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Introduction



High Dimensional Time Series

Big data is everywhere, and many big datasets are temporally dependent.

Needs for high-dimensional time series models:

 Economics: forecast with many predictors and understand causal

relationships

 Finance: build large scale systemic risk models

 Functional Genomics: reconstruct gene regulatory networks based on limited

experimental data

 Neuroscience: build detailed connectivity maps on temporal data exhibiting

multiple structural changes
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Vector AutoRegression

 VAR is a fundamental model for multivariate time series analysis.

 VAR with N variables, lag order P , and time length T :

yt =

P∑
j=1

Ajyt−j + εt, yt = (y1t, y2t, . . . , yNt)
′, t = 1, . . . , T.

 This is called a VAR(P ) model.

 Curse of dimensionality (N2P � T ) even when the dimension N is

moderately large.
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Topic 1: High-Dimensional

Vector Autoregression via

Tensor Decomposition



Motivation: Large Lag Order

 Compared with VAR, the vector autoregressive moving average (VARMA)

model usually performs better in practice since it provides a more flexible

autocorrelation structure.

 However, VARMA has a serious identification problem when N ≥ 2.

(Estimation is unstable since the objective function involves a high-order

polynomial.)

 It is common to employ a VAR(P ) model to approximate the VARMA

process, and the lag order P may be very large to provide a better fit.

 As T →∞, we need P →∞ and PT−1/3 → 0.

 Curse of dimensionality
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Low-Dimensional Structures in VAR

 Sparse VAR model (Lasso, Dantzig selector, SCAD, etc.)

Basu and Michailidis (2015); Han et al. (2015); Wu and Wu (2016)

 Reduced-rank VAR model (SVD, nuclear norm)

Velu et al. (1986); Negahban and Wainwright (2011); Chen et al. (2013)

Constraint on column space of [A1,A2, . . . ,AP ].
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VAR in Tensor Form

We propose to rearrange the transition matrices into a tensor

A1 A2 A3 AP· · ·
A1

AP. .
.

. .
.

tensorization

matricization

and consider dimensionality reduction in three different directions:

 column-wise [A1,A2, . . . ,AP ] (reduced-rank model)

 row-wise [A′1,A
′
2, . . . ,A

′
P ] (autoregressive index model)

 temporal [vec(A1), vec(A2), . . . , vec(AP )] (new temporal structure)
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Vector, Matrix and Tensor

Tensors are higher-order extensions of matrices.

 1st-order tensors are vectors (a)

 2nd-order tensors are matrices (A)

 higher-order tensors (A)

Figure 1: 5× 5× 5 tensor. This is a third-order tensor.
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Matricization and Tucker Ranks of a Tensor

Consider A ∈ Rp1×p2×p3 . For i = 1, 2, 3, its mode-i matricization A(i) is

p2

p1

p3

p1

p2

p3

p1

p3

p2

p1

p2

p3

p3

p1

p2

p1

p2

p3

A(1) ∈
p1×                 p2 p3

p2× p1 p3

R

A(2) ∈ R

A(3) ∈ R
p3× p1 p2

A

A

A

Let ri = rank(A(i)) be the matrix rank of A(i). (r1, r2, r3) are analogous to

column and row ranks of a matrix, but they are not always equal.
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Tucker Decomposition

 For a tensor X ∈ Rp1×p2×p3 , the Tucker decomposition is

X = G×1 A×2 B ×3 C ≡ [[G;A,B,C]]

where G is a r1 × r2 × r3 core tensor, A is a p1 × r1 matrix, B is a p2 × r2
matrix, and C is a p3 × r3 matrix.

= GA B

C

 Higher-order SVD: G is all-orthogonal; A, B and C are orthonormal

 (r1, r2, r3): Tucker ranks or multilinear ranks.
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Proposed Model: Multilinear Low-Rank VAR

 For a VAR(P ) model, we stack A1, . . . ,AP into an N ×N × P tensor A,

where

A = G×1 U1 ×2 U2 ×3 U3.

A1 A2 A3 AP· · ·
A1

AP. .
.

. .
.

tensorization

matricization

 If (r1, r2, r3)� (N,N,P ),

# of parameters = r1r2r3 + r1(N − r1) + r2(N − r2) + r3(P − r3).

 The reduced-rank model is a special case of multilinear low-rank model with

ranks (r,N, P ).
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Connection with the factor model

 Factor model:

yt = Λf t + ξt, (1)

where f t is a set of latent factor with dimension r � N , Λ is an N -by-r

factor loading matrix, and ξt is the noise series.

 Estimated factor: f̂ t = Λ̂
′
yt.

 Supervised factor interpretation: since U i is orthonormal

U1
′yt = G(1)vec(U2

′XtU3) +U1
′εt, (2)

where Xt = (yt−1, . . . ,yt−P ).

 U1
′yt: r1 response factors

 U2
′XtU3: r2 × r3 bilinear predictor factors.

 r1: response rank, r2: predictor rank and r3: temporal rank.
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Connection with VARMA

 The VARMA(1,1) process

yt = Ψyt−1 + εt −Θεt−1 (3)

has the VAR(∞) form with Aj = −Θj−1(Θ−Ψ) for j ≥ 1:

yt = εt +A1yt−1 +A2yt−2 +A3yt−3 + · · · . (4)

Accordingly, we can define an N ×N ×∞ tensor AVARMA.

Proposition 1

Under regularity conditions, if rank(Θ) = r and rank(Ψ) = s, then AVARMA has

multilinear ranks at most (r + s, r + s, r + 1).

 VAR(P ) approximation is easier to implement but involves more parameters.

 Tucker decomposition reduces the dimensionality and alleviates the

overparametrization.
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Multilinear Low-Rank Estimator

 Denote xt = (y′t−1, . . . ,y
′
t−P )

′. Given Tucker ranks (r1, r2, r3), consider the

multilinear low-rank (MLR) estimator

ÂMLR ≡ [[Ĝ; Û1, Û2, Û3]]

= argmin

T∑
t=1

‖yt − (G×1 U1 ×2 U2 ×3 U3)(1)xt‖22.

 Alternating least squares algorithm:

◦ Update G, U1, U2, U3 alternatingly.

◦ Each step is an OLS problem.

Theorem 1 (Asymptotic Normality)

Under regularity conditions, if N and P are fixed, then as T →∞,

√
T (vec(ÂMLR)− vec(A))

d→ N(0,ΣMLR).

13 / 35



Rank Selection

 We propose a ridge-type ratio estimator to determine (r1, r2, r3).

 Based on an initial estimator Â (e.g., the OLS estimator or the nuclear norm

estimator), we estimate (r1, r2, r3) by

r̂i = argmin
1≤j≤pi−1

σj+1(Â(i)) + c

σj(Â(i)) + c
, 1 ≤ i ≤ 3,

where p1 = p2 = N , p3 = P , and c is a well-chosen parameter.

Theorem 2 (Rank Selection Consistency)

Under the conditions of Theorem 1, if c is chosen such that

T−1/2 � c� σri(A(i)) ·min1≤j<ri σj+1(A(i))/σj(A(i)), for 1 ≤ i ≤ 3,

P(r̂1 = r1, r̂2 = r2, r̂3 = r3)→ 1, as T →∞.
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SHORR Estimator

 Sparsity in U i ⇒ variable selection in factor loadings

 Sparse Higher-Order Reduced Rank (SHORR) estimator:

ÂSHORR ≡ [[Ĝ; Û1, Û2, Û3]]

= argmin

{
1

T

T∑
t=1

‖yt − (G×1 U1 ×2 U2 ×3 U3)(1)xt‖2 + λ‖U3 ⊗U2 ⊗U1‖1

}

subject to G is all-orthogonal and U i is orthonormal, where

‖ · ‖1 = ‖vec(·)‖1 for matrices.

 ‖U3 ⊗U2 ⊗U1‖1 induces sparsity for three factor matrices jointly.
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SHORR Estimator

 We propose an alternating direction method of multipliers (ADMM)

algorithm.

 Nonasymptotic error bounds:

Theorem 3 (Simplified by assuming (r1, r2, r3) are fixed)

Under regularity conditions, if λ &
√

log(N2P )/T and T & log(N2P ), then

with high probability,

||ÂSHORR −A||F .
√
s1s2s3λ,

1

T

T∑
t=1

‖(ÂSHORR −A)(1)xt‖22 . τ2s1s2s3λ
2,

where si is the maximum number of nonzero entries in each column of U i, for

1 ≤ i ≤ 3.

 Estimation convergence rate is
√
s1s2s3 log(N2P )/T .
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Comparison of Estimation Efficiency

Estimator Structure Estimation error rate

SHORR low-rank & sparsity
√
s1s2s3 log(N2P )/T

Lasso sparsity
√
‖A‖0 log(N2P )/T

Nuclear low-rank
√
rNP/T

Introducing sparsity into the low-rank decomposition can improve the estimation

efficiency.

17 / 35



Macroeconomic Forecasting

 A list of 40 major U.S. quarterly macroeconomic variables from Q1-1959 to

Q4-2007, seasonally adjusted and transformed to be stationary. Eight

categories:

(1) GDP and its decomposition (2) NAPM indices

(3) industrial production (4) housing

(5) money, credit and interest rate (6) employment

(7) prices and wages (8) others

 Apply VAR(4) model. Select (r1, r2, r3) = (4, 3, 2).

 Perform rolling forecast from Q4-2000 to Q4-2006. Forecast error:

Non-regularized methods Regularized methods

Criterion OLS RRR DFM MLR SHORR LASSO RSSVD NN SOFAR

`2 norm 20.16 13.31 6.36 5.81 5.35 6.72 6.33 8.16 6.28

`∞ norm 8.32 4.55 2.85 2.56 2.44 3.06 3.02 3.36 3.02

 SHORR and MLR have impressive forecasting accuracy compared to

competing methods.
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Response factors U1

 Almost all

variables are

selected.

 Each factor

covers multiple

categories of

macroeconomic

indices.

 No group

structure can be

observed.

-0.195 0.195 0.008 GDP251 -0.310 0.155
0.465 0.023 0.001 GDP252 -0.012
0.351 GDP253 0.014
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0.028 GDP265
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Short Name LegendResponse Factors Predictor Factors

GDP 
Decomposition

NAPM Indices

Industrial 
Production

Housing

Money, Credit, 
Interest Rate

Employment

Prices and Wages

Others

Predictor factors U2

 Only 12

variables are

selected, all but

one from the

first four

categories.

 Activeness of

production and

investment

serves as the

driving force of

the whole

economy.
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Topic 2: Low-Rank Tensor

Autoregression



Tensor-Value Time Series Data

 Tensor-valued time series can be found in many fields: economics, portfolio

analysis, neuroscience, bioinformatics, computer vision, ...

 Denoted by {Yt, t = 1, . . . , T}, where Yt ∈ Rp1×···×pd . When d = 1,

vector-valued time series {yt}. When d = 2, matrix-valued time series {Y t}.
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(a) Matrix-valued Y t ∈ R4×4 (b) Tensor-valued Yt ∈ R4×4×2

Figure 2: Observation at time t for (a) a 4× 4 matrix-valued macroeconomic

indicators time series {Y t} and (b) a 4× 4× 2 tensor-valued stock portfolio returns

time series {Yt}. OP: operating profitability; B/M: book-to-market.
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How to model tensor-valued time series?

 Consider Yt ∈ R4×4×2 in Figure 1(b). A simple approach is the VAR:

vec(Yt) = Avec(Yt−1) + vec(Et), (5)

where A ∈ R32×32 is the unknown transition matrix. It can incorporate linear

associations between every variable in Yt and that in Yt−1.

 Even with only one lag, # of parameters = 322 = 1024. (curse of

dimensionality)

 The vectorization will destroy the intrinsic multidimensional structural

information of the observed tensors Yt. (lack of interpretability)
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Multi-Mode Matricization

 For a fixed index set S ⊂ {1, 2, . . . , d}, the multi-mode matricization of

X ∈ Rp1×···×pd is the matrix

X[S] ∈ R
∏

i∈S pi×
∏

i/∈S pi ,

with
∏

i∈S pi rows and
∏

i/∈S pi columnsa.

 One-mode matriciation: The mode-i matricization of X, X(i), is simply

X[{i}].

aSpecifically, its (i, j)-th entry is (
X[S]

)
i,j

= Xi1,...,id ,

where i = 1 +
∑

k∈S(ik − 1)Ik and j = 1 +
∑

k/∈S(ik − 1)Jk, with Ik =
∏

`∈S,`<k p`,

and Jk =
∏

`/∈S,`<k p`.
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Proposed Model: Low-Rank Tensor Autoregression (LRTAR)

We propose

Yt = 〈A,Yt−1〉+ Et,

where

Yt,Et ∈ Rp1×···×pd ,

and

A ∈ Rp1×···×pd×p1×···×pd

is a 2d-th-order transition tensor with Tucker ranks (r1, . . . , r2d), i.e.,

ri = rank(A(i)), i = 1, . . . , 2d.
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Tucker Decomposition and Connection with VAR

 A has the Tucker decomposition A = G×2d
i=1 U i, with core tensor

G ∈ Rr1×···×r2d and factor matrices U i ∈ Rpi×ri , 1 ≤ i ≤ 2d.

 Define index sets S1 = {1, 2, . . . , d} and S2 = {d+ 1, d+ 2, . . . , 2d}. Then

the LRTAR can be written in the VAR form:

vec(Yt) =

A[S2]︷ ︸︸ ︷
(⊗i∈S2U i)G[S2](⊗i∈S1U i)

> vec(Yt−1) + vec(Et)

 The transition matrix is the multi-mode matricization of A,

A[S2] ∈ R
∏d

i=1 pi×
∏d

i=1 pi .

 # of parameters is reduced from (
∏d

i=1 pi)
2 dramatically to

2d∏
i=1

ri +

d∑
i=1

ri(pi − ri) +
d∑

i=1

rd+i(pi − rd+i).
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Dynamic Tensor Factors Interpretation

= +

Figure 3: Low-dimensional dynamic factor structure when Yt is a third-order tensor.

 Consider the HOSVD: all U i are orthonormal. Then the LRTAR implies a

low-dimensional tensor regression:

Yt ×2d
i=d+1 U

>
i︸ ︷︷ ︸

rd+1×rd+2×···×r2d

=
〈
G, Yt−1 ×d

i=1 U
>
i︸ ︷︷ ︸

r1×r2×···×rd

〉
+ Et ×2d

i=d+1 U
>
i ,

 Yt×2d
i=d+1U

>
i : rd+1 × rd+2 × · · · × r2d response factors

 Yt−1×d
i=1U

>
i : r1 × r2 × · · · × rd predictor factors
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Regularization via Square Matricizations

 A is a p1 × · · · × pd × p1 × · · · × pd tensor. The multi-mode matricization

A[I] will be a
∏d

i=1 pi ×
∏d

i=1 pi square matrix if the index set is

I = {`1, . . . , `d}, where `i ∈ {i, d+ i} for i = 1, . . . , d.

 There are totally 2d square matricizations of A, denoted by A[Ik] with

1 ≤ k ≤ 2d. Note that rank(A[Ik]) ≤ min(
∏2d

i=1,i∈Ik
ri,
∏2d

i=1,i/∈Ik
ri).

 To simultaneously encourage low-rankness across all square matricizations,

and hence across all modes, we propose a novel regularizer based on the

Sum of Square-matrix Nuclear (SSN) norm:

‖A‖SSN =
2d∑
k=1

∥∥A[Ik]

∥∥
∗ ,

where ‖X‖∗ =
∑

j σj(X) is the nuclear norm, with σj(X) being the j-th

largest singular value of X.
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SSN Norm Regularized Estimator

 We propose the SSN norm regularized estimator

ÂSSN = argmin
A

{
1

T

T∑
t=1

‖Yt − 〈A,Yt−1〉‖2F + λSSN‖A‖SSN

}
.

Theorem 4

Under regularity conditions, if λSSN & 2−d
√
p/T , and T & p, then with high

probability,

‖ÂSSN −A‖F .
√
s(2dλSSN),

T−1
T∑

t=1

‖〈ÂSSN −A,Yt−1〉‖2F . Cs(2dλSSN)
2,

where p =
∏d

i=1 pi and
√
s = 2−d∑2d

k=1

√
2sk, with sk = rank(A[Ik]).

 Estimation convergence rate is 2−d∑2d

k=1

√
skp/T .
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Comparison of Estimation Efficiency

 We also considered the Sum of Nuclear (SN) norm (Gandy et al., 2011):

‖A‖SN =
2d∑
i=1

‖A(i)‖∗,

ÂSN = argmin
A

{
1

T

T∑
t=1

‖Yt − 〈A,Yt−1〉‖2F + λSN‖A‖SN

}
,

This is based on the one-mode matricizations.

 The square matricization leads to greater estimation efficiency:

Regularizer Matricization Estimation error rate

SN one-mode d−1∑d
i=1

√
rp−ip/T

SSN square 2−d∑2d

k=1

√
skp/T

◦ p =
∏d

i=1 pi, p−i =
∏d

j=1,j 6=i pj
◦ √r = (2d)−1∑2d

i=1

√
2ri, ri = rank(A∗(i)), and sk = rank(A∗[Ik]) are

fixed if (r1, . . . , r2d) are fixed.
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Rank Selection

 The optimization is convex yet the regularizer involves multiple nuclear

norms. We propose an ADMM algorithm.

 ÂSSN does not guarantee consistent estimation of the ranks. To this end, we

further apply a truncation method:

◦ Truncated SVD for each (ÂSSN)(i): Retain only singular values

exceeding a well-chosen threshold γ > 0. Obtain the truncated factor

matrices, Ũ i, 1 ≤ i ≤ 2d.

◦ The truncated core tensor is G̃ = ÂSSN ×2d
i=1 Ũ

>
i .

The truncated SSN (TSSN) estimator is

ÂTSSN = G̃×2d
i=1 Ũ i.

 The rank selection is consistent if
√
s∗p/T � γ . min1≤i≤2d σri

(
A(i)

)
.

 ÂTSSN achieves the same asymptotic error rate as ÂSSN.
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Portfolio Returns Forecasting

 Monthly market-adjusted portfolio return series from July 1963 to Dec. 2019.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

 The portfolios are constructed as the intersections of different levels of

◦ size: small and big

◦ book-to-market (B/M) ratio: from lowest to highest

◦ operating profitability (OP): from lowest to highest

◦ Investment (Inv): from lowest to highest

 The first dataset: 4× 4× 2 portfolios formed by OP, B/M ratio, and size.

 The second dataset: 4× 4× 2 portfolios formed by Inv, B/M ratio, and size.
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Models for 4× 4× 2 time series

 Vector autoregression (VAR): yt = Ayt−1 + et, where A ∈ R32×32.

 Vector factor model (VFM): yt = Λf t + et, where f t is the low-dimensional

vector-valued latent factor, and Λ is the loading matrix.

 Multilinear tensor autoregression (MTAR): Yt = Yt−1 ×3
i=1 Bi + Et, where

B1,B2 ∈ R4×4 and B3 ∈ R2×2 are coefficient matrices.

 Tensor factor model (TFM): Yt = Ft ×3
i=1 U i + Et, where Ft is the

low-dimensional tensor-valued latent factor, and U i’s are the loading

matrices; see Chen et al. (2022). For prediction, the estimated factors F̂t are

then fitted by a VAR(1) model.

 Proposed LRTAR: Yt = 〈A,Yt−1〉+ Et, with A = G×6
i=1 U i.
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Results for 4× 4× 2 time series

Model VAR VFM MTAR TFM
LRTAR

Best Worst
SSN TSSN

OP-BM-Size 4× 4× 2 series

In-sample
`2 norm 19.53 20.08 19.89 20.09 19.69 19.70 VAR TFM

`0 norm 7.67 7.91 7.85 7.92 7.76 7.77 VAR TFM

Out-of-sample
`2 norm 22.27 20.17 20.50 20.11 20.32 19.95 TSSN VAR

`∞ norm 10.38 10.04 9.86 10.03 9.29 9.35 SSN VAR

Inv-BM-Size 4× 4× 2 series

In-sample
`2 norm 16.80 17.10 17.05 17.11 16.86 16.88 VAR TFM

`0 norm 6.25 6.40 6.38 6.41 6.31 6.32 VAR TFM

Out-of-sample
`2 norm 18.70 17.70 16.89 17.67 16.11 16.29 SSN VAR

`∞ norm 7.42 7.37 6.79 7.33 6.62 6.43 TSSN VAR

Table 1: Average in-sample forecasting error and out-of-sample rolling forecasting

error for 4× 4× 2 tensor-valued portfolio return series. The best cases are marked

in bold.
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Results for 4× 4× 2 time series
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Figure 4: TSSN estimates of predictor and response factor matrices for 4× 4× 2

tensor-valued portfolio return series. From left to right: Ũ1, Ũ2, Ũ3, Ũ4, Ũ5 and

Ũ6.
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Conclusion



Conclusion

 In both topics, we leveraged the tensor decomposition for dimensionality

reduction of high-dimensional time series models.

 Besides achieving greater estimation efficiency and forecast accuracy, the

resulting models admit intepretable dynamic factor structures that enable the

extraction of meaningful insights from massive data.

 In topic 1, we developed a new high-dimensional vector autoregressive model

- the Multilinear Low-Rank VAR, and further considered imposing sparsity on

the factor matrices for automatic variable selection in factor loadings.

 In topic 2, we developed a novel high-dimensional tensor autoregressive

model - the Low-Rank TAR, which is one of the first endeavors of statistical

modeling for tensor-valued time series data.
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Thank you!
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