r_1, r_2, r_3) by

$$\widehat{r}_i = \mathop{\arg\min}_{1 \leq j \leq p_i - 1} \frac{\sigma_{j+1}(\widehat{\mathcal{A}}_{(i)}) + c}{\sigma_j(\widehat{\mathcal{A}}_{(i)}) + c}, \quad 1 \leq i \leq 3,$$

where $p_1 = p_2 = N$, $p_3 = P$, and c is a well-chosen parameter.

Theorem 2 (Rank Selection Consistency)

Under the conditions of Theorem 1, if c is chosen such that

$$T^{-1/2} \ll c \ll \sigma_{r_i}(\mathcal{A}_{(i)}) \cdot \min_{1 \leq j < r_i} \sigma_{j+1}(\mathcal{A}_{(i)}) / \sigma_j(\mathcal{A}_{(i)}), \text{ for } 1 \leq i \leq 3,$$

$$\mathbb{P}(\widehat{r}_1=r_1,\widehat{r}_2=r_2,\widehat{r}_3=r_3)\to 1, \ \text{ as } T\to\infty.$$

SHORR Estimator

ullet Sparsity in $oldsymbol{U}_i \Rightarrow$ variable selection in factor loadings

• Sparse Higher-Order Reduced Rank (SHORR) estimator:

$$\begin{split} \widehat{\mathcal{A}}_{\text{SHORR}} &\equiv \llbracket \widehat{\mathbf{G}}; \widehat{\boldsymbol{U}}_{1}, \widehat{\boldsymbol{U}}_{2}, \widehat{\boldsymbol{U}}_{3} \rrbracket \\ &= \arg \min \left\{ \frac{1}{T} \sum_{t=1}^{T} \| \boldsymbol{y}_{t} - (\boldsymbol{\mathcal{G}} \times_{1} \boldsymbol{U}_{1} \times_{2} \boldsymbol{U}_{2} \times_{3} \boldsymbol{U}_{3})_{(1)} \boldsymbol{x}_{t} \|^{2} + \lambda \| \boldsymbol{U}_{3} \otimes \boldsymbol{U}_{2} \otimes \boldsymbol{U}_{1} \|_{1} \right\} \end{split}$$

subject to $\mathfrak G$ is all-orthogonal and U_i is orthonormal, where $\|\cdot\|_1 = \|\mathrm{vec}(\cdot)\|_1$ for matrices.

• $\|m{U}_3 \otimes m{U}_2 \otimes m{U}_1\|_1$ induces sparsity for three factor matrices jointly.

SHORR Estimator

- We propose an alternating direction method of multipliers (ADMM) algorithm.
- Nonasymptotic error bounds:

Theorem 3 (Simplified by assuming (r_1, r_2, r_3) are fixed)

Under regularity conditions, if $\lambda \gtrsim \sqrt{\log(N^2P)/T}$ and $T \gtrsim \log(N^2P)$, then with high probability,

$$||\widehat{\mathcal{A}}_{SHORR} - \mathcal{A}||_F \lesssim \sqrt{s_1 s_2 s_3} \lambda,$$

$$\frac{1}{T} \sum_{t=1}^{T} \| (\widehat{\mathcal{A}}_{SHORR} - \mathcal{A})_{(1)} \boldsymbol{x}_t \|_2^2 \lesssim \tau^2 s_1 s_2 s_3 \lambda^2,$$

where s_i is the maximum number of nonzero entries in each column of U_i , for $1 \le i \le 3$.

• Estimation convergence rate is $\sqrt{s_1 s_2 s_3 \log(N^2 P)/T}$.

Comparison of Estimation Efficiency

Estimator	Structure	Estimation error rate
SHORR	low-rank & sparsity	$\sqrt{s_1 s_2 s_3 \log(N^2 P)/T}$
Lasso	sparsity	$\sqrt{\ \mathcal{A}\ _0 \log(N^2 P)/T}$
Nuclear	low-rank	$\sqrt{rNP/T}$

Introducing sparsity into the low-rank decomposition can improve the estimation efficiency.

Macroeconomic Forecasting

 A list of 40 major U.S. quarterly macroeconomic variables from Q1-1959 to Q4-2007, seasonally adjusted and transformed to be stationary. Eight categories:

- (1) GDP and its decomposition
- (3) industrial production
- (5) money, credit and interest rate
- (7) prices and wages

- (2) NAPM indices
- (4) housing
- (6) employment
- (8) others
- Apply VAR(4) model. Select $(r_1, r_2, r_3) = (4, 3, 2)$.
- Perform rolling forecast from Q4-2000 to Q4-2006. Forecast error:

Non-regularized methods				Regularized methods					
Criterion	OLS	RRR	DFM	MLR	SHORR	LASSO	RSSVD	NN	SOFAR
ℓ_2 norm	20.16	13.31	6.36	5.81	5.35	6.72	6.33	8.16	6.28
ℓ_∞ norm	8.32	4.55	2.85	2.56	2.44	3.06	3.02	3.36	3.02

 SHORR and MLR have impressive forecasting accuracy compared to competing methods.

Response factors $oldsymbol{U}_1$

- Almost all variables are selected.
- Each factor covers multiple categories of macroeconomic indices
- No group structure can be observed.

-0.195	0.195	0.008	
	0.465	0.023	0.001
	0.351		
-0.297			-0.034
-0.063	-0.172		
-0.298	-0.114		-0.076
		0.028	
-0.094	0.368	0.020	
	-0.059		0.413
-0.029	-0.207		0.425
-0.249			0.183
-0.320		-0.026	
	-0.109		0.473
-0.363			
-0.302			
-0.004	0.071	0.785	0.178
0.049	0.347	-0.424	0.459
-0.086			
-0.077			-0.035
0.097	0.107		
0.087			
	0.131		-0.162
-0.123			0.082
-0.016			
-0.126	-0.077	-0.383	-0.202
-0.269		0.132	0.046
-0.278			
0.002	0.346		-0.016
-0.228	0.120		
0.331			
	0.267	0.145	
-0.068			
			0.025
	0.005		0.018
	-0.037	-0.105	0.218
-0.076	-0.146		
		0.082	-0.082
	0.008		-0.106

GDP251		-0.310	0.155
GDP252			-0.012
GDP253			0.014
GDP256	-0.014	0.332	-0.118
GDP263			
GDP264			
GDP265			
GDP270			
PMCP	0.065		
PMDEL	0.172		
PMI	-0.021	-0.870	0.006
PMNO	0.761	-0.020	
PMNV			
PMP	-0.621		
IPS10			
UTL11		-0.007	0.849
HSFR		-0.196	-0.494
BUSLOANS			
CCINRV			
FM1			
FM2			
FMRNBA			
FMRRA			
FSPIN			
FYFF			
FYGT10			
SEYGT10	-0.069		
CES002			
LBMNU			
LBOUT			
LHEL			
LHUR			
CES275R			
CPIAUCSL			
GDP273			
GDP276			
PSCCOMR			
PWFSA			
EXRUS			
HHSNTN			

-0.310 0.155

GDP251

HSFR BUSLOA

CES2751 CPIAUCS

PSCCOM

GDP Decomposition
Decomposition
NAPM Indices
Industrial
Production
Housing
Money, Credit
Interest Rate
Employment
Prices and Wag
Others

Category

Predictor factors U_2

- Only 12 variables are selected, all but one from the first four categories.
- Activeness of production and investment serves as the driving force of the whole economy.

Response Factors

EXRUS Short Name

Predictor Factors

-0.6 Legend

0.8

0.4

0.2

٥

-0.2

-0.4

Topic 2: Low-Rank Tensor

Autoregression

Tensor-Value Time Series Data

- Tensor-valued time series can be found in many fields: economics, portfolio analysis, neuroscience, bioinformatics, computer vision, ...
- Denoted by $\{\mathcal{Y}_t, t=1,\ldots,T\}$, where $\mathcal{Y}_t \in \mathbb{R}^{p_1 \times \cdots \times p_d}$. When d=1, vector-valued time series $\{\boldsymbol{y}_t\}$. When d=2, matrix-valued time series $\{\boldsymbol{Y}_t\}$.

Figure 2: Observation at time t for (a) a 4×4 matrix-valued macroeconomic indicators time series $\{ \boldsymbol{Y}_t \}$ and (b) a $4 \times 4 \times 2$ tensor-valued stock portfolio returns time series $\{ \boldsymbol{\mathcal{Y}}_t \}$. OP: operating profitability; B/M: book-to-market.

How to model tensor-valued time series?

• Consider $y_t \in \mathbb{R}^{4 \times 4 \times 2}$ in Figure 1(b). A simple approach is the VAR:

$$\operatorname{vec}(\mathfrak{Y}_t) = A\operatorname{vec}(\mathfrak{Y}_{t-1}) + \operatorname{vec}(\mathfrak{E}_t), \tag{5}$$

where $A \in \mathbb{R}^{32 \times 32}$ is the unknown transition matrix. It can incorporate linear associations between every variable in \mathcal{Y}_t and that in \mathcal{Y}_{t-1} .

- Even with only one lag, # of parameters $=32^2=1024$. (curse of dimensionality)
- The vectorization will destroy the intrinsic multidimensional structural information of the observed tensors y_t . (lack of interpretability)

Multi-Mode Matricization

• For a fixed index set $S \subset \{1,2,\ldots,d\}$, the multi-mode matricization of $\mathfrak{X} \in \mathbb{R}^{p_1 \times \cdots \times p_d}$ is the matrix

$$\mathfrak{X}_{[S]} \in \mathbb{R}^{\prod_{i \in S} p_i \times \prod_{i \notin S} p_i},$$

with $\prod_{i \in S} p_i$ rows and $\prod_{i \notin S} p_i$ columns^a.

ullet One-mode matriciation: The mode-i matricization of \mathfrak{X} , $\mathfrak{X}_{(i)}$, is simply $\mathfrak{X}_{\lceil \{i\} \rceil}$.

$$\left(\mathfrak{X}_{[S]}\right)_{i,j} = \mathfrak{X}_{i_1,\ldots,i_d},$$

where $i=1+\sum_{k\in S}(i_k-1)I_k$ and $j=1+\sum_{k\notin S}(i_k-1)J_k$, with $I_k=\prod_{\ell\in S,\ell< k}p_\ell$, and $J_k=\prod_{\ell\notin S,\ell< k}p_\ell$.

^aSpecifically, its (i, j)-th entry is

Proposed Model: Low-Rank Tensor Autoregression (LRTAR)

We propose

$$y_t = \langle A, y_{t-1} \rangle + \mathcal{E}_t,$$

where

$$\mathbf{y}_t, \mathbf{\varepsilon}_t \in \mathbb{R}^{p_1 \times \cdots \times p_d},$$

and

$$\mathcal{A} \in \mathbb{R}^{p_1 \times \dots \times p_d \times p_1 \times \dots \times p_d}$$

is a 2d-th-order transition tensor with Tucker ranks (r_1, \ldots, r_{2d}) , i.e.,

$$r_i = \operatorname{rank}(\mathcal{A}_{(i)}), \quad i = 1, \dots, 2d.$$

Tucker Decomposition and Connection with VAR

- \mathcal{A} has the Tucker decomposition $\mathcal{A} = \mathcal{G} \times_{i=1}^{2d} U_i$, with core tensor $\mathcal{G} \in \mathbb{R}^{r_1 \times \cdots \times r_{2d}}$ and factor matrices $U_i \in \mathbb{R}^{p_i \times r_i}$, $1 \leq i \leq 2d$.
- Define index sets $S_1 = \{1, 2, \dots, d\}$ and $S_2 = \{d+1, d+2, \dots, 2d\}$. Then the LRTAR can be written in the VAR form:

$$\text{vec}(\boldsymbol{\mathcal{Y}}_t) = \overbrace{\left(\otimes_{i \in S_2} \boldsymbol{U}_i \right) \boldsymbol{\mathcal{G}}_{[S_2]} \left(\otimes_{i \in S_1} \boldsymbol{U}_i \right)^\top}^{\boldsymbol{\mathcal{A}}_{[S_2]}} \text{vec}(\boldsymbol{\mathcal{Y}}_{t-1}) + \text{vec}(\boldsymbol{\mathcal{E}}_t)$$

- The transition matrix is the multi-mode matricization of \mathcal{A} , $\mathcal{A}_{[S_2]} \in \mathbb{R}^{\prod_{i=1}^d p_i \times \prod_{i=1}^d p_i}$.
- # of parameters is reduced from $(\prod_{i=1}^d p_i)^2$ dramatically to

$$\prod_{i=1}^{2d} r_i + \sum_{i=1}^{d} r_i (p_i - r_i) + \sum_{i=1}^{d} r_{d+i} (p_i - r_{d+i}).$$

Dynamic Tensor Factors Interpretation

Figure 3: Low-dimensional dynamic factor structure when y_t is a third-order tensor.

ullet Consider the HOSVD: all U_i are orthonormal. Then the LRTAR implies a low-dimensional tensor regression:

$$\underbrace{\boldsymbol{\mathcal{Y}}_{t} \times_{i=d+1}^{2d} \boldsymbol{U}_{i}^{\top}}_{r_{d+1} \times r_{d+2} \times \cdots \times r_{2d}} = \left\langle \boldsymbol{\mathcal{G}}, \ \underbrace{\boldsymbol{\mathcal{Y}}_{t-1} \times_{i=1}^{d} \boldsymbol{U}_{i}^{\top}}_{r_{1} \times r_{2} \times \cdots \times r_{d}} \right\rangle + \boldsymbol{\mathcal{E}}_{t} \times_{i=d+1}^{2d} \boldsymbol{U}_{i}^{\top},$$

- $\mathcal{Y}_t \times_{i=d+1}^{2d} U_i^{\top}$: $r_{d+1} \times r_{d+2} \times \cdots \times r_{2d}$ response factors
- $\mathcal{Y}_{t-1} \times_{i=1}^{d} U_i^{\top}$: $r_1 \times r_2 \times \cdots \times r_d$ predictor factors

Regularization via Square Matricizations

• \mathcal{A} is a $p_1 \times \cdots \times p_d \times p_1 \times \cdots \times p_d$ tensor. The multi-mode matricization $\mathcal{A}_{[I]}$ will be a $\prod_{i=1}^d p_i \times \prod_{i=1}^d p_i$ square matrix if the index set is

$$I = \{\ell_1, \dots, \ell_d\}, \text{ where } \ell_i \in \{i, d+i\} \text{ for } i = 1, \dots, d.$$

- There are totally 2^d square matricizations of \mathcal{A} , denoted by $\mathcal{A}_{[I_k]}$ with $1 \leq k \leq 2^d$. Note that $\operatorname{rank}(\mathcal{A}_{[I_k]}) \leq \min(\prod_{i=1,i \in I_k}^{2d} r_i, \prod_{i=1,i \notin I_k}^{2d} r_i)$.
- To simultaneously encourage low-rankness across all square matricizations, and hence across all modes, we propose a novel regularizer based on the Sum of Square-matrix Nuclear (SSN) norm:

$$\|\mathcal{A}\|_{\mathrm{SSN}} = \sum_{k=1}^{2^d} \left\|\mathcal{A}_{[I_k]}\right\|_*,$$

where $\|X\|_* = \sum_j \sigma_j(X)$ is the nuclear norm, with $\sigma_j(X)$ being the j-th largest singular value of X.

SSN Norm Regularized Estimator

We propose the SSN norm regularized estimator

$$\widehat{\mathcal{A}}_{\mathsf{SSN}} = \mathop{\arg\min}_{\mathcal{A}} \left\{ \frac{1}{T} \sum_{t=1}^{T} \| \mathcal{Y}_t - \langle \mathcal{A}, \mathcal{Y}_{t-1} \rangle \|_{\mathsf{F}}^2 + \lambda_{\mathsf{SSN}} \| \mathcal{A} \|_{\mathsf{SSN}} \right\}.$$

Theorem 4

Under regularity conditions, if $\lambda_{\rm SSN}\gtrsim 2^{-d}\sqrt{p/T}$, and $T\gtrsim p$, then with high probability,

$$\begin{split} &\|\widehat{\mathcal{A}}_{\mathsf{SSN}} - \mathcal{A}\|_{\mathsf{F}} \lesssim \sqrt{s}(2^d \lambda_{\mathsf{SSN}}), \\ &T^{-1} \sum_{t=1}^T \|\langle \widehat{\mathcal{A}}_{\mathsf{SSN}} - \mathcal{A}, \mathcal{Y}_{t-1} \rangle\|_{\mathsf{F}}^2 \lesssim C s (2^d \lambda_{\mathsf{SSN}})^2, \end{split}$$

where $p=\prod_{i=1}^d p_i$ and $\sqrt{s}=2^{-d}\sum_{k=1}^{2^d}\sqrt{2s_k}$, with $s_k=\operatorname{rank}(\mathcal{A}_{[I_k]})$.

• Estimation convergence rate is $2^{-d} \sum_{k=1}^{2^d} \sqrt{s_k p/T}$.

Comparison of Estimation Efficiency

• We also considered the Sum of Nuclear (SN) norm (Gandy et al., 2011):

$$\begin{split} \|\mathcal{A}\|_{\mathsf{SN}} &= \sum_{i=1}^{2a} \|\mathcal{A}_{(i)}\|_*, \\ \widehat{\mathcal{A}}_{\mathsf{SN}} &= \operatorname*{arg\,min}_{\mathcal{A}} \left\{ \frac{1}{T} \sum_{t=1}^{T} \|\mathcal{Y}_t - \langle \mathcal{A}, \mathcal{Y}_{t-1} \rangle \|_{\mathsf{F}}^2 + \lambda_{\mathsf{SN}} \|\mathcal{A}\|_{\mathsf{SN}} \right\}, \end{split}$$

This is based on the one-mode matricizations.

• The square matricization leads to greater estimation efficiency:

Regularizer	Matricization	Estimation error rate
SN	one-mode	$d^{-1} \sum_{i=1}^{d} \sqrt{r_{\mathbf{p}_{-i}} p/T}$
SSN	square	$2^{-d} \sum_{k=1}^{2^d} \sqrt{s_k p/T}$

$$p = \prod_{i=1}^{d} p_i, \ p_{-i} = \prod_{j=1, j \neq i}^{d} p_j$$

$$\circ \sqrt{r} = (2d)^{-1} \sum_{i=1}^{2d} \sqrt{2r_i}, \ r_i = \operatorname{rank}(\mathcal{A}_{(i)}^*), \ \operatorname{and} \ s_k = \operatorname{rank}(\mathcal{A}_{[I_k]}^*) \ \operatorname{are}$$
 fixed if (r_1, \ldots, r_{2d}) are fixed.

Rank Selection

- The optimization is convex yet the regularizer involves multiple nuclear norms. We propose an ADMM algorithm.
- $\widehat{\mathcal{A}}_{SSN}$ does not guarantee consistent estimation of the ranks. To this end, we further apply a truncation method:
 - \circ Truncated SVD for each $(\widehat{\mathcal{A}}_{\mathsf{SSN}})_{(i)}$: Retain only singular values exceeding a well-chosen threshold $\gamma>0$. Obtain the truncated factor matrices, \widetilde{U}_i , $1\leq i\leq 2d$.
 - \circ The truncated core tensor is $\widetilde{\mathfrak{G}} = \widehat{\mathcal{A}}_{\mathsf{SSN}} imes_{i=1}^{2d} \widetilde{\boldsymbol{U}}_i^{ op}$.

The truncated SSN (TSSN) estimator is

$$\widehat{\mathcal{A}}_{\mathrm{TSSN}} = \widetilde{\mathbf{G}} \times_{i=1}^{2d} \widetilde{\boldsymbol{U}}_i.$$

- The rank selection is consistent if $\sqrt{s^*p/T} \ll \gamma \lesssim \min_{1 \leq i \leq 2d} \sigma_{r_i} \left(\mathcal{A}_{(i)}\right)$.
- $\widehat{\mathcal{A}}_{\mathsf{TSSN}}$ achieves the same asymptotic error rate as $\widehat{\mathcal{A}}_{\mathsf{SSN}}.$

Portfolio Returns Forecasting

- Monthly market-adjusted portfolio return series from July 1963 to Dec. 2019. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
- The portfolios are constructed as the intersections of different levels of
 - size: small and big
 - ∘ book-to-market (B/M) ratio: from lowest to highest
 - o operating profitability (OP): from lowest to highest
 - Investment (Inv): from lowest to highest
- ullet The first dataset: $4 \times 4 \times 2$ portfolios formed by OP, B/M ratio, and size.
- \bullet The second dataset: $4\times4\times2$ portfolios formed by Inv, B/M ratio, and size.

Models for $4 \times 4 \times 2$ time series

- ullet Vector autoregression (VAR): $oldsymbol{y}_t = oldsymbol{A} oldsymbol{y}_{t-1} + oldsymbol{e}_t$, where $oldsymbol{A} \in \mathbb{R}^{32 imes 32}$.
- Vector factor model (VFM): $\boldsymbol{y}_t = \boldsymbol{\Lambda} \boldsymbol{f}_t + \boldsymbol{e}_t$, where \boldsymbol{f}_t is the low-dimensional vector-valued latent factor, and $\boldsymbol{\Lambda}$ is the loading matrix.
- Multilinear tensor autoregression (MTAR): $\mathcal{Y}_t = \mathcal{Y}_{t-1} \times_{i=1}^3 B_i + \mathcal{E}_t$, where $B_1, B_2 \in \mathbb{R}^{4 \times 4}$ and $B_3 \in \mathbb{R}^{2 \times 2}$ are coefficient matrices.
- Tensor factor model (TFM): $\mathcal{Y}_t = \mathcal{F}_t \times_{i=1}^3 U_i + \mathcal{E}_t$, where \mathcal{F}_t is the low-dimensional tensor-valued latent factor, and U_i 's are the loading matrices; see Chen et al. (2022). For prediction, the estimated factors $\widehat{\mathcal{F}}_t$ are then fitted by a VAR(1) model.
- ullet Proposed LRTAR: $eta_t = \langle \mathcal{A}, eta_{t-1}
 angle + eta_t$, with $\mathcal{A} = eta imes_{i=1}^6 U_i$.

Results for $4 \times 4 \times 2$ time series

	Model	VAR	VFM	MTAR	TFM	LRTAR		Roct	Worst
	Model					SSN	TSSN	Dest	VVOISE
OP-BM-Size $4 \times 4 \times 2$ series									
In-sample	ℓ_2 norm	19.53	20.08	19.89	20.09	19.69	19.70	VAR	TFM
	ℓ_0 norm	7.67	7.91	7.85	7.92	7.76	7.77	VAR	TFM
Out-of-sample	ℓ_2 norm	22.27	20.17	20.50	20.11	20.32	19.95	TSSN	VAR
	$\ell_\infty \text{ norm}$	10.38	10.04	9.86	10.03	9.29	9.35	SSN	VAR
Inv-BM-Size $4 \times 4 \times 2$ series									
In-sample	ℓ_2 norm	16.80	17.10	17.05	17.11	16.86	16.88	VAR	TFM
	ℓ_0 norm	6.25	6.40	6.38	6.41	6.31	6.32	VAR	TFM
Out-of-sample	ℓ_2 norm	18.70	17.70	16.89	17.67	16.11	16.29	SSN	VAR
	$\ell_\infty \text{ norm}$	7.42	7.37	6.79	7.33	6.62	6.43	TSSN	VAR

Table 1: Average in-sample forecasting error and out-of-sample rolling forecasting error for $4 \times 4 \times 2$ tensor-valued portfolio return series. The best cases are marked in **bold**.

Results for $4 \times 4 \times 2$ time series

Figure 4: TSSN estimates of predictor and response factor matrices for $4\times4\times2$ tensor-valued portfolio return series. From left to right: $\tilde{\boldsymbol{U}}_1, \tilde{\boldsymbol{U}}_2, \tilde{\boldsymbol{U}}_3, \tilde{\boldsymbol{U}}_4, \tilde{\boldsymbol{U}}_5$ and $\tilde{\boldsymbol{U}}_6$.

Conclusion

Conclusion

- In both topics, we leveraged the tensor decomposition for dimensionality reduction of high-dimensional time series models.
- Besides achieving greater estimation efficiency and forecast accuracy, the resulting models admit intepretable dynamic factor structures that enable the extraction of meaningful insights from massive data.
- In topic 1, we developed a new high-dimensional vector autoregressive model
 the Multilinear Low-Rank VAR, and further considered imposing sparsity on the factor matrices for automatic variable selection in factor loadings.
- In topic 2, we developed a novel high-dimensional tensor autoregressive model - the Low-Rank TAR, which is one of the first endeavors of statistical modeling for tensor-valued time series data.

Thank you!

References

Topic 1:

Wang, D., Zheng, Y., Lian, H., and Li, G. (2021b). High-dimensional vector autoregressive time series modeling via tensor decomposition. *Journal of the American Statistical Association*. To appear.

Topic 2:

Wang, D., Zheng, Y., and Li, G. (2021a). High-dimensional low-rank tensor autoregressive time series modelling. arXiv preprint arXiv:2101.04276.

Chen, R., Yang, D., and Zhang, C.-H. (2022). Factor models for high-dimensional tensor time series. Journal of the American Statistical Association, 117:94-116.

Gandy, S., Recht, B., and Yamada, I. (2011). Tensor completion and low-n-rank tensor

recovery via convex optimization. Inverse Problems, 27:025010.