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Introduction



gh Dimensional Time Series

Big data is everywhere, and many big datasets are temporally dependent.

Needs for high-dimensional time series models:

Economics: forecast with many predictors and understand causal

relationships
Finance: build large scale systemic risk models

Functional Genomics: reconstruct gene regulatory networks based on limited
experimental data

Neuroscience: build detailed connectivity maps on temporal data exhibiting
multiple structural changes
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Vector AutoRegression

® VAR is a fundamental model for multivariate time series analysis.

® VAR with N variables, lag order P, and time length 7"

P
Yy = ZAjyt—j + €, Yy = (ylt7y2t7"'7yNt)/7 t= ]7"'aT'

j=1

= + +oeet +

® This is called a VAR(P) model.

® Curse of dimensionality (NP >> T') even when the dimension N is
moderately large.
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Topic 1: High-Dimensional
Vector Autoregression via

Tensor Decomposition



Motivatio

® Compared with VAR, the vector autoregressive moving average (VARMA)
model usually performs better in practice since it provides a more flexible

autocorrelation structure.

® However, VARMA has a serious identification problem when N > 2.
(Estimation is unstable since the objective function involves a high-order
polynomial.)

® |t is common to employ a VAR(P) model to approximate the VARMA
process, and the lag order P may be very large to provide a better fit.
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® As T — oo, we need P — oo and PT~ — 0.

® Curse of dimensionality
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Low-Dimensional Structures in VAR

® Sparse VAR model (Lasso, Dantzig selector, SCAD, etc.)

= + +tooet +

Basu and Michailidis (2015); Han et al. (2015); Wu and Wu (2016)

® Reduced-rank VAR model (SVD, nuclear norm)

NSl

Velu et al. (1986); Negahban and Wainwright (2011); Chen et al. (2013)
Constraint on column space of [A1, Aa,..., Ap].
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VAR Tensor Form

We propose to rearrange the transition matrices into a tensor

o Ap
tensorization
A, Ao As -.-| Ap —
matricization A
and consider dimensionality reduction in three different directions:
® column-wise [A1, As, ..., Ap] (reduced-rank model)
® row-wise [A], A5, ..., A} (autoregressive index model)
® temporal [vec(A1),vec(Az),...,vec(Ap)] (new temporal structure)
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Vector, Matrix and Tensor

Tensors are higher-order extensions of matrices.

® Ist-order tensors are vectors (a)
® 2nd-order tensors are matrices (A)

® higher-order tensors (A)

Figure 1: 5 x 5 x 5 tensor. This is a third-order tensor.
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Matricization and Tucker Ranks of a Tensor

Consider A € RP**P2%P3  For § = 1,2, 3, its mode-i matricization A ;) is

A pz .52\(1 Rmxpzpa

Pay A
pﬁtfiifiég
T ||mmmmnm

Let 7; = rank(A;)) be the matrix rank of A;y. (r1,72,73) are analogous to

column and row ranks of a matrix, but they are not always equal.
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Tucker Decomposition

® For a tensor X € RP1*P2%P3 the Tucker decomposition is
I)C:S ><1A><2B ><3CE HS;A,B,C]]

where G is a r1 X ro X 13 core tensor, A is a p1 X r1 matrix, B is a p2 X 12
matrix, and C is a p3 X rs matrix.

T3
nl X Y IR Y P2 B
T2 "3
23 bs 1 T2

® Higher-order SVD: G is all-orthogonal; A, B and C are orthonormal

® (rq,7r2,73): Tucker ranks or multilinear ranks.
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Proposed Model: Multilinear Low-Rank VAR

® For a VAR(P) model, we stack Ay,..., Ap into an N X N x P tensor A,
where
A=Gx1U1 x2U2 x3Us3.

Ap

tensorization
[ N
A Ao Az s Ap J—
matricization

A

® |f (7‘1,7“2,7“3) < (]\/v,]\f7 P),
# of parameters = rirars + r1(N —r1) + r2(N — r2) + r3(P —r3).

® The reduced-rank model is a special case of multilinear low-rank model with
ranks (r, N, P).
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Connection with the factor model

® Factor model:
Yy, =Af, + &, (1)

where f, is a set of latent factor with dimension » < N, A is an N-by-r
factor loading matrix, and &, is the noise series.

® Estimated factor: ft = K/yt.
® Supervised factor interpretation: since U is orthonormal
Ullyt = 9(1)V6C(U2,Xt ) = Uv1/6t7 (2)
where X: = (Yy_1,--,Yy_p)-

® U,'y,: ri response factors
o Uy X, s 1o X bilinear predictor factors.
® 1 : response rank, r2: predictor rank and
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Connection with VARMA

® The VARMA(1,1) process
Y, =Py, | + €& — O (3)
has the VAR(co) form with A; = —©771(® — ¥) for j > 1:
Yy, =€+ A1y, 1 +Aw, o+ A3y, 5+ . (4)

Accordingly, we can define an N X N x oo tensor Avarma.-

Proposition 1
Under regularity conditions, if rank(®) = r and rank(®) = s, then Avarma has

multilinear ranks at most (r + s, + s, 7 + 1).

® VAR(P) approximation is easier to implement but involves more parameters.

® Tucker decomposition reduces the dimensionality and alleviates the

overparametrization.
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Multilinear Low-Rank Estimator

® Denote ; = (y;_1,.--,Y;_p) . Given Tucker ranks (r1,72,73), consider the
multilinear low-rank (MLR) estimator

jl\I\/ILR = [[§§ﬁl7ﬁ2>ﬁ3ﬂ
T
= argminz Hyt — (9 X1 U1 X9 U2 X3 U3)<1):ct|\§.
t=1

® Alternating least squares algorithm:

o Update G, U1, Ua,, Us alternatingly.
o Each step is an OLS problem.

Theorem 1 (Asymptotic Normality)
Under regularity conditions, if NV and P are fixed, then as T" — oo,

ﬁ(vec(flMLR) — vec(A)) 4 N(0,EMmLR)-
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Rank Selection

® We propose a ridge-type ratio estimator to determine (r1,72,73).

® Based on an initial estimator A (e.g., the OLS estimator or the nuclear norm

estimator), we estimate (71,72, 73) by

- _oj+1(AG) +e
i = argmin ——————,
1<i<pi—1 0 (Ayy) +c

where p1 = p2 = N, p3 = P, and c is a well-chosen parameter.

Theorem 2 (Rank Selection Consistency)

Under the conditions of Theorem 1, if ¢ is chosen such that
T7'? < e < or (Ag)) - mini<j<r, 0541(Aw)/05(Ag), for 1 <i <3,

P(r1 =ri,72 = 12,73 =13) > 1, as T — oo.
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SHORR Estimator

® Sparsity in U; = variable selection in factor loadings

Y
o

® Sparse Higher-Order Reduced Rank (SHORR) estimator:

ﬁSHORR = [[g ﬁh ﬁz, ﬁs]]

T
. 1 _
=argmin {T E ly, — (G x1 U1 x2 U3 x3 US)(l)thQ AU U2 @ U1|1}
t=1

subject to G is all-orthogonal and U is orthonormal, where

[ - |l1 = ||vec(+)||1 for matrices.

® |[Us ®@U;® U1 induces sparsity for three factor matrices jointly.
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SHORR Estimator

® We propose an alternating direction method of multipliers (ADMM)
algorithm.

® Nonasymptotic error bounds:
Theorem 3 (Simplified by assuming (r,,7,,73) are fixed)

Under regularity conditions, if A > /log(N2P)/T and T > log(N?P), then
with high probability,

|| Astorr — Allr S V515283,

T

1 .

T E l(Asaorr — -A)(l)mtng < 7251828307,
=1

where s; is the maximum number of nonzero entries in each column of U, for
1 <¢<3.

® Estimation convergence rate is \/s15253 log(N2P)/T.
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Comparison of Estimation Efficiency

Estimator Structure Estimation error rate

SHORR low-rank & sparsity \/513233 log(N2P)/T

Lasso sparsity VI Allolog(N2P)/T

Nuclear low-rank \/rNP/T

Introducing sparsity into the low-rank decomposition can improve the estimation

efficiency.
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Macroeconomic Forecasting

® A list of 40 major U.S. quarterly macroeconomic variables from Q1-1959 to
Q4-2007, seasonally adjusted and transformed to be stationary. Eight
categories:

1) GDP and its decomposition 2) NAPM indices

(1) (

(3) industrial production (4) housing

(5) money, credit and interest rate  (6) employment
(7) prices and wages (8) others

® Apply VAR(4) model. Select (r1,7r2,73) = (4, 3,2).

® Perform rolling forecast from Q4-2000 to Q4-2006. Forecast error:

Non-regularized methods Regularized methods
Criterion OoLS RRR DFM MLR SHORR  LASSO  RSSVD NN SOFAR
£5 norm 20.16  13.31 6.36 5.81 5.35 6.72 6.33 8.16 6.28
{~ norm 8.32 4.55 2.85 2.56 2.44 3.06 3.02 3.36 3.02

® SHORR and MLR have impressive forecasting accuracy compared to
competing methods.
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Topic 2: Low-Rank Tensor

Autoregression




Tensor-Value Time Series Data

® Tensor-valued time series can be found in many fields: economics, portfolio

analysis, neuroscience, bioinformatics, computer vision, ...

® Denoted by {Y;,t =1,...,T}, where Y, € RP1*"*Pd_ When d = 1,
vector-valued time series {y,}. When d = 2, matrix-valued time series {Y;}.

8
Country Size Y
s % g S, A
2 3 % /< T /2T /%
9 % 5 % 2 /35/55/%
Industrial ; X
production Yi)u Low (Ye)1u1| 'B/M ratio
oo )
g %Employmem Medllll])Tv
3]
&3 Y ' Y
8 £ cPI Medium
high
Interest Rate High
(a) Matrix-valued Yy € R*** (b) Tensor-valued Y € RA*4x2

Figure 2: Observation at time t for (a) a 4 x 4 matrix-valued macroeconomic
indicators time series {Y +} and (b) a 4 x 4 x 2 tensor-valued stock portfolio returns
time series {Y:}. OP: operating profitability; B/M: book-to-market.
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How to model tensor-valued time series?

® Consider Y, € R****2 in Figure 1(b). A simple approach is the VAR:
vec(Y:) = Avec(Yi—1) + vec(&y), (5)

where A € R32*32 s the unknown transition matrix. It can incorporate linear
associations between every variable in Y; and that in Y,_;.

® Even with only one lag, # of parameters = 32? = 1024. (curse of
dimensionality)

® The vectorization will destroy the intrinsic multidimensional structural
information of the observed tensors Y;. (lack of interpretability)
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Multi-Mode M

® For a fixed index set S C {1,2,...,d}, the multi-mode matricization of

X € RP1X*Pd s the matrix
x[S] c RH7,€5 Pa,XHigs P1/7
with [, s pi rows and [[, ¢ pi columns®.

® One-mode matriciation: The mode-i matricization of X, X(;), is simply

Xigiy-

@Specifically, its (¢, j)-th entry is
(Xis1); 5 =Xir,oiar
where i =1+ 37, cg(ix — 1)1 and j = 1+ Zkgs(ik — 1) Jy, with Iy = [Tye s o<1 Pes

and ka, = HZ&S,Z<kpZ'
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Proposed Model: Low-Rank Tensor Autoregression (L

We propose
Ye = (A, Ye1) + &,
where
Yi, & € RITP,
and
A c Rm X eXPpgXp1 X+ XPpq
is a 2d-th-order transition tensor with Tucker ranks (r1,...,724), i.€.,

Ty = rank(./lm), 1= 1, .. .72d.
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Tucker Decomposition and Connection with VAR

A has the Tucker decomposition A = G x2¢, U, with core tensor
G € R" %" *"2d and factor matrices U; € RPi*"i 1 < ¢ < 2d.

Define index sets S1 = {1,2,...,d} and So = {d+ 1,d+ 2,...,2d}. Then
the LRTAR can be written in the VAR form:

‘A[SQ]

vec(Ys) = (®ieSzUi)9[S2](®ieslUi)T vec(Yi—1) + vec(&y)

® The transition matrix is the multi-mode matricization of A,
Ags,) € RH?=1 pixIT, Pi
® 4 of parameters is reduced from (l_[f:1 pi)? dramatically to
1

2d d d
r; + Z ri(pi — i) + Z Ta+i(Di — Td+i)-
=1 i=1 i=1

i
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Dynamic Tensor Factors Interpretation

[T »[T]
6

r3

»

Figure 3: Low-dimensional dynamic factor structure when Y is a third-order tensor.

® Consider the HOSVD: all U; are orthonormal. Then the LRTAR implies a

low-dimensional tensor regression:

2d T d T 2d T
Ye Xicar1 U; = <9 Y1 Xi=1 U; >+ & xiZg Uy,
N— ——

T4l XTgqa X XT2g T XT2 X+ X7y
oY, xf‘:idHUiT: Td+1 X Tdy2 X -+ X raq response factors
Yy, ><§1:1U1-T: r1 X re X .-+ X rq predictor factors
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ularization via Square Matricizations

® Aisapi X - XpgXpi X--- X pq tensor. The
Ay will be a [T, pi x [T, ps if the index set is

I={tly,...,0q4}, where (€ {i,d+i} for i=1,...,d.

® There are totally 2¢ square matricizations of A, denoted by Aqr,y with
d . 2d 2d
1 <k < 2% Note that rank(Ayr,)) < min([[;5, ;o o, [IZ, igr, 7)-
® To simultaneously encourage low-rankness across all square matricizations,
and hence across all modes, we propose a novel regularizer based on the
Sum of Square-matrix Nuclear (SSN) norm:

od

[Allssv = [ Az
k=1

]

where || X||. =37, 0;(X) is the nuclear norm, with ¢;(X) being the j-th
largest singular value of X.
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SSN Norm Regularized Estimator

® \We propose the SSN norm regularized estimator

-

. (1

Assn = ‘drjglmln { T Z 1Ye — (A, Y1) |IF + >\SSN|-A|SSN} .
t=1

Theorem 4
Under regularity conditions, if Assy > 274 /p/T, and T > p, then with high
probability,

[ Assn — Alle < V/s(2%Assn),

[[(Assn — A, Ye—1) I} S Cs(2%Assn)?,

M“]

T

o
Il

1

where p = H _,pi and /s = 2_d2ii1 V25, with s = rank( Ay, ).

. i 3 _ od
® Estimation convergence rate is 27 Zi:l W
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Comparison of Estimation Efficiency

® \We also considered the Sum of Nuclear (SN) norm (Gandy et al., 2011):
2d
A s = > Al
i1

T
Asy = arg‘min{ Z 1Y: — (A, Y1) |[F + /\sN||A|SN} :
A :
This is based on the

® The square matricization leads to greater estimation efficiency:

Regularizer ~ Matricization  Estimation error rate

SN one-mode At ro—ip/T
SSN square 274 Zidzl V/skp/T

°p= H?:l Diy P—i = H?:Lj;éi pj
o \/r=(2d)"' 2 \/2ri, i = rank(Aj,), and s = rank(AJ;, ) are

fixed if (r1,...,724) are fixed.
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Rank Selection

® The optimization is convex yet the regularizer involves multiple nuclear

norms. We propose an ADMM algorithm.

° ﬁssgq does not guarantee consistent estimation of the ranks. To this end, we

further apply a truncation method:

© Truncated SVD for each (ﬁssN)(i): Retain only singular values
exceeding a well-chosen threshold « > 0. Obtain the truncated factor
matrices, U, 1 < i < 2d.

o The truncated core tensor is § = JAISSN x4, ﬁj

The truncated SSN (TSSN) estimator is
ﬁTSSN e § X?il ﬁz
® The rank selection is consistent if \/s*p/T < v < mini<;<2q 0r; (Ag))-

® Avssn achieves the same asymptotic error rate as Assn.
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Portfolio Returns Forecasting

® Monthly market-adjusted portfolio return series from July 1963 to Dec. 2019.
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french /data_library.html

® The portfolios are constructed as the intersections of different levels of

o size: small and big

o book-to-market (B/M) ratio: from lowest to highest
o operating profitability (OP): from lowest to highest
o Investment (Inv): from lowest to highest

® The first dataset: 4 x 4 x 2 portfolios formed by OP, B/M ratio, and size.

® The second dataset: 4 x 4 x 2 portfolios formed by Inv, B/M ratio, and size.
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Models for 4 x 4 x 2 time series

® Vector autoregression (VAR): y, = Ay, , + e, where A € R32%32,

® Vector factor model (VFM): y, = Af, + e, where f, is the low-dimensional

vector-valued latent factor, and A is the loading matrix.

® Multilinear tensor autoregression (MTAR): Y, =Y,_1 x5, B; + &, where
B, B; € R** and B3z € R?**? are coefficient matrices.

® Tensor factor model (TFM): Y = F; x3_, U; + &, where F, is the
low-dimensional tensor-valued latent factor, and U;'s are the loading
matrices; see Chen et al. (2022). For prediction, the estimated factors F, are

then fitted by a VAR(1) model.

® Proposed LRTAR: Y, = (A, Y, 1) + &, with A =G xb_, U,.
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Results for 4 x 4 x 2 time series

Model | VAR VFM MTAR TFM 7LRTAR Best Worst
SSN TSSN

OP-BM-Size 4 x 4 x 2 series

{3 norm |19.53 20.08 19.89 20.09 19.69 19.70 VAR TFM
lonorm| 7.67 791 785 792 776 7.77 VAR TFM
l2 norm | 22.27 20.17 20.50 20.11 20.32 19.95 TSSN VAR
los norm|10.38 10.04 9.86 10.03 9.29 9.35 SSN VAR
Inv-BM-Size 4 x 4 x 2 series

{3 norm |16.80 17.10 17.05 17.11 16.86 16.88 VAR TFM
lonorm| 6.25 640 638 641 631 6.32 VAR TFM
l5 norm | 18.70 17.70 16.89 17.67 16.11 16.29 SSN VAR
loo norm| 7.42 737 679 7.33 6.62 6.43 TSSN VAR

In-sample

Out-of-sample

In-sample

Out-of-sample

Table 1: Average in-sample forecasting error and out-of-sample rolling forecasting
error for 4 x 4 x 2 tensor-valued portfolio return series. The best cases are marked
in bold.
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Results for 4 x 4 x 2 time series

o
B
)
=
a
o
o L
OP Predictor B/M Predictor Size Predictor OP Response B/M Response Size Response 04
Factor Loading Factor Loading Factor Loading  Factor Loading Factor Loading Factor Loading 02
0
-02
'{,:j 04
= 06
)
z -
z 08
] _—
Inv Predictor BIM Predictor Size Predictor Inv Response B/M Response Size Response Leaend
Factor Loading Factor Loading Factor Loading ~ Factor Loading Factor Loading Factor Loading egen

Figure 4: TSSN estimates of predictor and response factor matrices for 4 x 4 x 2
tensor-valued portfolio return series. From left to right: l~]1, (}2, Us, Uy, Us and

Us.
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Conclusion




Conclusion

® |n both topics, we leveraged the tensor decomposition for dimensionality
reduction of high-dimensional time series models.

® Besides achieving greater estimation efficiency and forecast accuracy, the
resulting models admit intepretable dynamic factor structures that enable the

extraction of meaningful insights from massive data.

® |n topic 1, we developed a new high-dimensional vector autoregressive model
- the Multilinear Low-Rank VAR, and further considered imposing sparsity on

the factor matrices for automatic variable selection in factor loadings.
® |n topic 2, we developed a novel high-dimensional tensor autoregressive

model - the Low-Rank TAR, which is one of the first endeavors of statistical

modeling for tensor-valued time series data.
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Thank you!
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